1. Trang chủ
  2. » Giáo án - Bài giảng

40 câu nguyên hàm tích phân

18 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 699,96 KB

Nội dung

Câu 1 ( Liên trường Sở Nghệ An 2018) Cho hàm số Biết khi đó bằng A B C D Đáp án D Có Câu 2 ( Liên trường Sở Nghệ An 2018) Tìm nguyên hàm của hàm số A B C D Đáp án A Ta có Câu 3 ( Liên trường Sở Nghệ A[.]

Câu 1: ( Liên trường Sở Nghệ An 2018) Cho hàm số F  x  x x  1dx F  0  , F 2 Biết  85 B A  C 19 D 10 Đáp án D Có 2 2 x x  1dx   2  x  1d  x  1  2 x  1 2  26 F 2  F    F 2 10     Câu 2: ( Liên trường Sở Nghệ An 2018) x f x  cos   F x Tìm nguyên hàm   hàm số A C F  x  2sin x C F  x   2sin x F  x   sin  C 2 B x C D F  x   x sin  C 2 Đáp án A x x x x F  x  cos dx 2 cos d   2sin  C 2  2 Ta có 12x Câu ( Liên trường Sở Nghệ An 2018): Tìm nguyên hàm hàm số y 12 A 12 2x dx 1212  4x ln12  C B 1212x 2x 12 dx  C  ln12 C 12 2x dx 1212x ln12  C 1212x  2x 12 dx  C  ln12 D Đáp án D 1212x 1212x  12x 12x 12x 12 dx  12 d 12x   C  12 dx  C     12  12.ln12 ln12 Ta có Câu ( Sở Giáo Dục Và Đào Tạo Hà Nội 2018 ) Họ nguyên hàm hàm số f  x  x  x3 A x   C Đáp án B B 3 4 x  C C 3 4x  C D 3 4x  C Phương pháp: -Sử dụng phương pháp đưa vào vi phân Cách làm: x  x dx   x d  x3    3 4x   3 C  3 4x  C 100 Câu ( Sở Giáo Dục Và Đào Tạo Hà Nội 2018 )): Tích phân  199e200 1 A  199e200  1 B x.e  199e200 1 C 2x dx  199e200  1 D Đáp án A Phương pháp: -Sử dụng tích phân phần Cách làm: Ta đặt u  x   2x e dx  dv  dx du   2x v  e 100 Khi 100 1 x.e x dx  x e x   2 100 e x dx  x.e x  100  2x e 100 1 1  100.e 200  e 200    199e 200  1 4 Câu ( Sở Giáo Dục Và Đào Tạo Hà Nội 2018 ):): Cho số f  x  e x  x  x  A Hàm số F  x B C Phương pháp: Cách giải: F  x  0 xét dấu nguyên hàm hàm có điểm cực trị? Đáp án C - Tìm nghiệm F  x F  x  D  x 0 F  x   f  x  e x  x  x  0  x  x   0    x 2 Ta có: Ta thấy F  x  đổi dấu qua ba nghiệm nên hàm số có điểm cực trị Câu ( Sở Giáo Dục Và Đào Tạo Hà Nội 2018 ): Cho hàm số tục   4; 4 biết y  f  x f   x  dx 2 2 A I 10 hàm lẻ liên f   x  dx 4 B I  Tính I f  x  dx C I 6 D I  10 Đáp án B Phương pháp: b Sử dụng phương pháp đổi biến áp dụng công thức c c f  x  dx  f  x  dx f  x  dx a b a Cách giải: Xét tích phân: f   x  dx 2  x   t 2  Đặt x  t  dx  dt Đổi cận  x 0  t 0  2 f   x  dx  f  t  dt f  t  dt f  x  dx 2 2 0 Xét tích phân: f   x  dx 4  x 1  t 2  Đặt x t  2dx dt Đổi cận  x 2  t 4  f   x  dx 4  f   t  dt 4  2 4 f  x  dx f  x  dx  f  x  dx 2   0 f   x  dx 8   f  x  dx 8  Câu 8: (Sở Giáo Dục-ĐT Bình Phước 2018) f  x  dx  F x Cho nguyên hàm hàm số   F   A   f  x  sin 2x     F   1 F    Tính     F   C     F   0 B     F   D   Đáp án D   1       sin 2xdx  cos2x  F    F    F   1     4  4  6 6  6 dx I  x 3x  ta kết Câu (Sở Giáo Dục-ĐT Bình Phước 2018): Tính tích phân I a ln  b ln Giá trị S a  ab  3b A B C D Đáp án D  x 1  t 2 t  3x   t 3x   2tdt 3dx,   x 5  t 4 Đặt Suy 4 a 2 dt  t1  I 2    ln  ln 2 ln  ln    S 5 dt ln b  t  t  t  t     2 Câu 10: (Sở Giáo Dục-ĐT Bình Phước 2018) Gọi S diện tích hình phẳng giưới hạn đồ thị hàm số độ Khi giá trị S A ln 1 dvdt  B ln 1  dvdt  C Đáp án D x 0  x 1 Phương trình hồnh độ giao điểm x  Suy diện tích cần tính  H : y  ln  1 dvdt  x x  trục tọa D ln  1 dvdt  1 x S  dx 2  dx   x  ln  x  1  2 ln   dvdt  x 1 x 1 0 Câu 11 (Sở Giáo Dục-ĐT Bình Phước 2018): Một học sinh làm tích phân theo bước sau dx I  1 x2 dx   tan t  dt Bước 1: Đặt x tan t, suy  x 1  t  , x 0  t 0 Bước 2: Đổi  Bước 3:    tan t   0  I  dt  dt  t    tan t 4 0 Các bước làm trên, bước bị sai A Bước B Bước C Không bước sai D Bước Đáp án A     tan t     0 I  dt  dt  t   tan t 4 0 Câu 12 (Sở Giáo Dục-ĐT Bình Phước 2018): Cho hàm số f  x  liên tục  thỏa mãn f '  x  x  , x   f 1 x   Khẳng định sau đúng? f     ln 2 A f     ln 2 B C f   5 Đáp án B f  x  x  dx x  ln x  C x Ta có f  1 1   C 1  C 0  f  x  x  ln x  f   4  ln Câu 13: (Sở Giáo Dục-ĐT Bình Phước 2018) Tìm họ nguyên hàm hàm số f  x  e 2018x D f   4 A 2018x f  x  e ln 2018  C C f  x  2018e 2018x f  x   2018 e B C D f  x  e 2018x 2018x C C Đáp án B f  x  e Ta có 2018x 2018x dx  e C 2018 Câu 14: (Sở Giáo Dục-ĐT Bình Phước 2018) f x 0;a  Cho số thực a  Gỉa sử hàm số   liên tục dương đoạn  thỏa mãn a f  x  f  a  x  1 A I Tính tích phân a B I I  dx  f x   a C I a D I 2a Đáp án B Ta có a a a f  a  x dx I  dx   dx 1 f  x 1 f  a  x  0 1 f  a  x f  x  f  a  x  1 a f  a  x f  t  x 0  t a dx  dt ,   1 f  a  x 1 f  t  x  a  t  t  a  x  dx  dt  a Đặt Khi a f  t f  x  I  dt  dx 1 f  t  1 f  x a a suy a a dx dx a 2I   dx  I  1 f  x  1 f  x  Câu 15 (Sở Giáo Dục-ĐT Bình Phước 2018): Cho f  x  dx 3 2 Tính tích phân  2f  x   1 dx 2 A  B  Đáp án C Ta có I 2 f  x  dx  2 dx 2.3     3 2 Câu 16 : (Sở Giáo Dục-ĐT Bình Phước 2018) C D Tích phân  x  3 dx 61 B A 61 61 D C Đáp án B  x  3  x  3 dx   Ta có: 61 Câu 17 (Sở Giáo Dục-ĐT Bình Phước 2018): Họ nguyên hàm hàm số A  2sin 2x  C B  sin2x  C C 2sin2x  C f  x  2cos2x D sin2x  C Đáp án D 2cos2xdx sin 2x  C Câu 18: (Sở Giáo Dục-ĐT Bình Phước 2018) Cho 3x  A x 9x  dx a  b 2, với a, b số hữu tỉ Khi giá trị a 26 27  26 B 27 C  27 26 D Đáp án B 3x  Ta có: 1 x 9x  dx  1  x 3x  Suy 9x  9x  1 3x dx  9x  1d  9x  1  18 1 9x   dx    x  18  a 26  16 ;b  27 27 Câu 19: (Sở Giáo Dục-ĐT Bình Phước 2018)  3x   x 9x  dx 26 16   9x  1   27 27 3  25 27 Cho hàm số f  x xác định  \   1;1 thỏa mãn: f ' x  ; f   3  f  3 0 x 1  1  1 f     f   2 P f    f    2  2 Tính giá trị biểu thức P ln  A B P 1  ln P 1  ln C P  ln D Đáp án C dx  1  x1 f  x  f '  x  dx     C  dx  ln x   x  x 1  x 1 Ta có: 1 x   x   f  x   ln  C1 x  Với  x 1 x1  x    f  x   ln x   C Với  Do f   3  f  3 0  f   1 1 ln  C  ln  C 0  1 2 1 2    f   2   2  2  ln  C  ln  C 2 1  2 C 0  C1 1 P f    f   1  ln Do Câu 20: (Sở Giáo Dục-ĐT Bình Phước 2018) Cho hàm số f  x có đạo hàm liên tục đoạn  0;1 thỏa mãn f  1 0 e2  x  f ' x  dx  x  e dx          0 A I 2  e Tính tích phân B I e  C I f  x  dx I e D I e Đáp án B u f  x    dv  x  1 e x dx   Đặt du f '  x  dx ,  x  v xe 1 1 x x x  x 1 e f  x  dx xe f  x   xe f '  x  dx  e2 e.f  1  xe x f '  x  dx  xe x f '  x  dx   x  1 e x f  x  dx  0 0 Xét tích phân   f '  x   k.xe x  dx  f '  x   dx  2k.xe f '  x  dx  k x 2e 2x dx 0 x 0 e2  1  e2 e2   2k  k 0  k  2k  0  k 1  f '  x   x.e x 4 Do f  x  f '  x dx  x.e x dx   x  e x  C Vậy mà f  1 0  C 0 I f  x  dx   x  e x dx  Casio   I e  0 Câu 21: (Sở Giáo Dục-ĐT Bình Phước 2018) x2 Cho hàm số A f  4  y f  x   f  t  dt x sin x  x   0;  f  liên tục Tính   B f  4   C f  4   D f  4  Đáp án B x2 Lấy đạo hàm vế biểu thức f  t  dt x sin  x  , ta d  2x.f  x   x.sin  x   '  2.2.f     x.sin  x    f  4  dx x Câu 22 ( Sở giáo dục đào tạo Thanh Hóa 2018): Cho hàm số Diện tích hình phẳng S giới hạn đường cong x a, x b  a  b  liên tục  a; b trục hoành đường thẳng xác định công thức sau b A y f  x  , y f  x  a S f  x  dx a B S f  x  dx b b C S f  x  dx a b D S  f  x  dx a Đáp án C a Ta có S f  x  dx b Câu 23( Sở giáo dục đào tạo Thanh Hóa 2018): Họ nguyên hàm hàm số f  x  x  sin 2x x2  cos2x  C A x2  cos2x  C B 2 x  cos2x  C C x2  cos2x  C D 2 Đáp án B Ta có  x  sin 2x dx  x2  cos2x  C 2 Câu 24 ( Sở giáo dục đào tạo Thanh Hóa 2018): Cho hàm số  16 f cot x.f  sin x  dx  mãn  A I 3 B  x  dx 1 liên tục  thỏa x Tính tích phân I f  x f  4x  I  dx x C I 2 D I Đáp án D   4 cos x A cot x.f  sin x  dx  f  sin x  dx   sin x Đặt t sin x  dt 2sin x cos xdx, đổi cận suy Mặt khác 16 f B   x  dx 1    B  u x x f  t f  x A  dt 1   dx 2 x 2t 2 4 f  u f  u 2udu  B  du 1   u u 1  f  x dx  x  4 f  4x  f  v  dv f  v  f  x 4x I  dx  v   I   dv  dx A  B  v v x x 1 2 Xét Câu 25( Sở giáo dục đào tạo Thanh Hóa 2018): Biết  sin 2x.ln  tan x 1 dx a  b ln  c A T 2 Đáp án B B T 4 1 T   c a b với a, b, c số hữu tỉ Tính C T 6 D T   u ln  tan x  1 dx cos2x  du   v  cos x tan x    dv  sin 2xdx  Đặt  I  Khi Ta có cos 2x.ln  tan x  1   cos 2x   dx cos x  tan x 1 2 cos 2x cos x  cos x 1  tan x 1  tan x   cos x  tan x  1 cos x  tan x 1 tan x 1  tan x   cos 2x cos x  tan x 1 dx   tan x dx Suy Vậy cos 2x.ln  tan x 1 I  cos 2x.ln  tan x  1     4    tan x  dx 0     x  ln cos x    ln 2 1 a  ; b  ; c 0 Hay Câu 26( Sở giáo dục đào tạo Thanh Hóa 2018): Mệnh đề sau sai A Nếu B kf  x  dx k f  x  dx C Nếu D f  x  dx F  x   C f  u  du F  u   C F x G  x (k số k 0) nguyên hàm hàm số f  x F  x  G  x   f  x   f  x   dx f  x  dx  f  x  dx 2 Đáp án C Nếu F x G  x nguyên hàm hàm số f  x F  x  G  x   C Câu 27(Sở GDĐT Bắc Giang -Lần 2) Họ nguyên hàm hàm số x A e  C f  x  e x ex C B 2x C e  C e2 x C D Đáp án D Câu 28 (Sở GDĐT Bắc Giang -Lần 2): Cho hàm số f  x   1;3 I  5 f  t  dt có đạo hàm liên tục đoạn thỏa mãn f   1 4 A I 20 ; f  3 7 Giá trị B I 3 1 C I 10 D I 15 Đáp án D y  f  x Câu 29 (Sở GDĐT Bắc Giang -Lần 2): Cho hàm số sai ? a A a a b b C a f  x dx  f  x dx B c  a; b Mệnh đề b f  x dx f  x  dx  f  x dx, c  R a a c a b f  x dx f  t dt a liên tục a D f  x dx 0 a Đáp án B Câu 30 (Sở GDĐT Bắc Giang -Lần 2): Cho f  x dx 12 f  dx B 10 A 24 , giá trị C Đáp án A Câu 31 (Sở GDĐT Bắc Giang -Lần 2): Gọi H hình phẳng giới hạn đồ thị hàm số y  x  x trục hoành H Hai đường thẳng y m y n chia   thành phần có diện tích (tham khảo hình vẽ) Giá trị biểu thức T   m     n  A C T 320 B T 512 15 D T 405 Đáp án A T 75  x D 14 Gọi S diện tích hình phẳng tạo đồ thị y  x  x Ox  y m y n chia S thành phần theo thứ tự từ xuống S1 ; S ; S3 2 1 S1 2  x  x  m  dx  S  2.  x  x  dx 3 a +)  x3  16    x  mx    a 3  16  16   a    2m      2a  ma       (1) Mà x a nghiệm phương trình:  x  x m   a  4a m (2) Thay (2) vào (1) ta có: 16 a3 16    a  4a    2a    a  4a  a  3  2a 32  4a  8a  0  a 0, 613277  m  a  4a 2, 077 S1  S2  S Tương tự: 2  2.  x  x  n  dx  2.  x  x  dx b   … 16 b  4b  8b  0  b 0, 252839  n  b  4b 0,947428 3 T   m     n   320 Câu 32 (Sở GDĐT Bắc Giang -Lần 2): Cho hàm số  f  x 1 x 1 A  dx   x 3 C  x2  4 x 1  x 5 Nguyên hàm hàm số Đáp án D Phân tích giả thiết đề cho x  t  Đặt  f  VT   VP = dx dt  x 1  x  dx x 1  x 1  x 1  2 f  t  dt    t  3 t2     t  3  C t2  C t 3 C 4 f  t  dt  t dx 2dt x 1 f  t  2dt 2 f  t  dt Mà VT VP nên liên tục R thoả mãn  C x 3 C B x  f  x C f  2x  2x  C  x  1  tập R D 2x  C  x  1  2t  C 4 f  2t  dt  4t f  ax  b dx  (Áp dụng công thức F  ax  b  C a ) a b Câu 33 (Sở GDĐT Bắc Giang -Lần 2): Biết   dx  , a, b  x  6x  số nguyên dương  a  b  Tổng a  b A B C D Đáp án D a b I a b   x2  6x   4 dx     x  3 dx Đặt x  2sin t  dx 2 cos tdt x a  b  sin t  Đổi cận: x 4  sin t   a b   arcsin     I   a b  2 cos tdt  4sin t  a b   arcsin     I  1.dt t   a b   arcsin       a b  I arcsin   3       6 (theo đề bài)  a b   arcsin   3      a b   sin  a b  3  2  a  b 3  a 3    a  b 6 b 3 Câu 34 ( Sở GD&ĐT Đà Nẵng2018): Cho hình phẳng (H) giới hạn đường cong y 3e  x  x , trục hoành hai đường thẳng x 0, x ln Thể tích khối trịn xoay tạo thành cho (H) quay quanh trục hồnh tính cơng thức sau đây? ln 2 A  3e x ln 2  x  dx B ln x 3e  x dx  C  3e x ln 2  x  dx  D 3e x  x dx Đáp án C Chú ý hàm số y  f  x phần giới hạn đồ thị hàm số liên tục y  f  x  a; b , thể tích hình (H) tạo thành quay , đường thẳng x = a x = b quanh trục hoành b V  f  x  dx a Câu 35 ( Sở GD&ĐT Đà Nẵng2018) Họ nguyên hàm hàm số 2x e   C x A 2x e   C x B f  x  e x  e2 x   C x C D x e2 x   C x Đáp án B 2x e dx  2 x dx  e2 x x  e2 x   C    C 1 x Câu 36 ( Sở GD&ĐT Đà Nẵng2018)Tích phân A I = 56 B I = 60 Đáp án B  x  2 I 4 60 I  x   dx C I = 240 D I = 120 1ln Câu 37 : ( Sở GD&ĐT Đà Nẵng2018) Cho A I = 2018  e f  x  dx 2018 ln I  f  ln x  dx x Tính 1009 I C B I = 4036 D I = 1009 Câu 38 : ( Sở GD&ĐT Đà Nẵng2018) Diện tích S hình phẳng giới hạn đường  P  : y 2 x , parabol tiếp tuyến (P) M (1;2) trục Oy S B A S 1 S C S D Đáp án B Phương trình tiếp tuyến (P) điểm M: y 4  x  1  4 x  2 S  x  x   dx  Câu 39 ( Sở GD&ĐT Đà Nẵng2018): Cho hàm số f  x  0x   4;8 Biết có đạo hàm liên tục đoạn  f '  x   dx 1   f  x    4;8 f  x 1 f  4  , f  8  Tính f  6 A B 3 C D Đáp án D Ta có:  f  x   f ' x   dx  f  x   2  f  x   d  f  x     1 1  1    2 f  8 f   Gọi k số thực Xét 2 8  f '  x    f ' x  f ' x 2  k dx  dx  k dx  k dx 1  2k k  4k  2k  1       f  x f  x 4  f  x   4  8  f ' x  1   dx 0,   k , f  x   4 Chọn ta có mà  f ' x     0   f  x  nên  f ' x  f ' x   0    f x f x       f ' x x x f  x  dx   C   f  x    C Với x  , ta có  2  C   2  C  C  f  4  f  x  Do đó: 1  2 x 12  x 6 f  6    12  6 Do  Câu 40: ( Sở GD&ĐT Đà Nẵng2018) Cho tích phân cos x dx a  b    cos x với a, b  Q Tính P 1  a  b B P  29 A P = C P  Đáp án C cos x cos x   1   dx  dx     cos x   dx    cos x    cos x     cos x    2   dx    x  sin x   x  2sin 2  x d   x 2       cot    3   x 2  sin 2 2  Do a  1; b 3  P 1    1  32  D P  27

Ngày đăng: 07/04/2023, 17:29

w