Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biể[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho x, y, z ba số thực khác thỏa mãn = = 10 Giá trị biểu thức A = xy + yz + zxbằng? A B C D 3 a Câu Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 300 B 600 C 1350 D 450 x y −z Câu Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 + x2 y = x2 +3x+mcắt nhiều điểm A −2 < m < B −2 ≤ m ≤ C m = D < m < Câu Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (1; +∞) B Hàm số nghịch biến khoảng (−∞; −3) C Hàm số nghịch biến khoảng (−3; 1) D Hàm số đồng biến khoảng (−3; 1) Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền 2a Tính thể tích khối nón √ √ 4π 2.a 2π.a3 π.a3 π 2.a3 A B C D 3 3 Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = −2 C yCD = 52 D yCD = x−1 y+2 z Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x + y + 2z = B (P) : x − y + 2z = C (P) : x − y − 2z = D (P) : x − 2y − = Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: A (1; 2] B [2; +∞) C (−∞; 2] D (1; 2) 800π Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A B C D 24 Câu 10 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 49 B 89 C 90 D 48 Câu Cho khối nón có đỉnh S , chiều cao thể tích Câu 11 Cho khối lập phương có cạnh Thể tích khối lập phương cho A B C D Câu 12 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln B ln(6a2 ) C ln Câu 13 Tập nghiệm bất phương trình log(x − 2) > A (−∞; 3) B (2; 3) C (12; +∞) D lna D (3; +∞) Trang 1/5 Mã đề 001 Câu 14 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A B −3 C D −2 Câu 15 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 16 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (−1; 2) B (1; 2) C (0; 1) D (1; 0) 1 25 = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A 31 B −31 C −17 D 17 2(1 + 2i) Câu 18 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C 13 D !2016 !2018 1−i 1+i Câu 19 Số phức z = + 1−i 1+i A B + i C −2 D Câu 17 Cho số phức z thỏa Câu 20 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 21 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 + B −22016 C 21008 D −21008 + 2i + i2017 có tổng phần thực phần ảo Câu 22 Số phức z = 2−i A -1 B C D Câu 23 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −3 B C −7 D Câu 24 2i, z2 = − i Giá trị biểu √ Cho số phức z1 = + √ √ thức |z1 + z1 z2 | √ A 130 B 30 C 10 D 10 Câu 25 Tìm số phức liên hợp số phức z = i(3i + 1) A z = −3 − i B z = −3 + i C z = + i D z = − i −−→ Câu 26 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (3; 3; −1) B (3; 1; 1) C (−1; −1; −3) D (1; 1; 3) R2 Câu 27 Tính tích phân I = xe x dx A I = e2 B I = 3e2 − 2e C I = −e2 D I = e Câu 28 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A x − = B y − = C z − = D x + y + z − = Câu 29 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi mặt phẳng (ABC) có phương trình A 6x + y − z − = B x − y + z + = C x + y − z + = D x + y − z − = Trang 2/5 Mã đề 001 Câu R30 Mệnh đề nàoRsau sai? R A R ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R B R f ′ (x) = f (x) R + C với hàm số f (x) có đạo hàm liên tục R C R k f (x) = k f (x)R với mọiRhằng số k với hàm số f (x) liên tục R D ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R Câu 31 Hàm số f (x) thoả mãn f ′ (x) = x x là: x+1 + C C (x + 1) x + C D (x − 1) x + C x+1 Câu 32 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z + = B 2x + y − z − = C −2x + y − z + = D −2x + y − z − = A x2 x + C B x2 + Câu 33 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e2x B F(x) = e x+1 C F(x) = e x D F(x) = e x + Câu 34 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ 97 85 A T = B T = C T = 13 D T = 13 3 √ Câu 35 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a2 + b2 + c2 − ab − bc − ca C a2 + b2 + c2 + ab + bc + ca D a + b + c √ 2 Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ 2 A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 Câu 37 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = −1 B A = C A = + i D A = Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 D P = |z|2 − A P = (|z| − 4)2 B P = (|z| − 2)2 C P = |z|2 − Câu 39 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | √ Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P B điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm Q D điểm N z Câu 41 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ A B C 2 D Câu 42 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C D 13 Trang 3/5 Mã đề 001 Câu 43 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: A 12 B C D Câu 44 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y + 2)2 + (z − 4)2 = Câu 45 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 A B C D 10 Câu 46 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = ln a B P = C P = + 2(ln a)2 D P = 2loga e Câu 47 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C D −3 Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = + 2t x = + 2t x = −1 + 2t x = − 2t y = −2 − 3t y = −2 + 3t y = −2 + 3t y = + 3t D B C A z = − 5t z = −4 − 5t z = − 5t z = + 5t Câu 49 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( A 128 B 32 C x2 )=8 D 64 Câu 50 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2abc B P = 2a+2b+3c C P = 2a+b+c D P = 26abc Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001