1. Trang chủ
  2. » Tất cả

Đề ôn thi môn toán lớp 12 (3)

6 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 112,96 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giá trị của lim x→1 (2x2 − 3x + 1) là A 0 B 1 C 2 D +∞[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Giá trị lim(2x2 − 3x + 1) x→1 A B C Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A + sin 2x B −1 + sin x cos x C − sin 2x x+1 Câu Tính lim x→−∞ 6x − 1 B C A 2x + Câu Tính giới hạn lim x→+∞ x + 1 A B C − n2 Câu [1] Tính lim bằng? 2n + 1 B C A − 2 Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 C Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm x+1 Câu Tính lim x→+∞ 4x + 1 A B C Câu Giá trị lim (3x − 2x + 1) x→1 A B C Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B 4x + Câu 10 [1] Tính lim bằng? x→−∞ x + A B D +∞ D −1 + sin 2x D D −1 D D D +∞ C D C −4 D −1 Câu 11 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A Vô nghiệm B C D Câu 12 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B ≤ m ≤ C < m ≤ D < m ≤ Câu 13 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập đây? " ! 5 A [3; 4) B 2; C (1; 2) D ;3 2 √ ab Câu 14 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m > C m ≤ D m < Trang 1/5 Mã đề 1 Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = −e + C xy0 = ey + D xy0 = −ey − Câu 15 [3-12217d] Cho hàm số y = ln A xy0 = ey − √ √ Câu 16 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 C ≤ m ≤ D ≤ m ≤ A m ≥ B < m ≤ 4 x x x Câu 17 [12211d] Số nghiệm phương trình 12.3 + 3.15 − = 20 A B Vô nghiệm C D 2 Câu 18 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 3) C (2; 4; 6) D (2; 4; 4) Câu 19 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 20 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B log2 2020 C 2020 D 13 n−1 Câu 21 Tính lim n +2 A B C D ! 3n + 2 Câu 22 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D 2n2 − Câu 23 Tính lim 3n + n4 C D A B ! 1 Câu 24 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D cos n + sin n Câu 25 Tính lim n2 + A B −∞ C +∞ D Câu 26 Tính lim n+3 A B C D ! 1 Câu 27 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C D +∞ 2 Câu 28 Dãy số sau có giới hạn 0? n2 + n + n2 − − 2n n2 − 3n A un = B u = C u = D u = n n n (n + 1)2 5n − 3n2 5n + n2 n2 un Câu 29 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C D +∞ Trang 2/5 Mã đề Câu 30 Phát biểu sau sai? A lim qn = với |q| > 1 C lim k = với k > n B lim un = c (Với un = c số) D lim √ = n Câu 31 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a A 2a B C a D Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD a b2 + c2 abc b2 + c2 c a2 + b2 b a2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 33 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a D B a C [ = 60◦ , S O Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ √ với mặt đáy S O = a.√Khoảng cách từ O đến (S BC) √ 2a 57 a 57 a 57 B C a 57 D A 17 19 19 Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab 1 A B C D √ √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ √ với mặt đáy S O = a Khoảng cách từ A đến (S√BC) √ 2a 57 a 57 a 57 B a 57 C D A 17 19 19 Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab 1 ab A B √ C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 38 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a a 2a A B C D a 3 d = 120◦ Câu 39 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B C 3a D 4a Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C D a 6 Câu 41 [1232d-2] Trong khẳng định đây, có khẳng định đúng? Trang 3/5 Mã đề (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 42 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (II) (III) C (I) (II) D Cả ba mệnh đề Câu 43 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) Z B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 44 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (II) C Cả hai sai Câu 45 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) liên tục K B f (x) có giá trị lớn K D f (x) có giá trị nhỏ K D Chỉ có (I) Câu 46 Z Trong khẳng định sau, khẳng định sai? Z A dx = ln |x| + C, C số B 0dx = C, C số x Z Z xα+1 α C x dx = + C, C số D dx = x + C, C số α+1 Câu 47 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) Câu 48 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số B F(x) = x2 nguyên hàm hàm số f (x) = 2x √ C F(x) = x nguyên hàm hàm số f (x) = x D Cả ba đáp án Trang 4/5 Mã đề Câu 49 Z [1233d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z B [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R A Câu 50 đề sai? Z Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z A ( f (x) + g(x))dx = f (x)dx + g(x)dx B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z C k f (x)dx = f f (x)dx, k ∈ R, k , D f (x)g(x)dx = f (x)dx g(x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A A A C A D B 10 A 11 D 12 13 D 14 A C D 16 15 A D 17 19 18 C D 22 23 D 24 25 A C 28 29 C 30 A 32 D D C C B B 26 27 33 C 20 A 21 31 D B 34 D 35 B 36 37 B 38 B 39 B 40 B 41 D C 42 C 43 C 44 45 C 46 C 48 C 47 49 D 50 C B D ... g(x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A A A C A D B 10 A 11 D 12 13 D 14 A C D 16 15 A D 17 19 18 C D 22 23 D 24 25 A C 28... a 6 Câu 41 [123 2d-2] Trong khẳng định đây, có khẳng định đúng? Trang 3/5 Mã đề (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm... mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (II) (III) C (I) (II) D Cả ba mệnh đề Câu

Ngày đăng: 10/03/2023, 21:06

w