1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tìm số dư của phép chia ứng dụng của quan hệ đồng dư

6 15,1K 44

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 182,7 KB

Nội dung

PHƯƠNG PHÁP GIẢI TOÁN TRÊN MÁY TÍNH BỎ TÚI Nguyễn Đức Tuấn – Thành phố Cao Lãnh – Đồng Tháp PHƯƠNG PHÁP GIẢI TOÁN TRÊN MÁY TÍNH BỎ TÚI Chuyên đề: Tìm số của phép chia Ứng dụng của quan hệ đồng A. Phương pháp giải toán Bài toán 1: Tìm số của phép chia số nguyên dương cho số nguyên dương ( có tối đa 10 chữ số). Thuật toán: 1. Nếu số các chữ số của không vượt quá 10. Ta làm như sau: Tìm phần nguyên của thương . Gọi phần nguyên đó là . Thì số của phép chia ( Kí hiệu là ) là: 2. Nếu số các chữ số của lớn hơn 10. Ta làm như sau: Giả sử có dạng: Đầu tiên ta tìm số của phép chia cho bằng cách 1. Giả sử số này là PHƯƠNG PHÁP GIẢI TOÁN TRÊN MÁY TÍNH BỎ TÚI Nguyễn Đức Tuấn – Thành phố Cao Lãnh – Đồng Tháp ( ít hơn 10 chữ số). Tiếp theo ta tìm số của phép chia cho ( có 10 chữ số). Giả sử số này là ( ít hơn 10 chữ số). Cứ làm như thế cho đến khi ta tìm được số của phép chia cho ( không quá 10 chữ số). Giả sử số đó là . Thì cũng là số của phép chia cho . Bài toán 2: Tìm số của phép chia cho số nguyên dương . ( Trong đó và cũng là số nguyên dương). Thuật toán: Để tìm số của phép chia cho ta tìm số sao cho: Thì chính là số của phép chia trên. Để giải dạng toán này ta cần có một số kiến thức về quan hệ đồng dư. 1. Định nghĩa quan hệ đồng Cho 2 số nguyên và . Ta nói A có quan hệ đồng theo modulo với , kí hiệu là khi và chỉ khi là ước số của , trong đó là số nguyên dương. Ví dụ: 2. Một số tính chất i. chia hết cho . ii. và . PHƯƠNG PHÁP GIẢI TOÁN TRÊN MÁY TÍNH BỎ TÚI Nguyễn Đức Tuấn – Thành phố Cao Lãnh – Đồng Tháp iii. thì: và . iv. và thì: và . v. thì: . vi. là số nguyên tố và thì: . vii. là số nguyên tố thì: ( . B. Ví dụ minh hoạ Ví dụ 1: Tìm số của phép chia cho . Lời giải: Ta có: . Suy ra: . PHƯƠNG PHÁP GIẢI TOÁN TRÊN MÁY TÍNH BỎ TÚI Nguyễn Đức Tuấn – Thành phố Cao Lãnh – Đồng Tháp Vậy số của phép chia cho là: . Ví dụ 2: Tìm số của phép chia cho . Lời giải: Ta tìm số của phép chia cho . Kết quả là . Tiếp tục tìm số của phép chia cho . Kết quả là . Vậy số của phép chia cho là . Ví dụ 3: Tìm số của phép chia cho . Lời giải: Vì là số nguyên tố và . Nên ta có: . Suy ra: . Suy ra: . Vậy số của phép chia cho là . Ví dụ 4: Tìm số của phép chia cho . Lời giải: PHƯƠNG PHÁP GIẢI TOÁN TRÊN MÁY TÍNH BỎ TÚI Nguyễn Đức Tuấn – Thành phố Cao Lãnh – Đồng Tháp Cách 1: Ta có: . Suy ra: . Suy ra: . Suy ra: . Suy ra: . Suy ra: . Suy ra: . Vậy số của phép chia cho là . Cách 2: Ta có: . Suy ra: . Suy ra: . Suy ra: . Suy ra: PHƯƠNG PHÁP GIẢI TOÁN TRÊN MÁY TÍNH BỎ TÚI Nguyễn Đức Tuấn – Thành phố Cao Lãnh – Đồng Tháp . Suy ra: . Vậy số của phép chia cho là . C. Bài tập vận dụng 1. Tìm số của các phép chia sau: a. cho b. cho c. cho d. cho . 2. Tìm số của các phép chia sau: a. cho b. cho c. cho d. cho e. cho f. cho . Nguyễn Đức Tuấn ( t_toan ) - Chúc các bạn thành công! Học sinh chuyên Toán khoá 2006 – 2009 trường THPT Thành phố CaoLãnh . phố Cao Lãnh – Đồng Tháp Vậy số dư của phép chia cho là: . Ví dụ 2: Tìm số dư của phép chia cho . Lời giải: Ta tìm số dư của phép chia cho . Kết quả là . Tiếp tục tìm số dư của phép chia cho . Kết. chữ số) . Giả sử số dư đó là . Thì cũng là số dư của phép chia cho . Bài toán 2: Tìm số dư của phép chia cho số nguyên dư ng . ( Trong đó và cũng là số nguyên dư ng). Thuật toán: Để tìm số dư của. – Đồng Tháp PHƯƠNG PHÁP GIẢI TOÁN TRÊN MÁY TÍNH BỎ TÚI Chuyên đề: Tìm số dư của phép chia Ứng dụng của quan hệ đồng dư A. Phương pháp giải toán Bài toán 1: Tìm số dư của phép chia số nguyên dư ng

Ngày đăng: 07/06/2014, 10:15

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w