Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian Oxyz, cho mặt cầu (S ) x2 + y2 + z2 − 2x − 2y + 4z − 1[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = −7 D m = Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(1; 1; 2) B I(0; 1; 2) C I(0; 1; −2) D I(0; −1; 2) Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) 1 B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 C (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = Câu Đường cong hình bên đồ thị hàm số nào? A y = −x4 + B y = −x4 + 2x2 + C y = x4 + 2x2 + Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = D y = x4 + 1 ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A ln + B − ln C − ln − D ln − 2 2 Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m > B m ≥ −1 C m ≥ D m ≥ Câu Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A π B −1 C D Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , B m = C m , D m , −1 Câu Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 0) B (1; 2) C (−1; 2) D (0; 1) Câu 10 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 45◦ B 30◦ C 60◦ D 90◦ Câu 11 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C −1 D Câu 12 Tập nghiệm bất phương trình x+1 < A (−∞; 1] B [1; +∞) C (1; +∞) D (−∞; 1) Câu 13 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường trịn Tâm đường trịn có tọa độ A (0; −2) B (2; 0) C (−2; 0) D (0; 2) Trang 1/5 Mã đề 001 Câu 14 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d > R B d = C d < R D d = R Câu 15 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x = + 2t x = + 2t x=5+t y = + 3t y = −1 + t y = −1 + 3t y = + 2t A B C D z = −1 + t z = −1 + 3t z = −1 + t z = + 3t R dx = F(x) + C Khẳng định đúng? Câu 16 Cho x 1 A F ′ (x) = B F ′ (x) = lnx C F ′ (x) = − x x (1 + i)(2 − i) Câu 17 Mô-đun số phức z = √ + 3i √ A |z| = B |z| = C |z| = Câu 18 Với số phức z, ta có |z + 1|2 A z2 + 2z + B z · z + z + z + C |z|2 + 2|z| + D F ′ (x) = x2 D |z| = D z + z + Câu 19 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i) = − 17i Khi hiệu phần thực phần ảo z A −7 B C −3 D Câu 20 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −21008 + C −22016 D −21008 Câu 21 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 2i B −3 + 2i C 11 + 2i D −3 − 10i Câu 22 Đẳng thức đẳng thức sau? A (1 + i)2018 = 21009 B (1 + i)2018 = −21009 C (1 + i)2018 = −21009 i D (1 + i)2018 = 21009 i 1 25 = + Câu 23 Cho số phức z thỏa Khi phần ảo z bao nhiêu? z + i (2 − i)2 A 31 B −31 C 17 D −17 Câu 24 √ thức |z1 + z1 z2 | √ √ Cho số phức z1 = +√2i, z2 = − i Giá trị biểu A 30 B 130 C 10 D 10 (1 + i)(2 + i) (1 − i)(2 − i) Câu 25 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z = z B |z| = C z số ảo D z = z ′ Câu 26 Cho hàm số f (x) có đạo hàm với x ∈ R f (x) = 2x + Giá trị f (2) − f (1) A B C D −2 Câu 27 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = − cos(2023x) B f (x) = cos(2023x) 2023 C f (x) = −2023cos(2023x) D f (x) = 2023cos(2023x) R Câu 28 Tìm nguyên hàm I = xcosxdx x A I = xsinx − cosx + C B I = x2 cos + C x C I = x2 sin + C D I = xsinx + cosx + C R8 R4 R4 Câu 29 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R8 R4 A f (x) = −5 B [4 f (x) − 2g(x)] = −2 R4 R8 C [ f (x) + g(x)] = 10 D f (x) = Trang 2/5 Mã đề 001 Câu 30 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x + 2y + 2z − 15 = B x − 2y + 2z − 15 = C x − 2y + 2z + 15 = D x + 2y + 2z + 15 = Câu 31 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x − 2)2 + y2 + z2 = B (x + 2)2 + y2 + z2 = C (x − 2)2 + y2 + z2 = D (x + 2)2 + y2 + z2 = Câu 32 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = B I = C I = 10 D I = −−→ Câu 33 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (−1; −1; −3) B (3; 3; −1) C (1; 1; 3) D (3; 1; 1) √ √ √ 42 √ Câu 34 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 √ 2 Mệnh đề Câu 35 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ √ 2 A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = z Câu 36 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A B C D 2 Câu 37 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu √2 | √ √ √ thức P = |z1 | + |z A P = 34 + B P = C P = + D P = 26 √ Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm Q C điểm N D điểm P √ Câu 39 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 3 A |z| > B |z| < C < |z| < D ≤ |z| ≤ 2 2 Câu 40 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm P B điểm R bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm Q D điểm S Câu 41 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = −1 C A = + i D A = Trang 3/5 Mã đề 001 Câu 42 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| √ A max T = B P = 2016 C P = −2016 D P = √ Câu 43 Tính đạo hàm hàm số y = log4 x2 − A y′ = (x2 x − 1)log4 e B y′ = 2(x2 x − 1) ln C y′ = √ x2 − ln D y′ = (x2 x − 1) ln Câu 44 Trong khơng gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = 15 B R = C R = 14 D R = Câu 45 Hàm số hàm số sau có đồ thị hình vẽ bên A y = x3 − 3x2 B y = −2x4 + 4x2 C y = −x4 + 2x2 + Câu 46 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A 6π ln + 5 B 3π ln + C 6π D y = −x4 + 2x2 cos x π F(− ) = π Khi giá trị sin x + cos x D ln + 6π Câu 47 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 3a 30 3a a 15 B C D A 2 10 √ Câu 48 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ [ 1; 3] B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình với x ∈ (4; +∞) D Bất phương trình vơ nghiệm Câu 49 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A −2 B −4 C D Câu 50 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 3a3 B 6a3 C 4a3 D 12a3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001