Tài liệu Free pdf LATEX (Đề thi có 4 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C D0 , biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4) Tìm tọa độ đỉnh A0 A A0 (−3; −3; −3) B A0 (−3; 3; 1) C A0 (−3; −3; 3) D A0 (−3; 3; 3) Câu Khối đa diện loại {3; 5} có số cạnh A 20 B C 12 D 30 Câu [3-1211h] Cho khối chóp S ABC có cạnh bên a mặt bên hợp với đáy góc 45◦ Tính thể√tích khối chóp S ABC√ theo a √ a3 a3 a3 15 a3 15 B C D A 25 25 d = 30◦ , biết S BC tam giác Câu [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 16 13 26 Câu [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% tháng Biết khơng rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền khơng 110 triệu đồng (cả vốn lẫn lãi), biết thời gian gửi tiền người khơng rút tiền lãi suất khơng thay đổi? A 18 tháng B 17 tháng C 16 tháng D 15 tháng Câu [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung hai x−2 y−3 z+4 x+1 y−4 z−4 đường thẳng d : = = d0 : = = −5 −2 −1 x−2 y+2 z−3 x y−2 z−3 A = = B = = 2 2 −1 x−2 y−2 z−3 x y z−1 C = = D = = 1 Câu [2] Số lượng loài vi khuẩn sau t xấp xỉ đẳng thức Qt = Q0 e0,195t , Q0 số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu 5.000 sau giờ, số lượng vi khuẩn đạt 100.000 con? A 15, 36 B 20 C 3, 55 D 24 Câu Khối đa diện loại {3; 3} có số đỉnh A B C D Câu [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% năm Biết không rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào só tiền vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất không thay đổi người khơng rút tiền ra? A 11 năm B 10 năm C 12 năm D 14 năm log(mx) Câu 10 [3-1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m = B m < C m < ∨ m > D m ≤ Câu 11.! Dãy số sau có giới! hạn 0? n n A B − 3 !n C e !n D Trang 1/4 Mã đề 2mx + 1 Câu 12 Giá trị lớn hàm số y = đoạn [2; 3] − m nhận giá trị m−x A B C −5 D −2 Câu 13 Hàm số y = x + có giá trị cực đại x A B −2 C −1 D Câu 14 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B C D a A 2 Câu 15 [3-1212h] Cho hình lập phương ABCD.A0 B0C D0 , gọi E điểm đối xứng với A0 qua A, gọi G la trọng tâm tam giác EA0C Tính tỉ số thể tích k khối tứ diện GA0 B0C với khối lập phương ABCD.A0 B0C D0 1 1 B k = C k = D k = A k = 18 15 Câu 16 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B ≤ m ≤ C < m ≤ D < m ≤ Z Câu 17 Cho hàm số f (x) liên tục đoạn [0; 1] thỏa mãn f (x) = 6x f (x )− √ f (x)dx Tính 3x + A B −1 C D Câu 18 Trong khơng gian, cho tam giác ABC có đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) hình chiếu B, C lên cạnh! AC, AB Tọa độ hình chiếu ! ! A lên BC A ; 0; B ; 0; C ; 0; D (2; 0; 0) 3 Câu 19 Cho hình chóp S ABCD có đáy ABCD hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy góc 45◦ AB = 3a, BC = 4a Thể √ tích khối chóp S ABCD 10a A 10a3 B C 20a3 D 40a3 Câu 20 [2] Tích tất nghiệm phương trình (1 + log2 x) log4 (2x) = 1 A B C D Câu 21 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x B Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) C dx = log |u(x)| + C u(x) D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số √ Câu 22 [2] Phương trình log4 (x + 1)2 + = log √2 − x + log8 (4 + x)3 có tất nghiệm? A Vô nghiệm B nghiệm C nghiệm D nghiệm √ Câu 23 Cho chóp S ABCD có đáy ABCD hình vng cạnh a Biết S A ⊥ (ABCD) S A = a Thể tích √ khối chóp S ABCD √ √ a3 a3 a3 A B a C D 12 Câu 24 Cho tứ diện ABCD tích 12 G trọng tâm tam giác BCD Tính thể tích V khối chóp A.GBC A V = B V = C V = D V = Trang 2/4 Mã đề Câu 25 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ √ √ (A C D) √ a a 2a B a C D A 2 Câu 26 Tìm tất khoảng đồng biến hàm số y = x3 − 2x2 + 3x − A (1; 3) B (−∞; 3) C (1; +∞) D (−∞; 1) (3; +∞) x = + 3t Câu 27 [1232h] Trong không gian Oxyz, cho đường thẳng d : y = + 4t Gọi ∆ đường thẳng qua z = điểm A(1; 1; 1) có véctơ phương ~u = (1; −2; 2) Đường phân giác góc nhọn tạo d ∆ có phương trình x = −1 + 2t x = + 7t x = −1 + 2t x = + 3t A C y = −10 + 11t B y=1+t y = −10 + 11t D y = + 4t z = − 5t z = + 5t z = −6 − 5t z = − 5t Câu 28 [3-1121d] Sắp sách Toán sách Vật Lý lên kệ dài Tính xác suất để hai sách môn nằm cạnh B C D A 5 10 10 Câu 29 Hàm số y = 2x3 + 3x2 + nghịch biến khoảng (hoặc khoảng) đây? A (−1; 0) B (−∞; 0) (1; +∞) C (−∞; −1) (0; +∞) D (0; 1) Câu 30 [1231d] Hàm số f (x) xác định, liên tục R có đạo hàm f (x) = |x − 1| Biết f (0) = Tính f (2) + f (4)? A 10 B 12 C D 11 mx − đạt giá trị lớn [−2; 6] Câu 31 Tìm m để hàm số y = x+m A 34 B 26 C 45 D 67 Câu 32 Khối đa diện loại {4; 3} có số đỉnh A 10 B C D Câu 33 Khối đa diện có số đỉnh, cạnh, mặt nhất? A Khối tứ diện B Khối lập phương C Khối lăng trụ tam giác D Khối bát diện Câu 34 Tìm m để hàm số y = mx3 + 3x2 + 12x + đạt cực đại x = A m = −1 B m = −2 C m = D m = −3 Câu 35 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 4) B (2; 4; 6) C (1; 3; 2) D (2; 4; 3) Câu 36 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C dx = x + C, C số dx = ln |x| + C, C số Z x xα+1 D xα dx = + C, C số α+1 B Câu 37 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A B a C a D 2a Trang 3/4 Mã đề Câu 38 Khối đa diện loại {3; 4} có tên gọi gì? A Khối bát diện B Khối tứ diện C Khối lập phương D Khối 12 mặt Câu 39 [2-c] Giá trị lớn hàm số y = ln(x2 + x + 2) đoạn [1; 3] A ln B ln 12 C ln 10 D ln 14 Câu 40 Khối đa diện loại {3; 3} có tên gọi gì? A Khối lập phương B Khối tứ diện C Khối bát diện Câu 42 Khối đa diện loại {5; 3} có số đỉnh A 30 B C 20 D Khối 12 mặt ! 3n + 2 Câu 41 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D D 12 0 0 Câu 43.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 Câu 44 Giá trị lim(2x2 − 3x + 1) x→1 A B C +∞ D Câu 45 Tập số x thỏa mãn log0,4 (x − 4) + ≥ A (4; 6, 5] B [6, 5; +∞) C (−∞; 6, 5) √ √ 4n2 + − n + Câu 46 Tính lim 2n − 3 A B +∞ C 2 D (4; +∞) D Câu 47 [2] Tổng nghiệm phương trình x −4x+5 = A B C D Câu 48 Một máy bay hạ cánh sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần với vận tốc v(t) = − t + 69(m/s), t khoảng thời gian tính giây Hỏi giây cuối trước dừng hẳn, máy bay di chuyển mét? A 25 m B 1587 m C 27 m D 387 m Câu 49 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab B √ C D √ A √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 50 Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x) − g(x)] = a − b B lim [ f (x) + g(x)] = a + b x→+∞ x→+∞ f (x) a C lim [ f (x)g(x)] = ab D lim = x→+∞ x→+∞ g(x) b - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D D A A D B 10 A 11 A 13 C C D 12 B D 14 B C 17 C 18 A 19 C 20 A 21 C 16 22 B 23 A 24 B 25 26 D 27 A 28 D 29 A 30 B 32 34 31 A C 33 A B D 36 42 37 B D 43 A C 45 A 46 50 B 41 A B 44 A 48 35 39 38 A 40 D D C D 47 D 49 D ... = x→+∞ x→+∞ g(x) b - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D D A A D B 10 A 11 A 13 C C D 12 B D 14 B C 17 C 18 A 19 C 20 A 21 C 16... z = − 5t z = + 5t z = −6 − 5t z = − 5t Câu 28 [3-1121d] Sắp sách Toán sách Vật Lý lên kệ dài Tính xác suất để hai sách môn nằm cạnh B C D A 5 10 10 Câu 29 Hàm số y = 2x3 + 3x2 + nghịch... √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 50 Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x) − g(x)] = a − b B lim [ f (x) + g(x)] = a + b x→+∞ x→+∞ f