1. Trang chủ
  2. » Luận Văn - Báo Cáo

Lý thuyết dung lượng trong không gian tôpô

81 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 81
Dung lượng 475,28 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: LÝ THUYẾT DUNG LƯỢNG TRONG KHÔNG GIAN TÔPÔ LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Trong thực tế tồn hai tốn trái ngược nhau, hai tốn gọi tốn thuận tốn cịn lại gọi toán ngược Người ta thường quy ước toán thuận toán đặt chỉnh tốn ngược tốn đặt khơng chỉnh Theo J Hardamad, toán gọi đặt chỉnh nghiệm toán tồn tại, ổn định Ngược lại, nghiệm toán không thỏa mãn điều kiện trên, đặc biệt tốn khơng ổn định theo kiện ban đầu, tốn gọi đặt khơng chỉnh 971 2 ĐẠI SỐ VÀ SIGMA ĐẠI SỐ Định nghĩa Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi đại số tập X A∗ thỏa ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng kín với phép toán lấy phần bù) ∀A, B ∈ A∗ , A ∪ B ∈ A∗ (Đóng kín với phép toán hợp) Định nghĩa Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi σ - đại số tập X A∗ thỏa mãn ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng[kín với phép tốn lấy phần bù) ∀A1 , A2 , , An , ∈ A∗ ⇒ Ai ∈ A∗ i≥1 Dựa vào hai định nghĩa ta có nhận xét Nhận xét Khái niệm "đại số tập tập X " khái niệm "σ - đại số tập X " gần với Điều thể qua giống hai tiên đề Sự khác biệt hai khái niệm tiên đề số Đối với "đại số tập X hợp "HỮU HẠN" phần tử thuộc A∗ phần tử thuộc A∗ Còn "σ - đại số tập X " hợp "VÔ HẠN" phần tử A∗ phần tử thuộc A∗ Mệnh đề Cho X tập tùy ý khác rỗng Gọi A∗ "đại số tập X " Khi đó: ∅ ∈ A∗ Hợp hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ n [ ∗ Hay A1 , A2, , An ∈ A ⇒ Ai ∈ A∗ i=1 Giao hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ (Đóng kín với phép tốn giao) n \ ∗ Hay A1 , A2, , An ∈ A ⇒ Ai ∈ A∗ i=1 Đóng kín với phép toán hiệu nghĩa là: ∀A, B ∈ A∗ ⇒ A\B ∈ A∗ Đóng kín với phép tốn lấy hiệu đối xứng nghĩa là: ∀A, B ∈ A∗ ⇒ A△B ∈ A∗ Định lý Cho tập X khác rỗng Giả sử X có phép tốn α Phép tốn α gọi đóng kín với tập X ta lấy hai phần tử thuộc X , thao tác qua phép toán ta phần tử phần tử thuộc X Để dễ hiểu ta lấy ví dụ đơn giản Trên tập N có phép tốn cộng thơng thường Ta lấy hai phần tử thuộc N (lấy hai số tự nhiên) Dễ thấy cộng hai số tự nhiên số tự nhiên số tự nhiên thuộc N Như ta nói N đóng kín với phép cộng Trong trường hợp tổng qt tập X Tiếp theo ta chứng minh ý mệnh đề Chứng minh: Vì X ∈ A∗ (Tiên đề 1) nên X c = ∅ ∈ A∗ (Tiên đề 2) Ta quy nạp dựa theo tiên đề có điều phải chứng minh ∀A, B ∈ A∗ ta có Ac , B c ∈ A∗ Khi (Ac ∪ B c ) ∈ A∗ ⇒ [(Ac ∪ B c )]c ∈ A∗ hay A ∩ B ∈ A∗ Từ ta quy nạp lên giao hữu hạn phần tử có điều phải chứng minh Chưa chứng minh Chưa chứng minh Mở rộng Dorroh mở rộng tail ring ∆U -vành Mệnh đề Cho R vành, điều kiện sau tương đương (1) R ∆U -vành (2) ∆(R) = U◦ (R) (3) Ánh xạ ε : (∆(R), ◦) → (U (R), ) cho ε(x) = − x đẳng cấu nhóm Định lý Cho R vành có đơn vị Khi điều kiện sau tương đương (1) Mở rộng Dorroh Z ⊕ R ∆U -vành (2) R ∆U -vành Mệnh đề R[D, C] ∆U -vành D C ∆U -vành 3.1 Các nhóm vành Định lý Cho G nhóm hữu hạn với cấp + 2n R ∆U -vành Khi RG ∆U -vành agumentation iđêan ∇(RG) ∆U -vành Bổ đề Nếu G locally finite 2-group R ∆U -vành với ∆(R) lũy linh, ∇(RG) ⊆ ∆(RG) Định lý Cho R ∆U -vành G locally finite 2-group Nếu ∆(R) lũy linh, RG ∆U -vành Hệ Cho R right (or left) perfect ring G locally finite 2-group Khi đó, R ∆U -vành RG ∆U -vành Các khái niệm Định nghĩa Cho tập hợp R khác rỗng, R ta trang bị hai phép toán mà ta gọi phép cộng phép nhân thỏa mãn: R nhóm Abel với phép tốn cộng, R nửa nhóm với phép toán nhân phép toán nhân phân phối với phép toán cộng, nghĩa x(y + z) = xy + xz, (x + y)z = zx + yz với x, y, z ∈ R Phần tử trung hòa phép cộng ký hiệu (thường gọi phần tử không) Phần tử đơn vị phép nhân có ký hiệu Nếu vành có nhiều phần tử có đơn vị ̸= Định nghĩa Tập A vành R gọi vành R A vành hai phép toán cộng nhân R (bao gồm tính đóng hai phép toán A) Định nghĩa Ideal trái (phải) vành R vành A thỏa mãn điều kiện ∈ A(ar ∈ A), a ∈ A, r ∈ R Vành I R vừa ideal trái, vừa ideal phải gọi ideal vành R Cho I ideal vành R, ta ký hiệu R/I =: {r + I|r ∈ R} gọi tập thương R theo I Trên tập thương R/I ta xây dựng hai phép toán (x + I) + (y + I) = (x + y) + I, (x + I)(y + I) = (xy) + I với x, y ∈ R Định nghĩa Tập thương R/I với hai phép toán xác định lập thành vành gọi vành thương R theo I 4.0.1 Định lý đồng cấu vành Định nghĩa Cho R, R′ hai vành Ánh xạ f : R → R′ gọi đồng cấu vành f bảo toàn hai phép toán cộng nhân R, nghĩa f (x + y) = f (x) + f (y), f (xy) = f (x)f (x), với x, y ∈ R 4.0.2 Một số kết liên quan Mở rộng Dorroh mở rộng ∆U -vành Mệnh đề Cho R vành Khi đó, điều kiện sau tương đương (1) R ∆U -vành (2) ∆(R) = U◦ (R) (3) Ánh xạ ε : (∆(R), ◦) → (U (R), ) cho ε(x) = − x đẳng cấu nhóm Chứng minh (1) ⇒ (2) Giả sử R ∆U -vành Mỗi x ∈ ∆(R), ta có − x ∈ U (R), x = − (1 − x) ∈ U◦ (R) Suy ∆(R) ⊆ U◦ (R) Ngược lại, y ∈ U◦ (R) − y ∈ U (R) = + ∆(R) Suy y ∈ ∆(R) hay ∆(R) = U◦ (R) (2) ⇒ (3) Hiển nhiên (3) ⇒ (1) Giả sử ánh xạ ε : (∆(R), ◦) → (U (R), ) cho ε(x) = − x đẳng cấu nhóm Khi u ∈ U (R), tồn x ∈ ∆(R) thỏa mãn u = ε(x) = − x Điều nghĩa U (R) ⊆ + ∆(R) hay U (R) = + ∆(R) Nếu R vành, mở rộng Dorroh vành có đơn vị Z ⊕ R, với phép tốn cộng cộng theo thành phần phép nhân cho (n1 , r1 )(n2 , r2 ) = (n1 n2 , r1 r2 + n1 r2 + n2 r1 ) Chú ý Cho R vành có đơn vị Khi (1) u ∈ U (R) − u ∈ U◦ (R) (2) (1, u − 1) ∈ U (Z ⊕ R) với u ∈ U (R) (3) (1, −x)(1, −y) = (1, −x◦y) (−1, x)(−1, y) = (1, −x◦y) với x, y ∈ R Định lý Cho R vành có đơn vị Khi điều kiện sau tương đương (1) Mở rộng Dorroh Z ⊕ R ∆U -vành; (2) R ∆U -vành Chứng minh (1) ⇒ (2) Lấy u ∈ U (R) Khi − u ∈ U◦ (R) Tồn v ∈ R thỏa mãn (1 − u) ◦ v = = v ◦ (1 − u) Khi ta có (1, u−1)(1, −v) = (1, −(1−u))(1, −v) = (1, −(1−u)◦v) = (1, 0) = (1, −v)(1, u−1) Điều nghĩa (1, u − 1) ∈ U (Z ⊕ R) Vì Z ⊕ R ∆U -vành, (1, u − 1) ∈ + ∆(Z ⊕ R) (0, u − 1) ∈ ∆(Z ⊕ R) Tiếp theo, ta U (R) = + ∆(R) Thật vậy, t ∈ U (R), ta có + t ∈ U◦ (R), (1 + t) ◦ s = = s ◦ (1 + t) với s ∈ R Khi (−1, + t)(−1, s) = (1, −(1 + t) ◦ s) = (1, 0) = (−1, s)(−1, + t) Do (−1, + t) ∈ U (Z ⊕ R) Theo định nghĩa ∆, ta có (0, u − 1) + (−1, + t) ∈ U (Z ⊕ R) (−1, u + t) ∈ U (Z ⊕ R) Đặt x = u + t Khi đó, (−1, x) ∈ U (Z ⊕ R) (1, −x) ∈ U (Z ⊕ R) Suy tồn (1, −y) ∈ Z ⊕ R thỏa mãn (1, −x)(1, −y) = (1, 0) = (1, −y)(1, −x) Ta có x ◦ y = = y ◦ x nên x ∈ U◦ (R) Vì − x ∈ U (R) nên x − = u + t − ∈ U (R) Suy u + t − = (u − 1) + t ∈ U (R) với t ∈ U (R) Điều nghĩa u − ∈ ∆(R), u ∈ + ∆(R) (2) ⇒ (1) Giả sử R ∆U -vành Ta mở rộng Dorroh Z ⊕ R ∆U -vành, nghĩa U (Z ⊕ R) = + ∆(Z ⊕ R) Lấy ω ∈ U (Z ⊕ R) Khi đó, ω có dạng ω = (1, a) ω = (−1, b) với a, b ∈ R Trường hợp ω = (1, a) ∈ U (Z ⊕ R): Lấy x = −a, tồn (1, −y) Z ⊕ R thỏa mãn (1, −x)(1, −y) = (1, 0) = (1, −y)(1, −x) Điều có nghĩa x◦y = = y ◦x x ∈ U◦ (R), 1+a = 1−x ∈ U (R) Từ R ∆U -vành, 1+a ∈ 1+∆(R) Vì a ∈ ∆(R) a+U (R) ⊆ U (R) Tiếp theo ta chứng minh (1, a) ∈ + ∆(Z ⊕ R), nghĩa ta chứng minh (0, a) + U (Z ⊕ R) ⊆ U (Z ⊕ R) Với α ∈ U (Z ⊕ R), α có dạng (1, u) (−1, v) với u, v ∈ R Nếu α = (1, u), từ chứng minh ω ta có + u ∈ U (R) Từ a + U (R) ⊆ U (R), ta lấy a + + u ∈ U (R), −(a + u) ∈ U◦ (R) Lấy b ∈ R với (−(a + u)) ◦ b = = b ◦ (−(a + u)) Đặt c = −(a + u) Khi c ◦ b = b ◦ c (1, a + u)(1, −b) = (1, −c)(1, −b) = (1, −b ◦ c) = (1, 0) = (1, −b)(1, a + u) Ta suy (1, a + u) ∈ U (Z ⊕ R) Hơn nữa, ta có (0, a) + α = (1, a + u) ∈ U (Z ⊕ R), nghĩa (0, a) + U (Z ⊕ R) ⊆ U (Z ⊕ R) Nếu α = (−1, v) ∈ U (Z⊕R), (−1, v)(−1, d) = (1, 0) = (−1, d)(−1, v) với d ∈ R Ta suy v◦d = = d◦v = v ∈ U◦ (R), 1−v ∈ U (R) Khi đó, v − ∈ U (R) Từ a + U (R) ⊆ U (R), ta có a + v − ∈ U (R) − (a + v) ∈ U (R) Do đó, a + v ∈ U◦ (R) Nghĩa tồn e ∈ R thỏa mãn (a + v) ◦ e = = e ◦ (a + v), (−1, a + v)(−1, e) = (1, −(a + v) ◦ e) = = (−1, e)(−1, a+v) Điều có nghĩa (−1, a+v) ∈ U (Z ⊕R) Hơn nữa, ta có (0, a) + α = (−1, a + v) ∈ U (Z ⊕ R) Do đó, (0, a) + U (Z ⊕ R) ⊆ U (Z ⊕ R) Trường hợp ω = (−1, a) ∈ U (Z ⊕ R): Tương tự Trường hợp Cho C vành vành D, tập hợp R[D, C] := {(d1 , , dn , c, c ) : di ∈ D, c ∈ C, n ≥ 1}, với phép cộng phép nhân định nghĩa theo thành phần gọi vành mở rộng đuôi ký hiệu R[D, C] Mệnh đề R[D, C] ∆U -vành D C ∆U -vành Chứng minh (:⇒) Đầu tiên ta chứng minh D ∆U -vành Lấy u tùy ý thuộc U (D) Khi u¯ = (u, 1, 1, 1, ) ∈ U (R[D, C]) Theo giả thuyết, u¯ ∈ + ∆(R[D, C]), (u − 1, 0, 0, 0, ) + U (R[D, C]) ⊆ U (R[D, C]) Do đó, với v ∈ U (D), (u − + v, 1, 1, 1, ) = (u − 1, 0, 0, 0, ) + (v, 1, 1, 1, ) ∈ U (R[D, C]) Vì u − + v ∈ U (D), nghĩa u − ∈ ∆(D) u ∈ + ∆(D) Để C ∆U -vành, ta lấy v ∈ U (C) thỏa mãn v¯ = (1, , 1, v, v, ) ∈ U (R[D, C]) chứng minh (⇐:) Giả sử D C ∆U -vành Lấy u¯ = (u1 , u2 , , un , v, v, ) ∈ U (R[D, C]), ui ∈ U (D) với ≤ i ≤ n v ∈ U (C) ⊆ U (D) Ta u¯ ∈ ∆(R[D, C]) u¯ − + U (R[D, C]) ⊆ U (R[D, C]) Thật vậy, tất a¯ ∈ (a1 , a2 , , am , b, b, ) ∈ U (R[D, C]) ∈ U (D), ≤ i ≤ m b ∈ U (C) ⊆ U (D) Lấy k = max{m, n} Khi đó, ta có u1 , u2 , , un ∈ U (D), v ∈ U (C) ⊆ U (D) ta suy u1 − + U (D), u2 − + U (D), , un − + U (D) ⊆ U (D), v − + U (D) ⊆ U (D) v − + U (C) ⊆ U (C) Ta có u¯ − = (u1 − 1, u2 − 1, , un − 1, un+1 − 1, , uk − 1, v − 1, v − 1, ), 39 Từ X liên tục t, cho e > có ϵ > |s − t| < δ1 Ngụ ý |X(s) − X(t)| < ϵ Mà |Z(σ)| = |η − X(σ)| ≤ |η − ξ| + |X(τ ) − X(σ)| Từ X liên tục t, cho e > có ϵ2 > |η − ξ| < δ2 , Ngụ ý |τ − σ| < δ2 ϵ |Z(σ)| exp(∥C∥∞ [b − a]) < Cuối cùng, từ E(t) = (C(t) − A(t))X(t) + D(t) − B(t) Có ϵ3 ∥C − A∥∞ < ϵ3 , Ngụ ý ∥D − B∥∞ < ϵ3 ϵ |b − a|∥E∥∞ exp(∥C∥[b − a]) < Và chọn δ > thoả mãn δ = min(δ1 , δ2 , δ3 ) Vậy (7.13) hợp lệ cho ϵ (7.14) sau từ (7.15)-(7.19) 17 Nhóm quaternion suy rộng Mệnh đề 12 Cho nhóm quaternion suy rộng Q4n = ⟨r, s | r2n = 1, s2 = rn = 1, s−1 rs = r−1 ⟩ với n ⩾ H nhóm Q4n Khi (i) Nếu H = Rk với k|2n, ⩽ k ⩽ 2n Pr(H, Q4n ) =  n+k   k | n, 2n   2n + k k ∤ n 4n 40 (ii) Nếu H = Ui,j với i|n, ⩽ i ⩽ n, ⩽ j ⩽ i − Pr(H, Q4n ) = n+i+2 4n Chứng minh (i) Giả sử H = Rk với k|2n, ⩽ k ⩽ 2n Theo Mệnh đề ?? ta có 2n 2n = (2n, k) k |Rk | = Do Rk = ⟨rk ⟩ =  2n −1 rik ⩽ i ⩽ k  Ta xét hai trường hợp k sau Trường hợp 1: k | n Khi đó, theo Mệnh đề ?? ta có X X |CQ4n (x)| = |CQ4n (1)| + |CQ4n (rn )| + |CQ4n (rik) | 1⩽i⩽ 2n −1 k x∈Rk i̸= nk  2n = 4n + 4n + = 8n +  2n k Do đó, theo Mệnh đề ??, ta có X Pr(Rk , Q4n ) = |Rk ||Q4n | k  − |R1 |  − 2n = |CQ4n (x)| = x∈Rk 4n(n + k) k 4n(n + k) n+k = 2n k 2n 4n k Trường hợp 2: k ∤ n Khi đó, theo Mệnh đề ??, ta có X X |CQ4n (rik )| |CQ4n (x)| = |CQ4n (1)| + 1⩽i⩽ 2n −1 k x∈Rk = 4n +  2n k  − |R1 | = 4n +  2n k  − 2n = 2n(2n + k) k Từ suy Pr(Rn , Q4n ) = X 1 2n(2n + k) 2n + k · |CQ4n (x)| = = 2n |Rk ||Q4n | k 4n 4n x∈Rk k 41 (ii) Giả sử H = Ui,j với i|n, ⩽ i ⩽ n, ⩽ j ⩽ i − Theo Mệnh đề ?? ta có |Ui,j | = Đặt k = 4n 4n = (n, i) i 2n Khi i |Ui,j | = 4n = 2k i Do Ui,j = {rli , rli+j s | ⩽ l ⩽ k − 1} Từ suy X X |CQ4n (x)| = x∈Ui,j |CQ4n (rli )| + 0⩽l⩽k−1 = |CQ4n (1)| + |CQ4n (rn )| + X |CQ4n (rli+j s)| 0⩽l⩽k−1 X |CQ4n (rli )| + 1⩽l⩽k−1 l̸= k2 X |CQ4n (rli+j s)| 0⩽l⩽k−1 = |Q4n | + |Q4n | + (k − 2)|R1 | + k|Un,j | 4n(n + i + 2) = 4n + 4n + (k − 2)2n + 4k = i Do đó, theo Mệnh đề ?? Pr(Ui,j , Q4n ) = X n+i+2 1 4n(n + i + 2) · |CQ4n (x)| = = 4n |Ui,j ||Q4n | i 4n 4n x∈Ui,j i Trong ví dụ sau ta tính lại độ giao hốn tương đối nhóm nhóm quaternion Q8 , tính độ giao hốn tương đối nhóm nhóm Q12 cách áp dụng Mệnh đề 20 Ví dụ (i) Với n = 2, xét nhóm quaternion Q8 (cho Ví dụ ??) Các nhóm Q8 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = {1}; 42 U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩; Q8 Khi Pr(R1 , Q8 ) = 2+2 2·2+4 2+1 = , Pr(R2 , Q8 ) = = 1, Pr(R4 , Q8 ) = = 1; 2·2 2·2 4·2 Pr(U2,0 , Q8 ) = Pr(U2,1 , Q8 ) = 2+2+2 = ; Pr(Q8 , Q8 ) = Pr(Q8 ) = 4·2 (ii) Với n = 3, xét nhóm quaternion Q12 = {1, r, r2 , r3 , r4 , r5 , s, rs, r2 s, r3 s, r4 s, r5 s} Các nhóm Q12 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R3 = ⟨r3 ⟩, R6 = {1}; U3,0 = ⟨r3 , s⟩, U3,1 = ⟨r3 , rs⟩, U3,2 = ⟨r3 , r2 s⟩; Q12 Khi Pr(R1 , Q12 ) = 2·3+2 3+1 = , Pr(R2 , Q12 ) = = , 2·3 4·3 3+3 2·3+6 = 1, Pr(R6 , Q12 ) = = 1; 2·3 4·3 3+3+2 Pr(U3,0 , Q12 ) = Pr(U3,1 , Q12 ) = Pr(U3,2 , Q12 ) = = ; 4·3 Pr(Q12 , Q12 ) = Pr(Q12 ) = Pr(R3 , Q12 ) = 18 Các khái niệm Định nghĩa 21 Cho tập hợp R khác rỗng, R ta trang bị hai phép toán mà ta gọi phép cộng phép nhân thỏa mãn: R nhóm aben với phép tốn cộng, R nửa nhóm với phép toán nhân phép toán nhân phân phối với phép toán cộng, nghĩa x(y + z) = xy + xz, (x + y)z = zx + yz, với x, y, z ∈ R 43 Phần tử trung hòa phép cộng ký hiệu (thường gọi phần tử không) Phần tử đơn vị phép nhân có ký hiệu Nếu vành có nhiều phần tử có đơn vị ̸= Định nghĩa 22 Tập A vành R gọi vành R A vành hai phép toán cộng nhân R (bao gồm tính đóng hai phép tốn A) Định nghĩa 23 Iđêan trái (phải) vành R vành A thỏa mãn điều kiện ∈ A(ar ∈ A), a ∈ A, r ∈ R Vành I R vừa iđêan trái, vừa iđêan phải gọi iđêan vành R Cho I iđêan vành R, ta ký hiệu R/I =: {r + I|r ∈ R} gọi tập thương R theo I Trên tập thương R/I ta xây dựng hai phép toán (x + I) + (y + I) = (x + y) + I, (x + I)(y + I) = (xy) + I, với x, y ∈ R Định nghĩa 24 Tập thương R/I với hai phép toán xác định lập thành vành gọi vành thương R theo I Định nghĩa 25 Cho R vành có đơn vị 1R Một R-mơđun phải M bao gồm (M, +) nhóm aben tốn tử · : M × R → M thỏa mãn (1) (x + y) · r = x · r + y · r, (2) x · (r + s) = x · r + x · s, (3) (xr) · s = x · (rs), (4) x · 1R = x, r, s ∈ R x, y phần tử tùy ý M Lúc R gọi vành sở, M R-môđun phải ta thường ký hiệu MR Tương tự ta đinh nghĩa R-mơđun trái Cho R, S hai vành Nhóm aben (M, +) song môđun R-bên phải S -bên trái (ký hiệu S MR ) 44 a) M R-môđun phải M S -môđun trái b) Ta phải có (sx)r = s(xr), (r ∈ R, s ∈ S, x ∈ M ) Định nghĩa 26 Cho M R-môđun phải Tập A M gọi môđun M (ký hiệu A ≤ M hay AR ≤ MR ), A R-mơđun phải với phép tốn cộng nhân hạn chế A Định nghĩa 27 (1) Môđun MR gọi đơn M ̸= với A ≤ M A = A = M , nghĩa M ̸= M có hai môđun M (2) Vành R gọi đơn R ̸= với A ≤R RR A = A = 0, nghĩa R ̸= R có hai iđêan hai phía R (3) Môđun A ≤ M gọi môđun cực tiểu môđun M A ̸= với B ≤ M thỏa mãn B < A B = (4) Tương tự, mơđun A ≤ M gọi môđun cực đại A ̸= M với B ≤ M thỏa mãn B > A B = M Bổ đề MR đơn M ̸= ∀m ∈ M, m ̸= M = mR Cho MR N ≤ MR Vì N nhóm nhóm cộng aben M nên nhóm thương M/N nhóm aben (theo phần lý thuyết nhóm) Các phần tử M/N lớp ghép x + N N M phép toán cộng (x + N ) + (y + N ) = x + y + N Ta cần xây dựng phép nhân môđun để M/N trở thành môđun phải Định lý 20 Cho MR N ≤ M (i) Quy tắc M/N × R → M/N cho (m + N, r) → (m + N )r = mr + N phép nhân môđun (ii) Nhóm aben M/N với phép tốn nhân mơđun trở thành R-môđun phải Định nghĩa 28 M/N xác định Định lý ?? gọi môđun thương môđun M môđun N 45 19 Độ giao hoán tương đối nhóm Ta bắt đầu định nghĩa độ giao hốn nhóm Định nghĩa 29 Cho G nhóm H nhóm G Ký hiệu C = {(h, g) ∈ H × G | hg = gh} Độ giao hoán tương đối nhóm H G, ký hiệu Pr(H, G), định nghĩa sau Pr(H, G) = |C| |H||G| Từ Định nghĩa ?? ta thấy Pr(G, G) = Pr(G), Pr(G) độ giao hốn nhóm G định nghĩa Định nghĩa ?? Sau số ví dụ độ giao hốn tương đối số nhóm Ví dụ Xét nhóm nhị diện D3 cho phần tử sinh hệ thức xác định sau D3 = ⟨r, s | r3 = s2 = 1, s−1 rs = r−1 ⟩ Khi D3 = {1, r, r2 , s, rs, r2 s} phép nhân phần tử D3 cho bảng sau • 1 r r2 s rs r2 s r r2 s rs r2 s r r r2 r2 r2 r rs r2 s s r s s rs s s rs r2 s r r2 r2 s r2 s s rs r r2 r rs rs r2 s s r2 Bằng cách đếm trực tiếp theo Định nghĩa ?? ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨s⟩ H = ⟨rs⟩ H = ⟨r2 s⟩ H = D3 |C| 12 8 18 Pr(H, D3 ) 3 3 46 Ví dụ Xét nhóm nhị diện D4 cho phần tử sinh hệ thức xác định sau D4 = ⟨r, s | r4 = s2 = 1, s−1 rs = r−1 ⟩ Khi D4 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử D4 cho bảng sau • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs r2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s rs rs r2 s r3 s s r3 r r2 r3 r r2 r2 s r2 s r3 s s rs r2 r3 r3 s r3 s s rs r2 s r r2 r3 r Bằng cách đếm trực tiếp theo Định nghĩa ?? ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 , s⟩ H = ⟨r2 , rs⟩ H = ⟨s⟩ |C| 24 24 24 12 Pr(H, D4 ) 4 4 Các nhóm H = ⟨rs⟩ H = ⟨r2 s⟩ H = ⟨r3 s⟩ H = ⟨r2 ⟩ H = D4 |C| 12 12 12 16 40 Pr(H, D4 ) 4 Ví dụ Xét nhóm quaternion Q8 cho phần tử sinh hệ thức xác định sau Q8 = ⟨r, s | r4 = 1, s2 = r2 , s−1 rs = r−1 ⟩ Khi Q8 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử Q8 cho bảng sau 47 • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs s2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s r2 r3 rs rs r2 s r3 s s r r2 r3 r r2 s r2 s r3 s s rs r r2 r3 r3 s r3 s s rs r2 s r3 r r2 Bằng cách đếm trực tiếp theo Định nghĩa ?? ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 ⟩ H = ⟨s⟩ H = ⟨rs⟩ H = Q8 |C| 24 16 24 24 40 Pr(H, Q8 ) 4 Từ định nghĩa độ giao hốn tương đối ta có kết sau Mệnh đề 13 Cho G nhóm H nhóm G Khi X X Pr(H, G) = |H||G| |CG (x)| = x∈H |H||G| |CH (y)| y∈G Chứng minh Ký hiệu C = {(x, y) ∈ H × G | xy = yx} Với x ∈ H số cặp phần tử (x, y) ∈ C |CG (x)| CG (x) tâm hóa x G Với y ∈ G số cặp phần tử (x, y) ∈ C |CH (y)| CH (y) tâm hóa y H Cho nên ta có X X |C| = |CG (x)| = x∈H |CH (y)| y∈G Từ suy cơng thức cần chứng minh 48 Kết sau cho ta cơng thức tính độ giao hốn tương đối nhóm chuẩn tắc nhóm nhờ số lớp liên hợp Mệnh đề 14 Cho G nhóm H nhóm chuẩn tắc G Khi Pr(H, G) = k |H| k số lớp liên hợp G nằm H Chứng minh Với x ∈ G bất kỳ, ký hiệu lớp liên hợp x G O(x) Khi ta có |O(x)| = |G : CG (x)| Gọi x1 , x2 , , xk phần tử đại diện lớp liên hợp G nằm H Vì H ◁ G với x ∈ H ta có O(x) ⊂ H Do đó, theo Mệnh đề ??, ta có k X X |CG (x)| = |O(xi )||CG (xi )| Pr(H, G) = |H||G| |H||G| = |H||G| x∈H k X i=1 i=1 k X k |G : CG (xi )||CG (xi )| = |G| = |H||G| |H| i=1 Vậy ta có điều phải chứng minh Ta cần bổ đề sau phép chứng minh kết so sánh độ giao hốn tương đối nhóm nhóm với độ giao hốn nhóm nhóm Bổ đề Cho H nhóm G Khi với phần tử x ∈ G |H : CH (x)| ⩽ |G : CG (x)| Hơn nữa, dấu đẳng thức xảy G = HCG (x) Chứng minh Lấy x ∈ G Khi đó, theo Mệnh đề ??, ta có |H||CG (x)| = |HCG (x)| ⩽ |G| |H ∩ CG (x)| Do |H| |G| ⩽ |H ∩ CG (x)| |CG (x)| 49 Mà H ∩ CG (x) = {a ∈ H | a ∈ CG (x)} = CH (x), từ suy |H| |G| ⩽ |CG (x)| |CH (x)| Do đó, theo Định lý Lagrange ta có |H : CH (x)| ⩽ |G : CG (x)| Từ lập luận ta thấy dấu đẳng thức xảy G = HCG (x) Vậy ta có điều phải chứng minh Mệnh đề sau cho ta đánh giá độ giao hốn tương đối nhóm nhóm nhờ độ giao hốn nhóm nhóm Mệnh đề 15 Cho H nhóm nhóm G Khi Pr(G) ⩽ Pr(H, G) ⩽ Pr(H) Chứng minh Theo Mệnh đề ?? ta có X Pr(H, G) = |H||G| |CG (x)| = x∈H X |CG (x)| |H| |G| x∈H Theo Bổ đề ?? ta có |CG (x)| |C (x)| ⩽ H với x ∈ H |G| |H| Từ suy Pr(H, G) ⩽ X |CH (x)| X = |CH (x)| = Pr(H) |H| |H| |H| x∈H x∈H Theo Mệnh đề ?? ta có Pr(H, G) = X X |CH (y)| |CH (y)| = |H||G| |G| |H| y∈G y∈G

Ngày đăng: 06/07/2023, 10:00