ĐỀ MẪU CÓ ĐÁP ÔN TẬP KIẾN THỨC TOÁN 12 Thời gian làm bài 40 phút (Không kể thời gian giao đề) Họ tên thí sinh Số báo danh Mã Đề 053 Câu 1 Có bao nhiêu giá trị nguyên của tham số để hàm số có 5 điểm cự[.]
ĐỀ MẪU CĨ ĐÁP ƠN TẬP KIẾN THỨC TỐN 12 Thời gian làm bài: 40 phút (Không kể thời gian giao đề) - Họ tên thí sinh: Số báo danh: Mã Đề: 053 Câu Có giá trị nguyên tham số điểm cực trị? A Đáp án đúng: B Câu Có B để hàm số C giá trị thực có D tham số m để bất phương trình có nghiệm nhất? C A B D Đáp án đúng: D Giải thích chi tiết: Bất phương trình có nghiệm phương trình (*) có nghiệm Nếu nghiệm phương trình nghiệm phương trình Do đó, phương trình có nghiệm phương trình (*) nhận làm nghiệm Khi ta có: Hay Đặt , Vì hàm , ta có: hàm đơn điệu tăng , , ta nhận hay nên từ Ta nghiệm lại thấy số thực thoả mãn ycbt Câu Cho tích phân A Đáp án đúng: B hàm đơn điệu giảm với B Tìm C để D Giải thích chi tiết: Xét tích phân Ta có: Mặt khác: Suy ra: Câu Tìm giá trị nhỏ hàm số A Đáp án đúng: C Giải thích chi tiết: Lời giải TXĐ: Đặt B C D , Ta có liên tục đoạn ; ; Suy Câu , Cho hình trụ có chiều cao , diện tích xung quanh A Đáp án đúng: A B Câu Trong khơng gian A Tìm bán kính đáy hình trụ C mặt cầu có tâm D tiếp xúc với mặt phẳng có phương trình là: B C Đáp án đúng: C D Câu Cho mặt cầu (S) có diện tích A Đáp án đúng: B B Thể tích khối cầu (S) C f Câu Cho f ( x ) có đạo hàm R thỏa mãn f ' ( x ) e D − 2x =0 với x ∈ R Biết f ( )=1, tính f ( x) 15 D I = ( x ) −x 2−1 √7 tích phân I =∫ x f ( x ) d x 11 A I = Đáp án đúng: B B I = 45 C I = f Giải thích chi tiết: Cho f ( x ) có đạo hàm R thỏa mãn f ' ( x ) e ( x ) −x −1 − √7 2x =0 với x ∈ R Biết f 2( x) f ( )=1, tính tích phân I =∫ x f ( x ) d x 45 11 15 A I = B I = C I = D I = Lời giải Ta 2x e f ( x) x f ( x ) −x −1 f 3f '(x).e − =0⇔ f ' ( x ) x +1 = ⇔3 f ( x ) f ' ( x ) e ( ) f (x) f x e Thế x=0 vào ( ¿ ) ta e=e+C ⇔ C=0 Do e f ( x )=e x +1 ⇔ f ( x ) =x2 +1 ⇔ f ( x ) =√3 x +1 có 3 2 3 (x ) =2 x e x +1 ⇔ (e f (x) ' ' ) =( e x + 1) ⇔ e f ( x )=e x +1+C ( ¿ ) 2 √7 √7 3 1 ( x +1 ) 2 Vậy I =∫ x √ x +1 d x= ∫ ( x + ) d ( x + )= 0 | √7 | √7 3 = ( x +1 ) √ x +1 0 45 ¿ ( 16−1 )= 8 Câu Tìm tổng tham số nguyên dương m để hàm số y=x + ( m− ) x 2+5 có điểm cực trị A 24 B 15 C 14 D 10 Đáp án đúng: D Câu 10 [2D2-5.2-3] Gọi phần tử tập nghiệm thực phương trình (với A Đáp án đúng: C B số nguyên) Giá trị biểu thức C Câu 11 Mặt cầu D có tọa độ tâm bán kính R là: A B C Đáp án đúng: C Câu 12 D Với thỏa mãn A C Đáp án đúng: C , khẳng đinh đúng? B Giải thích chi tiết: Với giá trị trị nằm phía bên phải trục tung? B Cho hàm số D Câu 13 Tìm giá trị cực đại hàm số A yCĐ = -7 B yCĐ = -1 Đáp án đúng: C A Câu 14 Tổng C C yCĐ = -2 đồ thị hàm số D có hai điểm cực có đồ thị hình vẽ diện tích hai phần Giá trị A Đáp án đúng: D B D yCĐ = -4 C D Giải thích chi tiết: (ĐGNL-THPT LÝ THÁI TỔ-BẮC NINH-2020-2021) Cho hàm số hình vẽ diện tích hai phần Giá trị A B Lời giải có đồ thị C D Dựa vào đồ thị ta có: Xét Đặt Ta có Khi Câu 15 Cho hình chóp tứ giác góc hai đường thẳng có đáy hình bình hành, tam giác A B C Đáp án đúng: A Câu 16 Mặt cầu (S1) có tâm I ¿ ; - 1; 1) qua điểm M(2; 1; -1) A C Đáp án đúng: B Câu 17 D B D Có giá trị nguyên tham số để đồ thị hàm số cực trị nằm hai phía trục ? A B C Đáp án đúng: D Giải thích chi tiết: Có giá trị ngun tham số có hai điểm cực trị nằm hai phía trục Câu 18 Cho hình lăng trụ đứng tam giác Tính có tất cạnh có hai điểm D để đồ thị hàm số ? Tính khoảng cách A Đáp án đúng: B Giải thích chi tiết: Gọi B C trung điểm Mặt khác D (1) (2) Từ (1) (2) suy Câu 19 Tâm I bán kính R mặt cầu qua điểm A ( ; 0; ) , B ( ;−2; ) , C ( ; ; ) gốc tọa độ: −1 21 √ 21 ; 1;−2 , R= √ A I ;−1 ; , R= B I 2 2 ( ) 21 C I ( ;−1 ; ) , R= 2 ( ) D I ( ;−2; ) , R= √ 21 Đáp án đúng: A Câu 20 Cho , hai số thực dương, thỏa mãn , Tính giá trị A Đáp án đúng: C Câu 21 Phương trình A B B C có nghiệm? C D D Đáp án đúng: A Giải thích chi tiết: Câu 22 Với giá trị thực m hàm số có hai điểm cực trị ? A B C Đáp án đúng: D D Câu 23 Đồ thị hàm số có đường tiệm cận ngang tiệm cận đứng là: A B C Đáp án đúng: D D Giải thích chi tiết: Đồ thị hàm số Câu 24 Một mảnh đất hình chữ nhật có đường tiệm cận ngang tiệm cận đứng biết chiều dài , chiều rộng chia thành hai phần vạch chắn ( trung điểm ) Một đội xây dựng làm đường từ đến qua vạch chắn , biết làm đường miền làm , miền làm Thời gian ngắn mà đội xây dựng làm đường từ đến (kết làm tròn đến hàng phần chục)? A (giờ) Đáp án đúng: A Câu 25 B (giờ) C Với giá trị m hàm số A Đáp án đúng: D C Câu 26 Tìm m để đồ thị hàm số B B C (giờ) D có điểm cực đại điểm cực tiểu lập thành tam giác C Giải thích chi tiết: [Mức độ 2] Tìm m để đồ thị hàm số tiểu lập thành tam giác A D đạt cực đại B A Đáp án đúng: C (giờ) D có điểm cực đại điểm cực D Lời giải Đồ thị hàm số có Khi đó, điểm cực trị điểm cực trị đồ thị hàm số Tam giác có , nên tam giác cân , , suy tam giác Kết hợp điều kiện Câu 27 ta Với giá trị điểm cực tiểu hàm số A ? B C Khơng có Đáp án đúng: C D Giải thích chi tiết: Ta có Nếu điểm cực tiểu hàm số Với Hàm số khơng có điểm cực trị Với , suy Hàm số đạt cực đại Vậy Câu 28 Tìm m để phương trình A Đáp án đúng: A có nghiệm phân biệt? B C Câu 29 Trên tập hợp số phức, cho phương trình nghiệm A Đáp án đúng: C , giá trị B A B C Biết phương trình cho có hai C Giải thích chi tiết: Trên tập hợp số phức, cho phương trình cho có hai nghiệm D , giá trị D D Biết phương trình Lời giải Cách 1: Ta có Theo Vi-et: Vậy Cách 2: Ta có nghiệm phương trình Vậy Câu 30 Cho hàm số có bảng biến thiên sau: Tổng số đường tiệm cận đứng tiệm cận ngang đồ thị hàm số cho bằng: A B C Đáp án đúng: B Câu 31 Đường tiệm cận đứng tiệm cận ngang đồ thị hàm số A B C Đáp án đúng: D Câu 32 D Đường tiệm cận ngang đồ thị hàm số A D tương ứng có phương trình và có phương trình B C Đáp án đúng: C D Giải thích chi tiết: Đường tiệm cận ngang đồ thị hàm số có phương trình A B C Câu 33 Cho hàm số D Khẳng định sau đúng? A Hàm số cho đồng biến khoảng B Hàm số cho nghịch biến C Hàm số cho đồng biến khoảng D Hàm số cho nghịch biến khoảng Đáp án đúng: A Giải thích chi tiết: Cho hàm số Khẳng định sau đúng? A Hàm số cho nghịch biến khoảng B Hàm số cho nghịch biến C Hàm số cho đồng biến khoảng D Hàm số cho đồng biến khoảng Lời giải Ta có: Do đó, hàm số cho đồng biến khoảng Câu 34 Lăng trụ đứng có đáy tam giác vng Mặt bên hình vng Khi thể tích lăng trụ A Đáp án đúng: D B C Giải thích chi tiết: Lăng trụ đứng bên có đáy D tam giác vng Mặt hình vng Khi thể tích lăng trụ A B Hướng dẫn giải: C D A' C' B' A C B 10 Câu 35 Cho A Đáp án đúng: B với a,b số nguyên Giá trị a + b B C D HẾT - 11