1 Bảng ký hiệu N = Tập hợp các số tự nhiên = {0, 1, 2, 3 } N∗ = Tập hợp các số tự nhiên khác 0 = {1, 2, 3 } Z = Tập hợp các số nguyên = { ,−3,−2,−1, 0, 1, 2, 3 } R = Tập hợp các số thực a |b a là ước[.]
1 Bảng ký hiệu N N∗ Z R a |b a |b [x] a ≡ b (mod m) |S| n Cnr = r Arn = Pnr Pn Qn Hrn Cnn1 ,n2 , ,nm MO IM O AP M O V MO = = = = = = = : : = : = Tập hợp số tự nhiên {0, 1, 2, } Tập hợp số tự nhiên khác {1, 2, } Tập hợp số nguyên { , −3, −2, −1, 0, 1, 2, } Tập hợp số thực a ước b a không ước b phần nguyên số thực x a đồng dư b theo mô đun m số phần tử tập hợp S = số tổ hợp chập r tập n phần tử = n! r!(n−r)! = = số chỉnh hợp chập r n phần tử = = = = = = : : : : số hoán vị tập n phần tử n! số hoán vị vòng quanh tập n phần tử (n − 1)! r Cr+n−1 n! (n−r)! n! n1 !.n2 ! nm ! Olympic Olympic Olympic Olympic Toán Toán Toán Toán học Quốc tế Châu Á Thái Bình Dương Việt Nam Mở đầu Trong q trình giảng dạy Tốn THPT, tơi nhận thấy đa số học sinh, việc tiếp thu kiến thức chương Tổ hợp - Xác suất khó khăn Đây phần kiến thức khó chương trình sách giáo khoa Chủ yếu kiến thức chuyên sâu tổ hợp tập trung chương trình bậc Cao đẳng - Đại học, nên khó khăn cho thầy giáo giảng dạy Toán THPT việc áp dụng phương pháp giảng dạy cho phù hợp Về quy tắc đếm, hoán vị, chỉnh hợp, tổ hợp Nhị thức Newton xuất Sách giáo khoa lớp 11 Dựa vào khai triển nhị thức Newton giúp khai triển lũy thừa bậc cao Đối với học sinh giỏi học sinh ơn thi THPT Quốc gia, ngồi tính chất khai triển tính chất mở rộng hệ số nhị thức đa thức chủ đề thú vị tốn chủ đề thường xuất đề thi học sinh giỏi cấp, có đề thi THPT Quốc gia Nhằm hệ thống cách chặt chẽ phần kiến thức liên quan nói trên, chúng tơi chọn đề tài: “Về hệ số nhị thức, hệ số đa thức số tốn liên quan.” Ngồi phần mở đầu kết luận, nội dung luận văn trình bày chương: Chương Một số kiến thức giải tích tổ hợp Chương trình bày số kiến thức giải tích tổ hợp: Hai quy tắc đếm bản, hốn vị hốn vị xoay vịng, tổ hợp số ví dụ minh họa Chương Về hệ số nhị thức hệ số đa thức Chương trình bày định lý hệ số nhị thức, số đẳng thức tổ hợp, tam giác Pascal, đẳng thức Chu Shih-Chieh, số tính chất hệ số nhị thức, hệ số đa thức định lý hệ số đa thức, tổng hệ số nhị thức nhau, quỹ đạo tiệm cận hệ số nhị thức Chương Một số tốn áp dụng Chương trình bày hệ thống toán sơ cấp liên quan đến hệ số nhị thức, hệ số đa thức số toán kỳ thi học sinh giỏi Để hồn thành luận văn này, tơi xin bày tỏ lòng biết ơn sâu sắc tới TS Trần Xuân Quý, người thầy nhiệt huyết truyền thụ kiến thức, hướng đề tài tận tình hướng dẫn suốt trình làm luận văn Đồng thời, xin chân thành cảm ơn thầy, phản biện dành thời gian đọc đóng góp ý kiến quý báu cho luận văn Tơi xin chân thành cảm ơn tồn thể thầy Khoa TốnTin, Trường Đại học Khoa học - Đại học Thái Nguyên tận tình hướng dẫn, truyền đạt kiến thức suốt thời gian theo học, thực hồn thành luận văn Qua đây, tơi gửi lời cảm ơn tới Ban Giám hiệu Trường THPT Yên Phong số thầy cô giáo Tổ Tốn nhà trường, nơi tơi cơng tác, tạo điều kiện thuận lợi công tác giảng dạy để tơi tập trung hồn thành chương trình học, luận văn Tơi muốn gửi lời cảm ơn tới gia đình, bạn bè, đặc biệt người vợ tôi, động viên, giúp đỡ nguồn động lực cho tơi q trình học, hoàn thiện luận văn Thái Nguyên, ngày 22 tháng năm 2018 Tác giả luận văn Nguyễn Bá Nam Chương Một số kiến thức giải tích tổ hợp Trong chương này, chúng tơi trình bày hai quy tắc đếm bản, hốn vị hốn vị xoay vịng, tổ hợp số ví dụ liên quan Nội dung cụ thể trình bày mục sau: 1.1 Hai quy tắc đếm Trong sống hàng ngày, thường gặp tình cần đếm liệt kê "sự kiện" như: xếp vật theo cách đó, phân chia vật điều kiện định, phân phối vật dụng theo đặc điểm định, Ví dụ, gặp tốn đếm loại sau: "Có cách để xếp chàng trai gái thành hàng cho khơng có hai gái ngồi cạnh nhau?", "Có cách để chia nhóm 10 người thành ba nhóm bao nhỏ gồm tương ứng 5, người nhóm?" Đây hai ví dụ đơn giản "hoán vị" "tổ hợp" Trước tìm hiểu hốn vị tổ hợp, nêu lên hai quy tắc phép đếm 1.1.1 Quy tắc cộng Nội dung quy tắc cộng: Nếu có m1 cách chọn đối tượng a1 , m2 cách chọn đối tượng a2 , , mn cách chọn đối tượng an , cách chọn đối tượng (1 ≤ i ≤ n) không phụ thuộc vào cách chọn đối tượng aj (1 ≤ i ≤ n, i 6= j), có n P k=1 mk cách chọn đối tượng a1 , a2 , , an Quy tắc cộng theo ngôn ngữ tập hợp phát biểu sau: Cho n tập hợp Ak (1 ≤ k ≤ n) với |Ak | = mk ∀i, j (1 ≤ i, j ≤ n) Ai ∩ Aj 6= ∅, i 6= j Khi đó, số cách chọn a1 , a2 , , an số cách chọn phần tử a thuộc n S k=1 Ak S ... thức, hệ số đa thức định lý hệ số đa thức, tổng hệ số nhị thức nhau, quỹ đạo tiệm cận hệ số nhị thức 3 Chương Một số tốn áp dụng Chương trình bày hệ thống toán sơ cấp liên quan đến hệ số nhị thức, . .. hợp số ví dụ minh họa Chương Về hệ số nhị thức hệ số đa thức Chương trình bày định lý hệ số nhị thức, số đẳng thức tổ hợp, tam giác Pascal, đẳng thức Chu Shih-Chieh, số tính chất hệ số nhị thức, . .. tài: ? ?Về hệ số nhị thức, hệ số đa thức số tốn liên quan.” Ngồi phần mở đầu kết luận, nội dung luận văn trình bày chương: Chương Một số kiến thức giải tích tổ hợp Chương trình bày số kiến thức