Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 100 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
100
Dung lượng
566,36 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: ĐỊNH LÝ ĐIỂM BẤT ĐỘNG TRONG KHƠNG GIAN NĨN METRIC LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Năm 2002, Y Ikeda, C Liu Y Tanaka đưa khái niệm mạng -mạnh xét tính chất ảnh thương khơng gian metric nhờ mạng -mạnh Bằng cách sử dụng mạng -mạnh, tác giả thu nhiều đặc trưng ảnh thương không gian mêtric (xem [4]), đặt toán sau Bài toán ([6], Question 3.2.12) Nếu X không gian đối xứng với cs -mạng đếm được, X có mạng -mạnh gồm cs -phủ hữu hạn hay khơng? Bài tốn 2([5], Question 2) Nếu X không gian đối xứng với cs-mạng -hữu hạn theo điểm, X có cs-mạng -hữu hạn theo điểm mạnh hay khơng? 358 2 Nhóm giả nhị diện Mệnh đề Cho nhóm giả nhị diện n SD2n = ⟨r, s | r2 = s2 = 1, s−1 rs = r2 n−1 −1 ⟩ với n ⩾ 3, H nhóm SD2n Khi (i) Nếu H = Rk với k | 2n , ⩽ k ⩽ 2n ( Pr(H, SD2n ) = k = 2n , k + n k ̸= 2n 2 (ii) Nếu H = Tl với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ Pr(Tl , SD2n ) = 1 + n 2 (iii) Nếu H = Ui,j với i|2n , ⩽ i ⩽ 2n − 1, ⩽ j ⩽ i − 1 + n i = 2n−1 , 2 Pr(H, SD2n ) = + i + i ̸= 2n−1 2n+1 Chứng minh (i) Giả sử H = Rk với k|2n , ⩽ k ⩽ 2n Ta xét hai trường hợp k sau Trường hợp 1: k = 2n Khi Rk = {1} Rõ ràng Pr(Rk , SD2n ) = Trường hợp 2: k ̸= 2n Theo Mệnh đề ?? ta có |Rk | = 2n 2n = (2n , k) k Khi đó, theo Mệnh đề ?? ta có X n−1 |CSD2n (x)| = |CSD2n (1)| + |CSD2n (r2 X )| + |CSD2n (rik )| n x∈Rk 1⩽i⩽ 2k −1 i̸= = |SD2n | + |SD2n | + = n+1 +2 n+1 + 2n n−1 k − |R1 | k 2n 2n+1 (2n−1 + k) − 2n = k k Từ suy Pr(Rk , SD2n ) = X |CSD2n (x)| |Rk ||SD2n | x∈Rk = 2n+1 (2n−1 + k) 2n−1 + k k k · = = + n n n+1 n ·2 k 2 (ii) Giả sử H = Tl với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ Khi l chẵn với ⩽ l ⩽ 2n − Theo Mệnh đề ??, ta có |Tl | = Do Tl = {1, rl s} Khi đó, theo Mệnh đề 44 ta có X 1 Pr(Tl , SD2n ) = = |Tl ||SD2n | |CSD2n (x)| = · 2n+1 x∈Tl |CSD2n (1)| + |CSD2n (rl s)| 1 1 n+1 n | + |U n−1 | = |SD (2 + 4) = + 2 ,l · 2n+1 · 2n+1 2n Khi l lẻ với ⩽ l ⩽ 2n−1 − Theo Mệnh đề ?? ta có |Tl | = Do n−1 Tl = {1, rl s, r2 n−1 , rl+2 s} Khi đó, theo Mệnh đề 44 ta có Pr(Tl , SD2n ) = X |CSD2n (x)| |Tl ||SD2n | x∈Tl l 2n−1 l+2n−1 |C )| + |C s)| n (1)| + |CSD2n (r s)| + |CSD2n (r n (r SD SD 2 · 2n+1 n n n−1 n−1 n−1 |SD | + |U | + |SD | + |U | = 2 ,l ,l+2 · 2n+1 1 n+1 n+1 = + + + = + n n+1 4·2 2 = Như hai trường hợp l ta có Pr(Tl , SD2n ) = 1 + n 2 (iii) Giả sử H = Ui,j với ⩽ i ⩽ 2n − 1, i|2n , ⩽ j ⩽ i − Ta xét hai trường hợp i sau Trường hợp 1: i = 2n−1 Theo Mệnh đề ??, ta có 2n+1 2n+1 = n−1 = |Ui,j | = i Do Ui,j = {1, r2 n−1 , rj s, r2 n−1 +j s} Khi đó, theo Mệnh đề 44 ta có Pr(Ui,j , SD2n ) = X |CSD2n (x)| |Ui,j ||SD2n | x∈Ui,j 2n−1 j 2n−1 +j |C )| + |C s)| n (1)| + |CSD2n (r n (r s)| + |CSD2n (r SD SD 2 · 2n+1 n | + |SD2n | + |U n−1 | + |U n−1 n−1 = |SD | 2 ,j ,2 +j · 2n+1 1 (2n+1 + 2n+1 + + 4) = + n = n+1 4·2 2 = Trường hợp 2: i ̸= 2n−1 Theo Mệnh đề ?? ta có |Ui,j | = Do Ui,j = li r ,r li+j 2n+1 i n s ⩽ l ⩽ −1 i 56 Áp dụng Mệnh đề 44 ta có Pr(N1 × H1 , N × H) = |N1 × H1 ||N × H| X |CN ×H (x)| x∈N1 ×H1 = X X |CN (x1 )| |CH (x2 )| |N1 ||H1 ||N ||H| = |N1 ||N | x1 ∈N1 X |CN (x1 )| x1 ∈N1 x2 ∈H1 X |CH (x2 )| |H1 ||H| x2 ∈H1 = Pr(N1 , N ) Pr(H1 , H) Vây ta có điều phải chứng minh Đặc biệt, ta có kết sau Hệ 17 Cho H N hai nhóm Khi Pr(H, N × H) = Pr(H) Đối với tích nửa trực tiếp vấn đề tính độ giao hốn tương đối trở nên phức tạp nhiều Trong phần lại mục ta trường hợp đặc biệt Mệnh đề sau cho ta cơng thức tính độ giao hốn tương đối nhóm abel với tích nửa trực tiếp nhóm xiclíc cấp Mệnh đề 29 Cho A nhóm giao hoán, α tự đẳng cấu A cho α2 = idA C2 = ⟨u⟩ nhóm xiclíc cấp với u phần tử sinh Ký hiệu G = θ C2 tích nửa trực tiếp A nhóm xiclíc C2 = ⟨u⟩ với tác động θ : C2 → Aut(A) cho cơng thức θ(u) = α Khi Pr(A, G) = |Aα | + 2|A| Aα = {a ∈ A | α(a) = a} Chứng minh Giả sử x = (x1 , 1) ∈ A Khi ta có CG (x) = CA (x) ∪ CG\A (x) 57 Vì A nhóm giao hốn nên CA (x) = A Ta có CG\A (x) = {(a, u) ∈ G \ A | (x1 , 1)(a, u) = (a, u)(x1 , 1)} = {(a, u) ∈ G \ A | (x1 a, u) = (aθ(u)(x1 ), u)} = {(a, u) ∈ G \ A | (ax1 , u) = (aα(x1 ), u)} Ta xét hai trường hợp x1 sau Trường hợp 1: x1 ∈ Aα Khi aα(x1 ) = ax1 với a ∈ A Do |CG\A | = |A| Trường hợp 2: x1 ∈ A \ Aα Khi aα(x1 ) ̸= ax1 với a ∈ A Do CG\A = ∅, |CG\A | = Từ suy X X X X |CG (x)| = x∈A (|CA (x)| + |CG\A (x)|) = x∈A |CA (x)| + x∈A = |A|2 + X |CG\A (x)| + x∈Aα X |CG\A (x)| x∈A |CG\A (x)| x∈A\Aα = |A| + |A||Aα | + = |A|(|A| + |Aα |) Theo Mệnh đề 44 ta có Pr(A, G) = X |CG (x)| |A||G| x∈A = |A| |C2 | |A|(|A| + |Aα |) = |A| + |Aα | |Aα | = + 2|A| 2|A| Vậy ta có điều phải chứng minh 17 Biểu diễn ∆(R) tính chất Bổ đề Cho R vành bất kỳ, ta có (1) ∆(R) = {r ∈ R | ru + ∈ U (R), ∀u ∈ U (R)} = {r ∈ R | ur + ∈ U (R), ∀u ∈ U (R)}; (2) Với r ∈ ∆(R) u ∈ U (R), ur, ru ∈ ∆(R); (3) ∆(R) vành vành R; 58 (4) ∆(R) iđêan R ∆(R) = J(R); Y Y (5) Với họ vành Ri , i ∈ I , ∆( Ri ) = ∆(Ri ) i∈I i∈I Chứng minh (1) Cho r ∈ ∆(R) u thuộc U (R), r + u ∈ U (R) ru−1 + ∈ U (R) u−1 r + ∈ U (R) (2) Ta có ruu′ + ∈ U (R), ∀u, u′ ∈ U (R) r ∈ ∆(R), suy ru ∈ ∆(R) Tương tự ur ∈ ∆(R) (3) Lấy r, s ∈ ∆(R) Khi −r + s + U (R) ⊆ −r + U (R) = −r − U (R) ⊆ U (R), hay ∆(R) nhóm với phép cộng R Hơn rs = r(s + 1) − r ∈ ∆(R) r(s + 1) ∈ ∆(R) theo (2) (4) Rõ ràng J(R) ⊆ ∆(R) Ta giả sử ∆(R) iđêan R r ∈ R Khi rx + ∈ U (R), với x thuộc ∆(R) suy ∆(R) ⊆ J(R) hay ∆(R) = J(R) Chiều ngược Y lại hiển nhiên Y Y Y Y (5) Lấy ri ∈ ∆( Ri ) Khi ri + U ( Ri ) ⊆ U ( Ri ) Vì Y U( i∈IY Ri ) = i∈I U (Ri )) ⊆ i∈I U (Ri ) nên i∈I Y Y ri + i∈I Yi∈I i∈I Y i∈I i∈I U (Ri ) ⊆ U (Ri ) hay U (Ri ), suy ri +U (Ri ) ⊆ U (Ri ), ∀i ∈ I nên i∈I i∈IY Y i∈I ri ∈ (ri + Yi∈I ∆(Ri ) i∈I Chiều ngược lại tương tự Cho e phần tử lũy đẳng vành R Khi phần tử − 2e khả nghịch R Từ Bổ đề 12 (2) ta suy hệ sau Hệ 18 Cho R vành (1) ∆(R) đóng với phép nhân phần tử lũy linh; (2) Nếu ∈ U (R), ∆(R) đóng với phép nhân phần tử lũy đẳng Định lý 23 Cho R vành có đơn vị T vành R sinh U (R) Khi (1) ∆(R) = J(T ) ∆(S) = ∆(R), với S vành tùy ý R thỏa mãn T ⊆ S ; 59 (2) ∆(R) Jacobson lớn chứa R đóng với phép nhân phần tử khả nghịch R Chứng minh (1) T vành sinh U (R) nên phần tử T viết thành tổng hữu hạn phần tử khả nghịch R Do đó, theo Bổ đề 12 (2) suy ∆(T ) iđêan T Theo Bổ đề 12 (4) suy ∆(T ) = J(T ) Hơn ∆(T ) = ∆(R) nên ∆(R) = J(T ) Nếu r ∈ ∆(R), r + U (R) ⊆ U (R) Điều có nghĩa r biểu diễn thành tổng hai phần tử khả nghịch Do r ∈ T , suy ∆(R) ⊆ T Giả sử S vành R thỏa mãn T ⊆ S Khi U (S) = U (R), ∆(S) = {r ∈ S | r + U (S) ⊆ U (S)} = {r ∈ S | r + U (R) ⊆ U (R)} = S ∩ ∆(R) = ∆(R), ∆(R) ⊆ T ⊆ S (2) Theo (1), ∆(R) Jacobson R theo Bổ đề 12 (2) ∆(R) đóng với phép nhân phần tử khả nghịch trái phải R Bây giờ, ta giả sử S Jacobson chứa R đóng với phép nhân phần tử khả nghịch Ta phải S ⊆ ∆(R) Thật vậy, s ∈ S u ∈ U (R), su ∈ S = J(S) Do su tựa khả nghịch S nên + su ∈ U (R) Theo Bổ đề 12 (1) s ∈ ∆(R) hay S ⊆ ∆(R) Từ đặt trưng ∆(R) Định lý 36 (2) ta có hệ sau Hệ 19 Giả sử R vành mà phần tử biểu diễn thành tổng phần tử khả nghịch Khi ∆(R) = J(R) Định lý cổ điển Amitsur nói Jacobson F -đại số R trường F lũy linh, với điều kiện dimF R < |F | Áp dụng Định lý 36 (1) ta thu hệ sau Hệ 20 Giả sử R vành đại số trường F Nếu dimF R < |F |, ∆(R) vành lũy linh Cho R vành không thiết phải có đơn vị S vành R, ta ký hiệu Sˆ vành R sinh S ∪ {1} Mệnh đề 30 Giả sử R vành có đơn vị Khi 60 (1) Cho S vành R thỏa mãn U (S) = U (R) ∩ S Khi ∆(R) ∩ S ⊆ ∆(S); [ = U (R) ∩ ∆(R) [; (2) U (∆(R)) (3) Cho I iđêan R thỏa mãn I ⊆ J(R) Khi ∆(R/I) = ∆(R)/I Chứng minh (1) suy từ định nghĩa ∆ (2) Nếu r ∈ ∆(R), v = + r ∈ U (R) v −1 = − rv −1 ∈ [ ∩ U (R), −rv −1 ∈ ∆(R), Bổ đề 12 ∆(R) [ ∩ U (R), r ∈ ∆(R) k ∈ Z Ta Lấy u = r + k · ∈ ∆(R) ¯ −1 = (u − k)u ¯ −1 = k¯ = k · ∈ U (R) Ta có u − k¯ = r ∈ ∆(R), − ku ¯ −1 = − (1 − ku ¯ −1 ) ∈ U (R), suy ru−1 ∈ ∆(R) theo Bổ đề 12 (2) Khi ku k¯ ∈ U (R) Vì ∆(R) đóng với phép nhân phần tử khả nghịch nên ta áp dụng phần chứng minh v = uk¯−1 = + rk¯−1 [ , nghĩa u−1 k¯ = s + ¯l, với s ∈ ∆(R) l ∈ Z Suy u−1 k¯ = v −1 ∈ ∆(R) [ , U (R) ∩ ∆(R) [ ⊆ U (∆(R)) [ sk¯−1 ∈ ∆(R), u−1 = sk¯−1 + k¯−1 ¯l ∈ ∆(R) [ ⊆ U (R) ∩ ∆(R) [ dễ thấy Chiều ngược lại U (∆(R)) ¯ = (3) Ta ký hiệu ¯ phép chiếu từ R lên R/I Lưu ý, I ⊆ J(R), U (R) U (R) ¯ u ∈ U (R) Khi r¯ + u¯ ∈ U (R) ¯ có phần tử Lấy r¯ ∈ ∆(R) v ∈ U (R) j ∈ I thỏa mãn r + u = v + j Hơn v + j ∈ U (R), ¯ = ∆(R) Vì U (R) ¯ = U (R) nên chiều ngược lại I ⊆ J(R) Suy ∆(R) dễ thấy Áp dụng mệnh đề ta có hệ sau [ = ∆(R), nghĩa ∆ Hệ 21 Cho R vành có đơn vị, ∆(∆(R)) tốn tử đóng [ , ∆(R) ⊆ T Chứng minh ∆(R) Jacobson T = ∆(R) Vì ∆(R) chứa tất phần tử lũy linh nên T /∆(R) đẳng cấu với Z Zn := Z/nZ, với n > nhân tử bình phương Theo Mệnh đề 56 (3) Hệ 16 ta có ∆(T )/∆(R) = ∆(T /∆(R)) = J(T /∆(R)) = hay ∆(T ) = ∆(R) Từ Mệnh đề 56 (1), áp dụng cho S = Z(R) tâm R, ta có hệ sau 61 Hệ 22 ∆(R) ∩ Z(R) ⊆ ∆(Z(R)) Ký hiệu ( R[[x]] = {a0 + a1 x + a2 x2 + · · · |ai ∈ R} = ∞ X ) xi |ai ∈ R i=0 Mỗi phần tử f ∈ R[[x]], f = ∞ X xi với x0 = gọi chuỗi lũy i=0 thừa hình thức biến x với hệ tử thuộc R Ta định nghĩa phép cộng ∞ ∞ X X i x , g = bi xi Ta định phép nhân, lấy f, g ∈ R[[x]], f = i=0 i=0 nghĩa f = g = bi với i = 0, 1, ! ∞ ∞ i X X X (ai + bi )xi , f g = f +g = i=0 ai−j bj i=0 xi j=0 Với phép toán R[[x]] vành giao hốn có đơn vị Cho vành R, ký hiệu Tn (R) tập tất ma trận tam giác cấp n vành R, Jn (R) iđêan Tn (R) bao gồm tất ma trận tam giác cấp n thực Dn (R) vành ma trận đường chéo cấp n Từ Mệnh đề 56 (3) ta suy trực tiếp hệ sau Hệ 23 Cho R vành tùy ý Khi đó, khẳng định sau (1) ∆(Tn (R)) = Dn (∆(R)) + Jn (R); (2) ∆(R[x]/(xn )) = ∆(R)[x]/(xn ); (3) ∆(R[[x]]) = ∆(R)[[x]] Hệ 24 Cho R vành Khi đó, ∆(R) = J(R) ∆(R/J(R)) = Một vành R có hạng ổn định a, x, b ∈ R thỏa mãn ax + b = 1, tồn y ∈ R cho a + by khả nghịch R Định lý sau vài lớp vành mà ∆(R) = J(R) 62 Định lý 24 ∆(R) = J(R) R thỏa mãn điều kiện sau (1) R/J(R) đẳng cấu với tích vành ma trận thể (2) R vành nửa địa phương (3) R vành clean thỏa mãn ∈ U (R) (4) R U J -vành, nghĩa U (R) = + J(R) (5) R có hạng ổn định (6) R = F G nhóm đại số trường F Chứng minh (1) Giả sử R đẳng cấu với tích vành ma trận thể Theo Hệ 21 ta cần ∆(R/J(R)) = Để làm điều này, ta giả sử J(R) = 0, nghĩa R tích vành ma trận thể Nếu R vành ma trận Mn (S), với S vành chứa đơn vị n ≥ Theo Định lý 34, phần tử R tổng ba phần tử khả nghịch, theo Hệ 16 ∆(R) = J(R) = Khi S thể rõ ràng ∆(S) = Do (1) suy trực tiếp từ Bổ đề 12 (5) (2) Là trường hợp đặc biệt (1) (3) Giả sử R vành clean thỏa mãn ∈U (R) Nếu e ∈ R lũy đẳng 1 − (1 − 2e) tổng hai phần tử khả 2 nghịch Điều có nghĩa phần tử R tổng ba phần tử khả nghịch Theo Hệ 16 ta suy ∆(R) = J(R) (4) Giả sử U (R) = 1+U (R) Giả sử R U J -vành Khi đó, r ∈ ∆(R) ta có r + U (R) ⊆ U (R), nghĩa r + + J(R) ⊆ + J(R) Suy r ∈ J(R) ∆(R) = J(R) (5) Giả sử R có hạng ổn định Lấy r ∈ ∆(R), ta r ∈ J(R) Với s ∈ R ta có Rr +R(1−rs) = R Vì R có hạng ổn định nên tồn x ∈ R cho r + x(1 − sr) ∈ U (R), suy x(1 − sr) ∈ r + U (R) ⊆ U (R), (1 − sr) khả nghịch hay r ∈ J(R) (6) Giả sử R = F G nhóm đại số trường F Khi đó, phần tử R tổng phần tử khả nghịch Theo Hệ 16 ta suy ∆(R) = J(R) − 2e ∈ U (R) e = Ta biết vành nửa địa phương có hạng ổn định 1, điều kiện (2) (5) tương đương 63 Bổ đề Giả sử G nhóm nhóm R phép tốn cộng Khi G đóng với phép nhân phần tử khả nghịch đóng với phép nhân phần tử tựa khả nghịch R Chứng minh Lấy r ∈ R G nhóm cộng, rG ⊆ G (1 − r)G ⊆ G Định lý 25 Giả sử R vành có đơn vị G nhóm phép cộng R Khi điều kiện sau tương đương (1) G = ∆(R); (2) G Jacobson lớn đóng với phép nhân phần tử tựa khả nghịch R; (3) G nhóm lớn R phép cộng bao gồm phần tử tựa khả nghịch đóng với phép nhân phần tử tựa khả nghịch R Chứng minh Theo Định lý 36 (2) Bổ đề 13 ∆(R) Jacobson R đóng với phép nhân phần tử tựa khả nghịch Giả sử G nhóm cộng bao gồm phần tử tựa khả nghịch đóng với phép nhân phần tử tựa khả nghịch R Cụ thể, G Jacobson không chứa đơn vị R, theo Bổ đề 13, G đóng với phép nhân phần tử khả nghịch R Do theo Định lý 36 (2) ta G ⊆ ∆(R) 18 Không gian hữu hạn chiều Định nghĩa 13 (i) Một không gian vector E trường số thực gọi hữu hạn chiều bao gồm hữu hạn vector độc lập tuyến tính (ii) Số lớn vector độc lập tuyến tính khơng gian vector hữu hạn chiều E gọi chiều ký hiệu dimR E Hệ B ⊂ E sinh dimR E vector độc lập tuyến tính gọi sở Định lý 26 Giả sử E không gian vector hữu hạn chiều dimR E = n 64 (i) Nếu B ⊂ E sở, B sinh E , cụ thể spanR B = E (ii) E Rn đẳng cấu tuyến tính (iii) Giả sử ∥.∥1 ∥.∥2 hai chuẩn E Khi (E, ∥.∥1 ) (E, ∥.∥2 ) đẳng cấu topo (iv) Giả sử ∥.∥ chuẩn E Khi (E, ∥.∥) (E ′ , ∥.∥E ′ ) đẳng cấu topo Theo tập trước, không gian định chuẩn hữu hạn chiều (E, ∥.∥) đẳng cấu topo với không gian Hilbert Rn Đây đặc trưng mạnh, khơng cịn cho khơng gian định chuẩn vô hạn chiều 19 Vô hạn chiều Định nghĩa 14 (i) Không gian vector thực E gọi vơ hạn chiều khơng hữu hạn chiều ta viết dimR E = ∞ (ii) Nếu dimR E = ∞, hệ B ⊂ E gọi sở (đại số Hamel) E hệ vector độc lập tuyến tính (nghĩa tập hữu hạn độc lập tuyến tính) B tập lớn tất tập chứa vector độc lập tuyến tính E Điều chứng minh theo nguyên lý cực đại Hausdorff, với khơng gian vector vơ hạn chiều E có sở B phần tử thuộc E biểu diễn (hữu hạn) theo tổ hợp tuyến tính phần tử thuộc B Khi dimR E = ∞, (E, ∥.∥E ) (E ′ , ∥.∥E ′ ) không thiết đẳng cấu topo Tuy nhiên, ta chứng minh vài tính chất topo (E ′ , ∥.∥E ′ ) tính tách giữ (E, ∥.∥E ) Định lý 27 (E, ∥.∥E ) tách (E ′ , ∥.∥E ′ ) tách Trước chứng minh định lý ta cần sử dụng điều kiện trù mật cho không gian định chuẩn, hệ định lý Hahn-Banach thứ hai hình học 65 Mệnh đề 31 (Điều kiện trù mật không gian con) Cho (E, ∥.∥E ) không gian định chuẩn Giả sử M ⊂ E không gian không trù mật (E, ∥.∥E ) lấy x0 ∈ E \ M Khi tồn f ∈ E ′ cho ⟨f, x⟩E ′ ×E = 0, ∀x ∈ M ⟨f, x0 ⟩E ′ ×E = Chứng minh Từ định lý Hahn-Banach thứ hai hình học, tồn g ∈ E ′ cho siêu phẳng H := {x ∈ E : ⟨g, x⟩E ′ ×E = α}, tách tập M {x0 } cách nghiêm ngặt, tức ⟨g, x⟩E ′ ×E < α < ⟨g, x0 ⟩E ′ ×E ∀x ∈ M (22) Từ M không gian con, theo (??), suy λ ⟨g, x⟩E ′ ×E < α, ∀λ ∈ R, ⟨g, x⟩E ′ ×E = 0, ∀x ∈ M (23) Do đó, ta xác định hàm f ∈ E ′ f := g, ⟨g, x0 ⟩E ′ ×E ta có điều phải chứng minh Chứng minh Định lý 36 Cho D := {fh : h ∈ N} ⊂ (E ′ , ∥.∥E ′ ), trù mật Với h có phần tử xh ∈ E với ∥xh ∥ = 1 |fh (x)| ≥ ∥fh ∥E ′ Cho e := spanQ {xh : h ∈ N} D := spanR {xh : h ∈ N}, D tức là, tập tất tổ hợp tuyến tính phần tử {xh : e đếm được, D không gian h ∈ N} với hệ số thực Khi D E theo cách xây dựng ˜ ⊂ (D, ∥.∥) trù mật D 66 Để đưa kết luận chứng minh, ta cần phải D ⊂ (D, ∥.∥) trù mật Theo phản chứng, D không trù mật, lấy x0 ∈ E \ D Khi từ mệnh đề ??, tồn f ∈ E ′ cho ⟨f, x⟩E ′ ×E = 0, ∀x ∈ D ⟨f, x0 ⟩E ′ ×E = Từ D trù mật, có dãy (fhk )k mà lim ∥fhk − f ∥E ′ = k→∞ Tuy nhiên, từ ∥xhk ∥ = 1, ∥fhk − f ∥E ′ ≥ |fhk (xhk ) − f (xhk )| = |f (xhk )| ≥ ∥fhk ∥E ′ ∀k ∈ N Do dó ∥fhk ∥E ′ → k → ∞, nghĩa f ≡ 0, mâu thuẫn với f (x0 ) = Vì D = E 20 Khơng gian hàm p-khả tích Lp (Ω) Ta nhớ lại khơng gian hàm p-khả tích độ đo Lebesgue n chiều Định nghĩa 15 Cho A ⊂ Rn tập đo Lebesgue p ∈ [1, ∞], Lp (A) := {f : A → R : f đo Lebesgue ∥f ∥Lp < +∞} ∥f ∥Lp Z 1/p p |f (x)| dx = ∥f ∥Lp (A) := A ≤ p ≤ ∞ inf{M > : |f (x)| ≤ M, x ∈ A} Số ∥f ∥Lp gọi chuẩn Lp f A p = ∞ 67 Định lý 28 (Fisher - Riesz) (Lp (A), ∥.∥Lp ) không gian Banach ≤ p ≤ ∞ Hơn L2 (A) không gian Hilbert với tích vơ hướng Z (f, g)L2 := f g dx f, g ∈ L2 (A) A Theo kết định lý Riesz - Fisher ta thu kết hữu ích Định lý 29 Cho Ω ⊂ Rn tập mở, (fh )h ⊂ Lp (Ω) f ∈ Lp (Ω) với ≤ p ≤ ∞ Giả sử lim ∥fh − f ∥Lp (Ω) = h→∞ Khi đó, tồn dãy (fhk )k hàm g ∈ Lp (Ω) thỏa mãn (i) fhk (x) → f (x) hầu khắp nơi x ∈ Ω (ii) |fhk (x)| ≤ g(x) hầu khắp nơi x ∈ Ω, ∀k Nhận xét 10 Nó khơng cịn giữ ý nghĩa (MC) ⇒ fh (x) → f (x) hầu khắp nơi x ∈ Ω Nhận xét 11 Chú ý C0 ⊂ Lp (Ω) với p ∈ [1, ∞], với Ω ⊂ Rn tập mở bị chặn, khơng quan hệ bao hàm khơng giữ giữ quan hệ bao hàm C0c (Ω) ⊂ Lp (Ω) với p ∈ [1, ∞] tập mở Ω, C0c (Ω) := {f ∈ C0 (Ω) : spt(f ) compact chứa Ω} spt(f ) := Bao đóng{x ∈ Ω : f (x) ̸= 0} Hơn nhớ lại C0 (Ω, ∥.∥L2 ) khơng gian tuyến tính định chuẩn, khơng phải khơng gian Banach Tính compact (Lp (Ω), ∥.∥Lp ) Trong mục thảo luận kết compact không gian Lp Chúng ta nêu kết không chứng minh Cho f : Rn → R v ∈ Rn , ta định nghĩa τv f : Rn → R hàm v -dịch chuyển f định nghĩa (τv f )(x) := f (x + v) 68 Định lý 30 (M.Riesz - Fréchét - Kolmogorov) Cho F tập bị chặn (Lp (Rn ), ∥.∥Lp ) với ≤ p < ∞ Giả sử lim ∥τv f − f ∥Lp = v→0 với f ∈ F , nghĩa ∀ϵ > 0, ∃δ(ϵ) > : ∥τv f − f ∥Lp < ϵ, ∀v ∈ Rn với |v| < δ, ∀f ∈ F (N EF ) Khi F|Ω := {f |Ω : f ∈ F} compact tương đối (Lp (Ω), ∥.∥Lp ), nghĩa bao đóng compact (Lp (Ω), ∥.∥Lp ), với tập mở Ω ⊂ Rn với độ đo Lebesgue hữu hạn Từ định lý 31 ta suy điều kiện compact (Lp (Ω), ∥.∥Lp ) Nếu f : Ω → R, ta ký hiệu fe : Rn → R hàm định nghĩa ( f (x) x ∈ Ω fe(x) := x ∈ /Ω Hệ 25 Cho Ω ⊂ Rn tập mở với độ đo hữu hạn, cho F ⊂ Lp (Ω) cho Fe := {fe : f ∈ F} Giả sử (i) F bị chặn (Lp (Ω), ∥.∥Lp ) với ≤ p < ∞; (ii) lim ∥τv f − f ∥Lp = với f ∈ F , nghĩa Fe thỏa mãn (ENF ) v→0 Khi F compact tương đối (Lp (Ω), ∥.∥Lp ) Chứng minh Từ định lý 31, Fe tập compact tương đối Lưu ý Fe compact dãy tương đối (Lp (Rn ), ∥.∥Lp ) F compact dãy tương đối (Lp (Ω), ∥.∥Lp ) Do đặc tính tập compact khơng gian metric (Định lý 22) có điều phải chứng minh Cuối cùng, nhớ lại đặc tính compact (Lp (Rn ), ∥.∥Lp ) Định lý 31 Cho F ⊂ Lp (Rn ) với ≤ p < ∞ Khi F compact tương đối (Lp (Rn ), ∥.∥Lp ) (i) F bị chặn (Lp (Rn ), ∥.∥Lp ); (ii) với ϵ > 0, tồn rϵ > thỏa mãn ∥f ∥Lp (Rn \B(0,rϵ )) < ϵ ∀f ∈ F; 69 (iii) lim ∥τv f − f ∥Lp = f ∈ F v→∞ Nhận xét 12 (i) Giả thiết (ENF ) cần thiết định lý 31 Thật vậy, xét họ F := {fh : h ∈ N} fh : R → R định nghĩa ≤ x ≤ h fh (x) := h 0 ngược lại Ω := (0, 1) Khi dễ thấy ∥f ∥L1 R = với h ∈ N F|Ω không compact tương đối (L1 (Ω), ∥.∥L1 ), khơng có dãy (fh )h hội tụ L1 (Ω) Mặt khác, v > 0, với h > 1/v Z Z v ∥τv fh − fh ∥L1 (R) ≥ fh (x + v) dx = −∞ fh (x) = Do đó, (ENF ) khơng cịn cho F (ii) Nếu Ω khơng có độ đo hữu hạn, kết định lý 31 khơng cịn Thật vậy, xét họ F := {fh : h ∈ N} fh : R → R định nghĩa fh (x) := f (x + h) f ∈ Lip(R) với spt(f ) = [−a, a], a > 0, f khơng triệt tiêu Khi ∥f ∥L1 (R) = ∥f ∥L1 (R) > ∀h (24) Hơn F thỏa mãn (ENF ), |τv f − f (x)| = |f (x + v)f (x)| ≤ L|v|X [−a−1,a+1] (x) ∀x ∈ R, v ∈ [−1, 1] ∥τc fh − fh ∥L1 (R) = ∥τv f − f ∥L1 (R) ∀h L := Lip(f ) Cho Ω := R quan sát F = F|Ω không compact tương đối (L1 (R), ∥.∥L1 ) Ngược lại mâu thuẫn nảy sinh (21), từ fh (x) → với x ∈ R Tính tách (Lp (Ω), ∥.∥Lp ) Nhận xét 13 Cho Ω ⊂ tập bị chặn, quan hệ bao hàm C0 (Ω) ⊂ L∞ (Ω) chặt Hơn nữa, với f ∈ C0 (Ω) ∥f ∥∞,Ω = ∥f ∥L∞ (Ω) (∗) 70 Thật ∥f ∥L∞ (Ω) := inf{M > : |f (x)| ≤ M, x ∈ Ω} ≤ sup |f (x)| := ∥f ∥∞,Ω x∈Ω Để chứng minh bất đẳng thức ngược lại, ta quan sát, N ⊂ Ω tập không đáng kể với mối quan hệ đến L, Ω \ N ⊇ Ω Vì thế, theo tính liên tục f , tồn M > cho |f (x)| < M, x ∈ Ω ⇒ |f (x)| ≤ M ∀x ∈ Ω Đặc biệt, từ (∗), C0 (Ω) hóa đóng (L∞ (Ω), ∥.∥L∞ (Ω) ) Không gian đối ngẫu Lp (Ω) Định lý 32 (Định lý biểu diễn Riesz) Cho ≤ p < ∞ ký hiệu p < p < ∞ p′ := p − (số mũ của) p ∞ p = ′ Khi ánh xạ T : Lp (Ω) → (Lp (Ω))′ , định nghĩa Z uf dx, ∀f ∈ Lp (Ω), ⟨T (u), f ⟩(Lp (Ω))×Lp (Ω) := Ω đẳng cấu metric có đặc trưng xác định ′ Lp (Ω) ≡ (Lp (Ω))′ ≤ p < ∞ Chứng minh Ta chia chứng minh thành ba bước Bước 1: Ta chứng minh T phép đẳng cự, nghĩa ′ ∥T (u)∥(Lp (Ω))′ = ∥u∥Lp′ (Ω) , ∀u ∈ Lp (Ω) (25) Theo bất đẳng thức Holder, suy bất đẳng thức ′ ∥T (u)∥(Lp (Ω))′ ≤ ∥u∥Lp′ (Ω) , ∀u ∈ Lp (Ω) (26) Ta bất thức ngược lại Đầu tiên, giả sử < p < ∞, điều có nghĩa < p′ < ∞ Nếu ∥u∥Lp′ (Ω) = 0, đó, u = hầu khắp nơi