Xây dựng và sử dụng công thức để giải nhanh các bài toán về dao động tắt dần của con lắc lò xo
Trang 1I ĐẶT VẤN ĐỀ.
Nguyện vọng của tất cả học sinh khi tham gia học tập là có thể đậu được vào các trường đại học hoặc cao đẳng Tuy nhiên, đây là vấn đề không phải dễ dàng Đặc biệt với việc chuyển đổi từ hình thức thi tự luận sang trắc nghiệm thì càng khó khăn hơn Bởi lẽ, học sinh không chỉ nắm vững về kiến thức mà còn phải giải nhanh các bài tập để kịp với thời gian ít ỏi 1,8 phút/ câu
Có người đã từng nhận xét rằng: Nếu một phát thanh viên đọc lưu loát một
đề thi trắc nghiệm dài 6 đến 7 trang thì ít nhất cũng phải mất 15 đến 20 phút Trong khi đó, học sinh vừa phải đọc, phải suy nghĩ, phải tính toán rồi mới chọn đáp án để tô thì quả thật thời gian đã là một bài toán khó rồi Đó là chưa tính đến
có những bài tập khó và phức tạp nếu trình bày theo hình thức tự luận để ra được đáp án thì phải hết cả trang giấy Do đó việc có những công thức thật ngắn gọn, cách làm thật dễ nhớ giúp học sinh có thể giải nhanh được bài tập là rất cần thiết
Riêng đối với môn vật lí để giải các bài tập trong các đề thi đại học mà chỉ
sử dụng các công thức sách giáo khoa thì không thể đạt điểm cao Có rất nhiều các bài tập cần tới công thức xây dựng ngoài thì mới có thể làm kịp thời gian 1,8 phút/ câu Qua nghiên cứu đề thi đại học trắc nghiệm các năm gần đây thì tôi thấy rằng đề đang tăng dần mức độ khó lên trong khi sách giáo khoa thì không thay đổi, thậm chí có những phần kiến thức giảm tải nhưng vẫn có trong đề thi đại học
Trong các chương thi đại học thì chương dao động cơ là chương có kiến thức và các dạng bài tập nhiều nhất và cũng khó nhất Đặc biệt trong chương này, dao động tắt dần là phần khó hơn cả Tuy nhiên, kiến thức về dao động tắt dần mà sách giáo khoa cung cấp thì rất ít ỏi: chỉ nêu lí thuyết mà không có công thức làm bài tập Lại thêm số tiết luyện tập theo phân phối chương trình về dạng bài tập này rất ít lại càng làm cho học sinh khó hiểu và không vận dụng để làm các bài tập được Do đó, việc cung cấp thêm cho học sinh các công thức để làm bài tập là rất cần thiết Đồng thời, trong quá trình giải bài tập học sinh có thể làm
Trang 2theo nhiều cách dài ngắn khác nhau Theo kinh nghiệm giảng dạy của tôi trong quá trình dạy và đã từng tự tay giải các bài tập theo nhiều hướng thì tôi thấy rằng nên có những công thức ngắn gọn, dễ nhớ, giúp học sinh vận dụng không chỉ làm được mà làm nhanh lại càng cần thiết hơn nữa Chính vì vậy tôi chọn đề tài “ Xây dựng và sử dụng công thức để giải nhanh các bài toán về dao động tắt dần của con lắc lò xo” làm đối tượng nghiên cứu của mình
II GIẢI QUYẾT VẤN ĐỀ.
1 Cơ sở lí thuyết.
- Cơ sở lí thuyết của đề tài chính là các kiến thức về dao động tắt dần mà sách giáo khoa đã trình bày cụ thể như sau:
- Định nghĩa:
+Dao động tắt dần là dao động có biên độ giảm dần theo thời gian
- Đặc điểm:
+ Thời gian dao động phụ thuộc lực cản của môi trường: dao động tắt dần càng nhanh nếu môi trường càng nhớt tức là lực cản của môi trường càng lớn
- Giải thích:
+ Vì lực cản của môi trường tác dụng lên vật luôn sinh công âm làm cho cơ năng của vật ( tỉ lệ với A2) giảm, do đó biên độ của vật cũng giảm theo Tới một lúc nào đó A=0 thì vật không dao động nữa
+ Lực cản càng lớn thì làm cơ năng của vật giảm càng nhanh nên dao động của vật càng nhanh tắt
- Đồ thị của dao động tắt dần:
t
t
Trang 3- Nếu vật dao động điều hòa với tần số góc 0 chịu thêm tác dụng của lực cản nhỏ thì dao động của vật trở thành dao động tắt dần chậm Dao động tắt dần chậm có biên độ giảm dần theo thời gian
2 Thực trạng việc giải bài tập phần dao động tắt dần của học sinh:
Sách giáo khoa chỉ trình bày kiến thức về dao động tắt dần dạng lí thuyết không đưa ra công thức làm bài tập Nếu học sinh gặp phải các bài tập tự luận đòi hỏi phải tính toán, phải sử dụng các công thức thì học sinh không biết lấy công thức ở đâu để áp dụng chứ chưa nói gì là áp dụng một cách thành thạo để giải nhanh
Theo phân phối chương trình số tiết dành cho việc luyện tập về dao động tắt dần được gộp chung với dao động duy trì, dao động cưỡng bức, sự cộng hưởng và tổng hợp dao động thành 1 tiết Với thời lượng như vậy, giáo viên khó
có thể cho học sinh luyện tập được nhiều bài tập về dao động tắt dần Đặc biệt, đây lại là phần kiến thức khó
Kết quả khảo sát với học sinh khi làm bài tập về dao động tắt dần mà giáo viên không cung cấp thêm các công thức, chỉ trình bày lí thuyết như sách giáo khoa thì tôi thu được bảng sau đây:
Lớp % Học sinh làm được % Học sinh không làm được
Qua bảng số liệu nhận thấy tỉ lệ học sinh không làm được các bài tập là chủ yếu Điều đó cho thấy việc cung cấp cho học sinh các công thức mở rộng từ bên ngoài là rất cần thiết và sau khi biến đổi nên chốt lại các công thức để học sinh
dễ nhớ và cho học sinh làm một số bài tập mẫu giúp học sinh củng cố được kiến thức Đồng thời, giáo viên cũng nên cung cấp thêm cho học sinh các bài tập đề nghị (có đáp án) để học sinh làm ở nhà rèn luyện hơn nữa kĩ năng giải bài tập dao động tắt dần
3 Xây dựng các công thức về dao động tắt dần
Trang 43.1 Cơ sở để xây dựng các công thức về dao động tắt dần.
Để xây dựng các công thức về dao động tắt dần thì tôi dựa vào định luật bào toàn cơ năng và định lí biến thiên cơ năng
Định luật bảo toàn cơ năng có nội dung như sau: cơ năng của vật trong trường lực thế được bảo toàn
Định lí biến thiên cơ năng: độ biến thiên cơ năng của vật bằng công của các lực không phải lực thế tác dụng lên vật
W2 – W1 = A lực không thế W2= W1+ A lực không thế
Dưới đây là quá trình xây dựng các công thức về dao động tắt dần:
3.2 Độ giảm biên độ sau mỗi chu kì dao động.
Xét con lắc lò xo nằm ngang gồm vật nặng có khối lượng m, lò xo có độ cứng k Ban đầu con lắc ở vị trí cách vị trí cân bằng 1 đoạn bằng A, sau đó thả nhẹ cho nó dao động Biết hệ số ma sát giữa vật với mặt phẳng ngang là Trong T
2
1 : Con lắc đi từ biên A về vị trí cân bằng tới biên A’<A (vì có ma sát biên độ giảm)
Vì cơ năng của vật được bảo toàn nên tại 2 vị trí : biên A và vị trí biên A’ ta có:
k
mg A
mg A
A k A A mg A
A
k
A A mg kA
kA S
N kA kA
S Fms kA
kA
2 2
) ' ( ) ' ( 2 ) '
(
) ' ( '
2
1 2
1 ' 2
1 2
1 '
2
1
2
1
2
2
2 2
2 2
2 2
Trong 1 chu kì ( T), độ giảm biên độ sau mỗi chu kì sau mỗi chu kì là :
A4k mg (1)
Nếu lực cản không phải là lực ma sát thì ta có thể thay:
k
F
* Nếu con lắc nằm trên mặt phẳng nghiêng góc so với phương nằm ngang thì
Fms khi đó công thức độ giảm biên độ sau mỗi chu kì là:
k
mg
A4 cos
O
x
Trang 53.3 Số dao động vật thực hiện được cho tới khi dừng lại.
Con lắc lò xo nằm ngang: N A A kA mg
4
(2) Con lắc lò xo trên mặt phẳng nghiêng: N A A 4 mg kAcos
3.4 Thời gian vật dao động được cho tới khi dừng lại:
g
A g
A mg
kA T
A
A T
N
t
2 2
4
2
Vậy công thức thu gọn là: t g A
2
(3)
3.5 Quãng đường vật đi được cho tới khi dừng lại:
Khi vật dừng lại thì toàn bộ cơ năng ban đầu chuyển hết thành công của lực
ma sát do đó: kA Fms.S mgS
2
1 2
S kA mg
2
2
(4)
3.6 Vận tốc cực đại của vật trong quá trình dao động.
Đối với dao động tắt dần do có ma sát nên vị trí cân bằng của vật sau mỗi nửa chu kì khác vị trí cân bằng ban đầu 1 đoạn x0 Vật đạt vận tốc cực đại tại vị trí cân bằng mới khi đó : F 0 Fhp Fc kx0 mg x0 mg k
Theo định luật bảo toàn năng lượng cho 2 vị trí: biên A và vị trí cân bằng mới O’ cách O một đoạn x0 ta có:
2
1 2
1
2
0
2
0
2
1 2
1 2
1
0
2 0
2 0
2 kx mv mg A x
) (
2 0
2
0
2 kx mv mg A x
Thay x0 mg k vào ta được:
) (
2
2 0
2 2
k
mg A mg mv
k
mg
k
k
g m mgA
mv k
g m
0
2 2 2
k
g m mgA
mv
0
k
mg gA
v
A
m
2
0
2 2
k
g m gA
v
0 2
2
2
2 2 2
2
2
gA A
Trang 6
2 2 2 2
2
2
0
2
k
g m k
mg A
2 2
k
mg A
Vậy v0 A x0 (5)
3.7 Phần trăm năng lượng giảm sau mỗi chu kì dao động.
Năng lượng ban đầu của con lắc là 2
2
1
kA
E Sau một chu kì năng lượng
con lắc giảm còn ' 2
2
1
E với A’< A Ta có:
2 2
2 2 2
2
) ' )(
' ( '
' '
1 ' 1 '
'
A
A A A A E
E A
A A E
E E A
A E
E A
A
E
2
2 2
2 ) 2
.(
A
A A
A A
A A A
E
(Coi dao động là tắt dần chậm nên A ' A)
2 2
2
1 1 ) 2
1
(
A
A A
A A
A E
%) 1
( 1
Vậy E% 1 ( 1 A%) 2 (6)
4 Sử dụng các công thức để giải nhanh các bài toán về dao động tắt dần.
Sau khi đã đưa ra hệ thống công thức để làm bài tập thì giáo viên cho học sinh vận dụng các công thức đó để làm một số bài tập mẫu, giúp học sinh nhớ luôn công thức Ngoài ra, giáo viên có thể chọn một số bài tập đề nghị (có đáp án) yêu cầu học sinh về nhà làm để học sinh rèn luyện hơn nữa kĩ năng giải bài tập dao động tắt dần
Về dao động tắt dần khi làm bài tập học sinh thường gặp 6 dạng bài toán như sau:
Dạng 1: Tìm độ giảm biên độ, số dao động vật thực hiện được và thời gian vật dao động cho tới khi dừng lại.
Phương pháp giải:
- Độ giảm biên độ: Áp dụng công thức (1) hoặc (2) là:
k
mg
A4
k
F
hoặc A4mg kcos
Trang 7- Số dao động vật thực hiện được cho tới khi dừng lại: Áp dụng công thức (2) là:
mg
kA
A
A
N
4
- Thời gian vật dao động tới khi dừng lại: Áp dụng công thức (3) là: t g A
2
* Một số bài tập mẫu:
Bài 1: Một con lắc lò xo nằm ngang gồm lò xo có k=100 N/m, vật nặng có khối
lượng m= 0,4 Kg Cho hệ số ma sát giữa vật và mặt phẳng ngang là 0 , 01 Lấy g=10 m/s2 Độ giảm biên độ của vật sau một 3 chu kì dao động là:
A 0,16 cm B 0,32 cm C 0,48 cm D 0,64 cm Giải:
Áp dụng công thức (1) ta có độ giảm biên độ sau một chu kì dao động là :
cm m
k
mg
100
10 4 , 0 01 , 0 4
Sau 3 chu kì độ giảm biên độ giảm là: 3 0,16=0,48 cm Do đó chọn đáp án C
Bài 2: Một con lắc lò xo gồm lò xo nhẹ có độ cứng k=50 N/m, vật có khối lượng
m=200g Kéo vật tới vị trí lò xo dãn 8 cm rồi thả nhẹ cho vật dao động Biết hệ
số ma sát giữa vật và mặt phẳng ngang là 0 , 01 Số dao động vật thực hiện được cho tới khi dừng lại là:
A 30 B 40 C 60 D 50
Giải:
- Độ giảm biên độ sau mỗi chu kì là:
cm m
k
mg
50
10 2 , 0 01 , 0 4
- Số dao động vật thực hiện được tới khi dừng lại là: 50
16 , 0
8
A
A N
Chọn D
Bài 3: Một con lắc lò xo gồm vật có m= 200g, lò xo có độ cứng k= 80N/m khối
lượng không đáng kể đặt trên mặt bàn nằm ngang Kéo vật khỏi vị trí cân bằng 3cm rồi truyền cho nó vận tốc v=80 cm/s Do có ma sát nên vật tắt dần dao động sau 10 dao động Lấy g= 10 m/s2 Hệ số ma sát giữa vật và mặt phẳng ngang là:
Trang 8A 0,05 B 0,04 C 0,03 D 0,02.
Giải:
Tần số góc của dao động: 20
2 , 0
80
m
k
Biên độ dao động: A x v ) 25 A 5cm
20
80 (
3 2 2 2
2 2 2
Số dao động vật thực hiện được là:
05 , 0 10 10 2 , 0 4
05 , 0 80
4
N mg
kA mg
kA
A
A
Chọn đáp án A
Một số bài tập đề nghị:
Bài 1 : Một con lắc lò xo nằm ngang gồm vật có khối lượng 600 g, lò xo có độ
cứng 100N/m Người ta đưa vật ra khỏi vị trí cân bằng một đoạn 6 cm rồi thả nhẹ cho nó dao động, hệ số ma sát giữa vật và mặt phẳng ngang là 0,005 Lấy g
= 10 m/s2 Khi đó số dao động vật thực hiện cho đến lúc dừng lại là:
A 500 B 50 C 200 D 100 Bài 2: Một con lắc lò xo thẳng đứng gồm lò xo nhẹ có độ cứng k = 100N/m, 1
đầu cố định, 1 đầu gắn vật nặng khối lượng m = 0,5kg Ban đầu kéo vật theo phương thẳng đứng khỏi VTCB 5cm rồi buông nhẹ cho dao động.Trong quá trình dao động vật luôn chịu tác dụng của lực cản có độ lớn bằng 1001 trọng lực tác dụng lên vật Coi biên độ của vật giảm đều trong từng chu kỳ, lấy g=10 m/s2
Số lần vật qua VTCB kể từ khi thả vật đến khi nó dừng hẳn là:
A 25 B 50 C 75 D 100 Bài 3: Một con lắc lò xo thẳng đứng có độ cứng k =100N/m và vật có khối
lượng m = 500g Ban đầu kéo vật ra khỏi vị trí cân bằng một đoạn là 5cm rồi thả nhẹ cho nó dao động Trong quá trình dao động vật luôn chịu tác dụng của lực cản bằng 0,005 lần trọng lượng của nó Coi biên độ của vật giảm đều trong từng chu kỳ, lấy g = 10m/s2 Số lần vật đi qua vị trí cân bằng là :
A 100 lần B 150 lần C 200 lần D 50 lần
Trang 9Dạng 2: Tìm quãng đường vật đi được.
Phương pháp giải:
- Quãng đường vật đi được tới khi dừng lại: S kA mg
2
2
- Quãng đường vật đi được trong n chu kì đầu tiên
- Nếu trong n chu kì đầu tiên thì S
mg
kA
2
2
mg
kA n
2
2
với A n A nA
* Một số bài tập mẫu:
Bài 1: Một con lắc lò xo nằm ngang gồm lò xo có độ cứng k= 100N/m, vật có
m=100g dao động trên mặt phẳng ngang, hệ số ma sát giữa vật và mặt phẳng ngang là 0 , 01 Kéo vật lệch khỏi vị trí cân bằng một đoạn 10 cm rồi thả nhẹ cho vật dao động Quãng đường vật đi được từ khi bắt đầu dao động đến khi dừng hẳn là:
A 20m B 50m C 25m D 55m
Giải:
Áp dụng công thức tính quãng đường vật đi được tới khi dừng hẳn ta có:
mg
kA
S
2
2
10 1 , 0 01 , 0 2
1 , 0
Bài 2: Con lắc lò xo nằm ngang gồm lò xo nhẹ có k=100N/m, vật nặng có
m=100g Kéo vật cho lò xo dãn 2 cm rồi thả nhẹ cho vật dao động Biết hệ số
ma sát giữa vật và mặt phẳng ngang là 0 , 02 Xem con lắc dao động tắt dần chậm Lấy g=10 m/s2 2
Quãng đường vật đi trong 4 chu kì đầu tiên là:
A 32 cm B 34,5 cm C 100cm D 29,44 cm Giải:
- Độ giảm biên độ sau mỗi chu kì là:
cm m
k
mg
100
10 1 , 0 02 , 0 4
- Biên độ dao động của vật sau 4 chu kì đầu tiên là:
cm A
A
A4 4 2 4 0 , 08 1 , 68
Trang 10- Quãng đường vật đi trong 4 chu kì đầu tiên là: S
mg
kA
2
2
mg
kA
2
2 4
mg
k
10 1 , 0 02 , 0 2
100 2
2 2
2 4 2
Chọn đáp án D
Một số bài tập đề nghị.
Bài 1: Con lắc lò xo nằm ngang có k = 100N/m, vật m = 400g Kéo vật ra khỏi
VTCB một đoạn 4cm rồi thả nhẹ cho vật dao động Biết hệ số ma sát giữa vật và sàn là 5 10 3
Xem chu kỳ dao động không thay đổi và coi độ giảm biên độ sau mỗi chu kỳ là đều Lấy g = 10m/s2 Quãng đường vật đi được trong 1,5 chu
kỳ đầu tiên là:
A 23,28cm B 20,4cm C 24cm D 23,64cm Bài 2: Một con lắc lò xo đặt nằm ngang gồm 1 vật có khối lượng m = 100(g)
gắn vào 1 lò xo có độ cứng k = 10(N/m) Hệ số ma sát giữa vật và sàn là 0,1 Đưa vật đến vị trí lò xo bị nén một đoạn rồi thả ra Vật đạt vận tốc cực đại lần thứ nhất tại O1 là vmax = 60(cm/s) Quãng đường vật đi được đến lúc dừng lại là:
A 24,5cm B 24cm C.21cm D.25cm Bài 3: Một con lắc lò xo nằm ngang k = 20N/m, m = 40g Hệ số ma sát giữa mặt
bàn và vật là 0,1, g = 10m/s2 Đưa con lắc tới vị trí lò xo nén 10cm rồi thả nhẹ Tính quãng đường đi được từ lúc thả đến lúc vectơ gia tốc đổi chiều lần thứ 2:
A 30cm B 28cm C 29cm D 31cm.
Dạng 3: Tìm vận tốc cực đại của vật.
Phương pháp giải:
- Vận tốc cực đại của vật đạt được tại vị trí x0 mg k và giá trị lớn nhất đó bằng
* Một số bài tập mẫu:
Bài 1: (Đề thi đại học 2010)