1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán 12 giải chi tiết (829)

10 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 0,99 MB

Nội dung

ĐỀ MẪU CĨ ĐÁP ÁN ƠN TẬP KIẾN THỨC TỐN 12 Thời gian làm bài: 40 phút (Không kể thời gian giao đề) - Họ tên thí sinh: Số báo danh: Mã Đề: 083 log8 x log2 x  log4 x log16 x Câu Tập nghiệm phương trình là: 1   ;  2;16  A B  16  C  1 2;   16  D  4;1 Đáp án đúng: C 2x  x  có đồ thị  C  Tìm điểm M thuộc  C  cho tiếp tuyến  C  M Câu Cho hàm số C vng góc với IM , I tâm đối xứng A y  x  1, y  x  B y  x  3, y  x  C y  x  1, y  x  D y  x  1, y  x  y Đáp án đúng: D thích chi tiết: Gọi M( x0 ; y0 ) tiếp điểm Phương 2x  1 y ( x  x0 )  x0  ( x0  1)   1   u  1; IM  ( x  1; )   ( x  1) x    Đường thẳng  có VTCP , IM    x0   0  x0 0, x0 2 ( x0  1)3 y  x  1, y  x  Từ ta tìm tiếp tuyến: Giải trình tiếp tuyến  M: Câu Phương trình: A có nghiệm B C Đáp án đúng: A Câu D Các điểm cực trị hàm số A là: B C Đáp án đúng: B D x Câu Có giá trị nguyên tham số m để phương trình 10  9m  2m có nghiệm ? A B Vơ số C 11 D 10 Đáp án đúng: D x 8  4.3x 5  27 0 ? Câu Tính tổng tất nghiệm phương trình 4  A 27 B  C 27 D Đáp án đúng: B Câu Nghiệm phương trình A Đáp án đúng: C là: B C D Câu Cho hình chóp S ABCD có cạnh đáy a chiều cao h Gọi I trung điểm cạnh SC Tính khoảng cách từ S đến ( AIB) 2ah A ah 4h  9a h 2 C 4h  9a Đáp án đúng: D B 4h  9a 2ah D 4h  9a Giải thích chi tiết: Ta chọn hệ trục toạ độ Oxyz cho gốc toạ độ tâm O đáy, trục Ox chứa OA , trục Oy chứa OB , trục a   a   a  A  ;0;0  ; B  0; ;0  ; C   ;0;0  ; S  0;0; h  2      Oz chứa SO với  h   M  0;0;  3  Trong ( SAC ) , gọi M giao điểm SO AI , suy M trọng tâm SAC Mặt phẳng qua A; B; M ; I ( ABM ) x y z   1 a a h Ta có phương trình ( ABM ) : d Khoảng cách từ điểm S đến ( ABM ) là: Câu 2ah  2 4h  9a   a a h2 Cho hàm số liên tục có đồ thị D hình vẽ Giá trị cực tiểu hàm số cho A Đáp án đúng: A B C Giải thích chi tiết: Cho hàm số f ( x) liên tục  có đồ thị hình vẽ Giá trị cực tiểu hàm số cho A B C D Lời giải Dựa vào đồ thị hàm số ta thấy hàm số đạt cực tiểu x 0 , giá trị cực tiểu x x Câu 10 Tổng nghiệm thực phương trình 3.9  10.3  0 A B  C D Đáp án đúng: C x x Giải thích chi tiết: Tổng nghiệm thực phương trình 3.9  10.3  0 A B C D  Lời giải  x   x    x  x x  3  x 1 Ta có 3.9  10.3  0 Khi tổng nghiệm thực phương trình là:    1 0  N  có chiều cao h 8cm , bán kính đáy 28  cm  100  cm  12  cm  C D Câu 11 Cho hình nón r 6cm Độ dài đường sinh l  N  10  cm  là.#A B A B C Đáp án đúng: A Câu 12 y = f ( x) ¡ \ { 0} Cho hàm số xác định có bảng biến thiên hình vẽ D Số nghiệm phương trình f ( x) = A B C D Đáp án đúng: C Câu 13 Cho khối lăng trụ đứng ABC A¢B ¢C ¢ có diện tích đáy a chiều cao AA 2a (tham khảo hình vẽ) Tính thể tích khối lăng trụ ABC A¢B ¢C ¢ ? 2a 3 A Đáp án đúng: C Câu 14 Số phức 11  i A 25 25 B z 3a 3a C 2a D 11  i C 25 25 11  i D 5 i  3i 11  i B 5 Đáp án đúng: C Câu 15 Cho số phức A 10 Đáp án đúng: D Môđun số phức B 50 Câu 16 Số mặt khối đa diện loại A 12 B C  3;3 D C D Đáp án đúng: D   log 3.4 x  2.9 x  x  Câu 17 Tổng tất nghiệm thực phương trình: A B C D Đáp án đúng: C  P  biến đường thẳng d thành khi: Câu 18 Phép đối xứng qua mặt phẳng  P  P  d  ( P) A d song song với B d nằm  P C d nằm D d  ( P) Đáp án đúng: B Giải thích chi tiết: Phép đối xứng qua mặt phẳng (P) biến đường thẳng d thành khi: A d song song với (P) B d nằm (P) C d  ( P ) D d nằm (P) d  ( P ) Đáp án: D Câu 19 Tìm nguyên hàm F (x) ca hm s ổp ữ ữ Fỗ = ì ỗ ữ ỗ ữ 4ứ ố tha mãn điều kiện A B C D Đáp án đúng: B Câu 20 Tọa độ giao điểm đường thẳng y  x  parabol y  x  x  là: 1   ;  1  2;0 ,   2;0   A  B   11   1;     ;     1;  ,   2;5  ,  50  C D  Đáp án đúng: C  x   y 4  x   x  x     x   y 5 Giải thích chi tiết: Ta có A  2;1;1  P  : x  y  z 1 0 Phương trình mặt cầu tâm A tiếp xúc Câu 21 cho điểm mặt phẳng  P  với mặt phẳng A  x  2 2   y  1   z  1 4 2 B x     y  1   z  1 9 C  Đáp án đúng: A D  x  2  x  2  Giải thích chi tiết: Mặt cầu S có bán kính R d  A;  P   2   y  1   z  1 36 2.2   2.1  2   y  1   z  1 2 2    1  2 2 tâm A  2;1;1   S  :  x     y  1   z  1 4 Câu 22 P/trình có hai nghiệm P 64 A P 5 B Đáp án đúng: A Câu 23 y  f  x Cho hàm số có bảng biến thiên sau: Giá trị cực đại hàm số cho A B Đáp án đúng: A x1, x2 ( x1 < x2 ) Tính P = x1 + x2 C P 8 D P 4 C  D   Câu 24 Biết x I  dx    ln b cos x a T a  b A T 13 , với a, b số nguyên dương Tính giá trị biểu thức C T 9 B T 11 D T 7 Đáp án đúng: B  Giải thích chi tiết: Xét  x I  dx x dx cos x cos x 0 u  x    d v  d x  cos x Đặt  du dx  v tan x      I  x.tan x  tan xdx  x.tan x   d  cos x   x tan x  ln  cos x      ln cos x 0 0  a 3  T a  b 11  b  Suy  Câu 25 Tính thể tích khối lập phương có cạnh a a3 A B 27a C 3a D 3a Đáp án đúng: B Câu 26 Với số thực dương tùy ý, A C Đáp án đúng: A bằng? B D Câu 27 Tổng tất nghiệm phương trình log 2 A  B Đáp án đúng: B   x  2 2 2 C   x 6  bằng: D Câu 28 Cho khối lăng trụ tích a , đáy tam giác cạnh a Tính chiều cao h khối lăng trụ A h 3a B h a C h 2a D h 4a Đáp án đúng: D ^ Câu 29 Khối lăng trụ đứng ABC.A’B’C’ có Δ ABC cân A CAB=120 , AB=2 a (A’BC) tạo với (ABC) góc 45 Khoảng cách từ đỉnh B’ đến mặt phẳng (A’BC) ? a √2 a √2 A B a √ C D a √ Đáp án đúng: C Giải thích chi tiết: Gọi I trung điểm BC ⇒ (^ ( A ' BC ) ; ( ABC ) )=^ A ' IA =45 0, d ( B ' ;( A ' BC))=d ( A ; ( A ' BC ) )=AH AI √ AB cos 600 √ a √ Δ A ' AI vuông cân A nên AH = = = 2 Câu 30 Cho khối nón nội tiếp khối cầu bán kính R Thể tích lớn khối nón là: 16 R A Đáp án đúng: C 16 R B 81 32 R C 81 32 R D Giải thích chi tiết: Cho khối nón nội tiếp khối cầu bán kính R Thể tích lớn khối nón là: 32 R A 81 32 R B 16 R C 81 16 R D Lời giải Đường cao hình nón SH h Bán kính đáy r  AH  h  R  h   V  h  R  h   f  h  ,  h  R Thể tích  4R f '  h    Rh  3h  ; f '  h  0  h 0; h  3  R  32 R Vmax  f   81   Câu 31 Cho hình chữ nhật ABCD có AB=6 , AD=4 Thể tích V khối trụ tạo thành quay hình chữ nhật ABCD quanh cạnh AB A V =32 π B V =96 π C V =144 π D V =24 π Đáp án đúng: D Câu 32 Tìm nguyên hàm A C Đáp án đúng: A hàm số thoả mãn B D Giải thích chi tiết: Có Do z   4i  Câu 33 Cho điểm M điểm biểu diễn số phức z thỏa mãn hai điều kiện 2 T z2  z i đạt giá trị lớn Điểm E biểu diễn cho số phức w  i Điểm H đỉnh thứ tư hình bình hành OEHM Độ dài OH A OH 2 41 B OH  41 C OH 3 Đáp án đúng: B Giải thích chi tiết: Điểm D OH 5 M  x; y  Ta có Lại có: biểu diễn cho số phức z x  yi z   4i    x  3   y   5 đường tròn  C  x, y    tâm I  3;  R  , 2 2 T  z   z  i  x    y   x   y  1  4 x  y      : x  y   T 0    C  có điểm chung Do số phức z thỏa mãn đồng thời hai điều kiện nên  23  T d  I ,   R    23  T 10  13 T 33 Suy ra: 4 x  y  30 0  x 5 Tmax 33    2  y 5  z 5  5i  x  3   y   5 Suy ra: Vì H đỉnh thứ tư hình bình hành OEHM nên ta có:    OH  OH  OM  OE  z  w   5i  i   4i  41 Câu 34 Cho khối chóp S.ABC có đáy ABC tam giác vuông B với AB=a , BC=a √ , SA vng góc với đáy Biết SC=2 a √2, tính thể tích khối chóp S.ABC theo a a3 √ a3 √ A B C a D a √ 3 Đáp án đúng: A f x 2 x  Câu 35 Họ tất nguyên hàm hàm số   2 A 2x  C B x  x  C C x  x  C Đáp án đúng: C D x  C f  x  dx  x   dx x Giải thích chi tiết: Ta có   4x  C HẾT - 10

Ngày đăng: 11/04/2023, 19:04

w