OINH HirONG DAY HOC TICH HOP TRONG MON TOAN CHO HOC îriH TRUHG HOC CO 90 ThS N G U V i N THE S O N '''' 1 Day hpc tich hop (DHTH) ia viec giao vien td chdc cae hoat dpng de hudng dan hpc sinh (HS) biet[.]
OINH HirONG DAY HOC TICH HOP TRONG MON TOAN CHO HOC ^iriH TRUHG HOC CO ThS Day hpc tich hop (DHTH) ia viec giao vien td chdc cae hoat dpng de hudng dan hpc sinh (HS) biet each huy ddng cac kien f i u c , kTnang tong hap eua nhieu linh vuc khac nham giai quyet hieu qua cac nhiem vu hpc tap datra;thdng qua hpc tap giiip HS hinh nhdng kien thdc, kTnang mdi; phat trien nhimg nang li/c (NL) can thiet cho HS, nhat la cac NL chung nhu: NLtt;hpc, NL giai quyet van de, NL giao tep, NL hap tae, NL tinh toan dam bao dupc yeu eau chuan dau ve NL chung ciia cac cap hpc Phat trien N L eho HS giup chu ttiecd kha nang ket hop mptcach linh hoat, hap li gida kien tide, kTnang, thaidd, gia trj, ddng canham dap dng nhung yeu cau mang tinh phuc hpp cua mot hoat dpng Uu diem eua DHTH; lam cho qua trinh hpc tap gan vdi cudcsd'ngtiuc cua HS;nhL/ngthdngtin, kien thdc dupc xay dung tu cac tinh huong ddi song hang ngay, qua do, giiip cho vieetiep nhan kien thdc phu hop hon vdi trinh dp nhan thdc ciia HS; DHTH gtiep 6uqc nhdng kien tide va kinang cd lien quan/ gan cua cac mdn hpe,giup giam tai sd'mon hpc cho HS; DHTH la dieu kien tiuan lai de hinh ttianh va phat trien cac NL cho HS Djnh hudng DHTH mdn Toan cho HS trung hpe c a s d fTHCS) 2.1.Binh hudng b^ hgc mon Toan THCStheo tich hgp Mdn Toan d T H C S dupc chia eae phan mdn: Daisdva Hinh hoc Quan diem tieh hap tt^ng mdn Toan THCS la tieh hpp ndi mdn, b i n g each cau tnic ttieo cac mach Ndi dung bai hpe tang cudng tinh thuc tiln ttidng qua cac tinh huong, bd'i canh tiuc, g^n vdi cudc sdng hang Npi dung tieh hop se ducn; t i e hien theo tdng chu dedn tap mcitngidung^achkiaitiiitihaymdt chuang, dncud'ihpcki.cuoi nam,ttieohinhtidcduan.Tang cudng tich hap tidng qua viec hpc mdt so' chu de nham dap dng nhu cau hpc nang cao ciia dd'i tuang HS ham ttiich mdn Toin Viec xay dung eae chii de, ndi dung DHTH mon ToandTHCS can dap dng dupc nhdng muctieu eu 42 Tap chi Gido dye so 363 N G U V i N THE S O N ' tie; - Hieu biet cae khai niem ve so, he tidng so; - Nam vung b i ^ doi dai so, bien doi dong nhat cac bieu tide; Giaiphuang trinh, hephuang trinh, bat phuang tinh, he bat phuang ttinh; Cu t i e hda cac tinh humg thuc lien bang ngdn ngd dai so {giai toin bing each ^ phuang trinh, hephuang trinh, thi, ); - Budc dau hieu ve ham so; Biet su dung t i j ham so vao giai quyet cac van de toan hpe va ttiuc te; - Cd bieu tupng khdng gian vecac hinh hinh hpc ttiudng gap, edbieu tuang khdng gian ve cac hinh khoi khdng gian dan gian; Cd ki nang ve va bieu diin hinh, sudung cac khai niem,dinh lihinh hpc degiai toan hinh hpc va cac baitoan thuc te; - Budc dau cd nhung hieu biet vecac phuang phap dan gian bid'u didn va phan tich so li§u tiong ke; - Budc dau bietvan dung cae ketqua, phuang phaptoan hpc degiaiquyetcactinh hudng tiuc tiln cupcsong 2.2 Djnh hudng DHTH mon Toan Phuang phap dgy hpc tich hop niim xu the chung vi ddi mdi' phuong phap day hpc Tuy vay, de nang cao chatluang DHTH, can mdt so luu ysau:-Trong qua trinh day hpc, giao vien can tich cue si) dung cac phuang phap nh5m lien he gida kid'n thdc toan vdi ndi dung HSdahpcthupccac linh vuc khac, eae yande dat mang tinh thuc tiln, tinh xa hdi, tinh qud'e td'cd lien quan tdi bai hpc; - Day hpc du an la phuang an khathi caodeDHTH, giiip HS khdng chi ren phuang p h ^ hpc tap macdn van dun^ eae kien tiiic tong hc^ cua ban than vao giai quydt tinh huong thiJC tiln; - Tang cudng eae hinh tide hpe tap ben ngoai nha tmdng nhu: hpc tai nha may xi nghiep, dong mdng; hpc tap t a i nghiem, lam viec duan; xay dung mo hinh hpe t§p eau lac bpToan ,giiip HS t i ^ can cac van d l xuat phat td thuc t i n , qua cung giiip tao hdng ttiu hpct£^choeaeem 2.3 Bmh hudng vedanh gia ket qua hgc ^p theo ticii hgp Vemuc dich danh gia: Khdng chi thien ve danh gia kien tide, kTnang ma tap tmng vao viec danh gia NL cuaHS ' Trtfdng Trong hpc pbo ttiAng Han Thuyen • B k Ninh (ki 1-8/2015) Cau hoi Biet phdng Lan Anh (A) cd dien tieh l^en^rft/ngtfan/jpa'Phaitiehisi duoc tinh tieh hop danh gia;_Dedanh gia, p h a i g ^ lien v ^ 25m^ Hoi chieu rdng phdng Lan Anh la bao nhieu? nhdngj/an dettiuc ten va ed y ngtiTa, gan gui dd'i viS Cau hoi2 Gia dinh mudn lat san phdng bo me HS;ee piai quy^t van de dat ra, ddi hoi HS phai van (BM) Hoi dien tieh can lat la bao nhieu? dung kien tide, kTnang cua nhieu mdn hpc Cau hoi3 G ia dinh cung muon lat lai gach d san Vehinh thuc danh gia:G\ao vien can van dung phdng khach va phdng bep Neu lat gach vien 40cm x linh hoat nhieu hinh tide khac nhau, phu hop vdi ndi dung danh gia (viet, van dap, quan sat, tpa dam, 40cmttiican khoang bao nhieu vien gach nguyen du delat2 phdng (bdqua nhOng vien gach bj vdtiuc phong van,, ) te lat nen)? 2.4 Minh hga DHTH chu dedien tich 2.4.1 Ngidungchudetichhgp:d\enl\ch cac hinh: Tn/dc yeu cau ddl mdi chuang trinh, sach hinh vudng, hinh chdnhat, hinh tiang giao khoa giao due thdng nhim dap dng cdng 2.4.2 Ve phuang phap day hgc:Day hoc 6u an cupc doi mdi can ban, toan dien nen giao dye Viet (xuat phat td tinh hudng thuc tien); - Quy udc thudng Nam, viec nghien edu va xay dung chuang trinh diing mpthinh vudng cdcanh bang dan vj lam dan tich hpp, phuang phap DHTH eho HS thdng wrfodien tieh Vi du, neu hinh vuong cd canh em ttii ndlchungvaHS THCS ndirieng la dieu can thiet va la cd dan vj dien tieh la em^; -Tinh hudng tiuc te; Ban cdgom 64 d vudng, mdt d vudng la mpt dan vj phli hap DHTH la phuang thdc hinh thanh, phat trien (cm^), dd, dien tieh eua ban edia 64cm^ Mdrpng: San trudng cd chieu dai, chieu rdng lan NL eho HS Degiai quyet cau hdi DHTH nhuthe lupt la m va n (met), dupe lat cac vien gach hoa hinh nao can phai hieu rd eau tnic ciia mdt bai hpc tich vudng (mdi vien dien tich m^); Khi ta cd tie chia hpp, sudung phuang phap day hpc phli hop de san tnrdng tianh cae hinh vudng nho (dien tich m^), day hpc chu de tich hpp tuang dng la each danh cd m X n hinh vudng nhuvay Ket qua: dien tieh cua gia kien thdc, kT nang va cac NL can dat dd'i vdi san tn/dng mxn (m^) ngudi hpc Q Tddd, giao vien hinh ttianh cdng thue tinh dien tichhinhchdnhat;cdngtidctinh dien tich hinh thang Tai lieu tham khao theo sa quy tinh: hinh vudng - hinh chd nhat Chinh phiJ De dn ddi mdi chucmg trinh, sdch gido hinh tiang can - hinh tiang [hinh 1) 0) ^ ^ ^ Hinh I 2.4.3 Banh gia tiei qua hgc tip chu 6i dien tich thong qua bai tap sau: Gia dinh Lan Anh mua mpt can ho chung cu Mat bang dugc mo ta theo so (hinhS): khoa gido diic phd thdng HkNQi, 10/2014; tr 63-70 Pham Diic Quang (chu bi^n) Cac nguygn t^c va p h m m g phap xac dinh linh vgrc hpc t ^ p , m&n hoc, mach Id^D thuc, chu de d^y hpc chinnig trinh ffao due ph6thdn^ NXB Dgi hoc qudc gia Hd Ndi, 2013 Fogarty R How to integrate the curricula Thousand Oaks, CA: Corwin, 2009 Susan M Drake Creating Standards - Based Integrated Curriculum, 2007 Susan M Drake Creating Standards - Based Integrated Curriculum: The Common Core State Standards Edition, 2012 SUMMARY (BM) (A) (KhAch) (ki - 812015) (B*P) The article presents several.orientations for integrated teaching in Mathematics at lower secondary level Teachers need to fully understand structure of an Inte^ated lesson, appropriate teaching methods used for teaching integrated topics and ways of assessing knowledge, skills and capacity that leamers should achieve Tap chi Giao dye s6 363 43