Tap chl KHOA HOC & CONG NGHE 152(07 I), 157 165 TH6NC W '''' r '''' ? ^''''''''^^ *^'''' ''''^'''' '''' '''' ^ '''' TOAN KIE M DINH GIA THIET 1 HONG KE CHO SINH VTEN NGANH DIEU DCOKG Lai Van Dinh" Ti umig Dai hoc Dieu Duong Vain D[.]
Tap chl KHOA HOC & CONG NGHE 152(07 I), 157- 165 TH6NC W ' r ' ? ^''^^ *^'-'^' ' ' ^ ' TOAN KIE.M DINH GIA THIET HONG KE CHO SINH VTEN NGANH DIEU DCOKG Lai Van Dinh" Ti-umig Dai hoc Dieu Duong Vain Dmh TOM TAT irinh b6n bude day hoe a a b S U o ? k"? T l , ' f/ '" " " ' * ™ " '= ^"'' ""' "'" " 1"! p^™.»o.L^rr":rv^?r::r:::s::;;s'''^-^*'"^"^ DAT VAN OE Day hoc giai toin la mot tinh hudnit dav hoc dien hinh giii vai trd quan "hang d L irong chat luong giao due Cac tic gia Nguyen Ba Kim ([7]) Bin Van Nghi ([16]), Da„ Tam ([17]) , da nghien ciru rSt sau sic tir goc CO so ly Iuan va phuong phap day hoc, dac biet la lam ro yeu ciu phdi trien ndng lire mn lot la, gidt ha, loan oho ngira, hoc Thong ke tro nen quan Irong cuoc song thuc tiln cCia xa hoi Thdng ke toin ap dung nhieu cic nganh khoa hoc nhu khoa hoc miy tinh kmh li hoc, khoa hoc ks thuat khoa hoc xa hdi, Nginh Y ndi chung va nganh Dieu Duong noi neng Thdng ki toin vi nhat la thong ke y hoc khdng the thieu Irong nghien ciru va giang day chuyen nginh cham sde sue khoe Kiem dmh gii thiet thdng ke giup cho cac dilu dirdng s ien sau cham sdc, ghi chep theo doi linh hinh benh nhan eo Ihe dua eic ket luin \-e su tiln Irien cua benh Tir ur s'?,n cho bic sT ihay ddi phuong phap dieu tn cho phil hop de ning cao hieu qua dieu tn thuc hien s lenh cua ngirdi dieu duong Doi vcVi sinh s-ien (SVl o bic Dai hoc nhat la cac mrong khdng chuseii nginh Toan thdi gian danh cho \ ice hoe mdn loan khdng nhieu Ins nhicn ngudi hoc sin can hieu biel nhung kien Ihuc va cd ks nana loin hoc cin lliicl du de gulp ho giai qusct eac hil toin mglhirc ticn nghi nghiep Ly thu>-et xic suat - thdng ke toin hoc Ii mdn hoc dtroc dua s i o giing das- hau nhir d tat ca cac trudng Dai hoc Cao dang Y tren ca nudc Tus sas viec giang day mdn xac suit - thdng ke ttong eac trudng s chua Ihco mot phuong phap thdng nhil nao m i chu ylu iheo sd trudng c i nhin s i kmh nghiem ban thin, cic phuong phip giang day hien dai eung chua duoe i p dung rdng rai Kha ning vin dung kien thtrc thdng ke vio linh hudng nghiep vu > te cdn han che Trong hoc phin xac suit Ihdng ke toin bil loan kicm dmh mdi gia thiel Ihdng ke dong sal Iro quan Nghien ctru s iec da) hoc ,\ac suit - Thdng kc da diroc mdt sd tic gia quan lam nghien cilu lir nhirng khia canh khac Trong dd chimg tdi quan tim tim hilu nhiiug vin dl cd lien quan Irong cdng Irinh sau diy Kill nghien cuu "Day hoc xac suit thing ke d irttdng Y" lac gia Dao Hdng Nam |1 I] da chl mot sd sal lam su dung bai loin kilm dinh dua ircn i ice nghiSn cuu mdt sd tai lidu das hoc xic suil Ihdng kd o Iruong Y Ciing se das hoc mdn Xac suit Ihiing kc o hac dai hoc tac gia Trin Van Hoan [5] lap irung nghien eiru ihirc Irang lim hieu nliilng khd khan ddl SOI mdn hoc nas o IriidnE Da'i hoc Lac Hdng Nghldn cuu ddl moi das hoc ihdm! kd cho SV cic iruong dai hoc >" - Duoc i h e j hmma gan XC, nghe nghidp lac gia Ngusin Thanh Tuna (20| xem xcl sai iro eua phuoiis phap d a s h , ; Lai \'an Dmh Tap chl KHOA HOC & CONG NGHE 152(07/1) 157-165 va tap trung ren luven k\ nang van dung cho S\' Y - Dugc giai mot so loai bai toan thong ke dieu duong Dang Hiing Thang [15] ban den van de va dua giai phap de nang cao chat lirong giang dav Xac suat - Thong ke a Viet Nam Trong [21] tac gia Hoang Nam Hai nghien cuu phdt Irien ndng hrc cho ngirdi hoc thong qua day hoc Xdc sudt - Thong ke Tac gia Bin Thi Huong Thao [13] da tim hieu van de "Tap luyen cho SV Inrang cao ddng v te vdn dung xdc sudt - thong ke nghien Clhi khoa hoc" dang bai loan kiem dinh gia thiet ihong ke chi de cap dircri dang don gian de SV co the van dung trirc tiep cong thirc NOI DUNG Dieu dang kru y la a cac cong Irinh Iren va ca mot so giao trinh tai lieu ve Xac suat Thong ke ctia Dang Dire Hau [4] Dao Hiru Ho [6] hau hel cac tac gia cung chi dua vao mot phuong phap kiem dinh theo test thdng ke t de van dung Mat khac each thirc trinh ba> cua cac tac gia chu \ e u la dua khai niem va minh hoa ma chira xa\' dung c]uy trinh giai loai bai loan kicm dinh Do vay nguai hoc khong hicu ro each thirc van dung lirng phuang phap kiem dinh thdng ke doi vai cac loai bai loan Ih6ng ke da dang Irong thuc le nghe nghiep cua ho Thuc lien day va hoc thong ke a Iruong Dai hoc Dieu dirong cho thav dac thii cua nghe nghiep SV can biet each lua chon phoi hop cac phuang phap kiem dinh de giai quyk nhirng bai loan thong ke dac Ihu ciia naanh dieu dirong \'an gun gun dieu de dai Ldm the ndo de giup cho SV quyet dirac nhdng kho khdn tren hai lodn kiem dinh chuyen ngdnh dirdng' Trong hai viet chiing loi nip can viec ren luven ky nang giai bai loan kiim dinh gia ihiel thong ke img dung v hoc va Imh vuc dieu duong noi rieng, nh^m gnip cho SV nam dirge dac diem va van dung hop ly cac phuang phap kiem dinh Irong qua trinh 158 Yte, Co' SO' ly tuan va thirc tien Si'rc khoe nguoi ngav cang (rg nen quan trgng thoi dai na\' Anh huong cua moi tmong song lam cho siic khoe moi nguoi giam di rat nhieu Viec chain soc sire khoe duoc giao nhiem vu chinh cho nganh Y te Irong vai tro ciia nguai Dieu dirgng rat quan trgng De danh gia dugc ket qua cua viec cham soc va su anh huong ciia moi Inrong song cac nha nghien ciiu dieu duong deu de cac lieu chuan cu the Dira tren cac lieu chuan bang chiing cii khoa hoe qua ghi chep cham soc ma nguoi ta co the ket luan viec cham soc CO hieu qua hay khong Tir dira cac quyel sach, chien luoc phii hgp nham nang cao hieu qua cham soc sire khoe cgng dong, Nhll cau dan den viec kiem dmh gia thiet thong kc Iro nen can thiet doi vai can bg dieu duong Y te Tuy nhien, mot kho khan vai SV hgc nganh dieu duang thuong gap la hing timg vice nhan dang va lira chon phuang phap Ihe hien bai toan kiem dmh gia thiet Ihong ke Trong day hgc Xac sual - Th6ng ke cho SV nganh diSu dirang, chimg toi tap trung vao ren luyen cho SV ba k> nang ca ban dk giai bai toan kicm dinh gia thic'l thdng ke nhu sau: Ky ndng I Nhdn dang diing dang bdi loan hem dinh- SV nhan dang, xac duih bai loan Ihuoc dang kiem djnh ty le hay s6 Irung binh kiem dmh mot phia hay kiem dinh hai phia Dong Ihoi SV xac dinh gia thidt, doi thiel luong ling bai toan Ky ndng • Lira chon phuang phdp ktem dinh phil hap Can cir vao dang bin toan SV lira chon phuong phap kifim dinh phii hop- Phuong phap kiem dinh theo lesl Ihong ke - Phuang phap kicm dinh iheo khoang tm cay - Phuong phap kiem dmh theo tan so quan sat Tap chl KHOA HOC i CONG NGHE ^ 7-2P kiem dmh theotestthonske-/f^y " ^ ' V • -np dun, dung ^u-^ tnnh ^:a '-,'oank:.n:J:,,,:^,^,^^j^^,^^,^^j^ " Ker j -\ei Quv rrinh day hoc ^ai bai toan kilm dinh gia thiet thong ke I < o n - : : a i ihoac t < trn- a n thi H : ILZ) •*-cac i > f n - ! a n thi c b.: z- :h:e: H c^ip Ti^.iT dji tmei H - K.:e.m jirni 'Sst: ^hcarg tin cav Neu rhuc—s S3i DX - c* da biet Khoang C2> s: -.'-•-_^ rinh quan Lhe iheo iieu chuan Btmc I- Trang bi sa cung c l fcien thuc Is thu-slt lam CO so dd hinh tfianh ks nang cho S\" Kiem dinh gii thiii ,i s6 Irang binh Gia su mdi miu diong kd co cic aia m nr-onc ™g la X, X:: x Mdt „eu chuin dat / Ta can kidm tra xem mot quin thi chua miu -.•f2i thdng kd trdn cd gia m irung binh kidm dmh phil hgp voi u Kei 'uin i i - Kiem dmh theo test thina ke i - \"e=-; \ Lhiioc "*,hcar.g fn civ chip nhan gia :r e : H b ^ c tvosi,^! :b.ie: H I i-l Phucmg sai DX = c - d a biet K'=m dmh gia thiet H L J - U doi ihiet H -u^.u (hoacH u>u.hoacH u n ( l - p „ ) > : m > n - m > Neu Tu mau thong ke ta tinh f va gia trj test thong ke i: I = ° — Vn I la dai lirona naau s/p,(l-P„) nhien Iuan theo quv luat chuan tac, Vai muc y nghTa a cho truoc la tra gia In t(ct/'2) (hoac t(a)) a bang phan phoi chuan 152(07 !)• 157- 165 ms[s|(p,^).s,(pj] (hoac m e ( - c o ; s , ( p „ ) ] hoac m « [ s , (po):+co)) thi chap nhan doi thiet Hi bac bo gia thiet Hu Kiem dinh theo khodng tm cgy Kiem dinh gia thiet H o : p = py, doi thi^l H| • p ?i py (hoac H| : p > Pg hoac H, p < p„) Dieu kien n dii Ion Ket luan - Neu |l| < I(a/2) (hoac |t| < t(a)) thi chap nhan np„ > ; n ( l - p , , ) > m > ; n - n i > , gia thiet H,i bac bo doi thi^t Hj Voi miic y nghTa a cho truac ta tra gia In I(a 12) (hoac t(a)) o bang phan phoi chuan Khoang Im cay cho ty' le tieu chuan la -Neu |i| > i(a'2)(hoac llj > 1(H)) lhi bac bo gia ihiel 11,1 chap nhan doi ihiet IT Kicm dtnh theo tdn sd quan sdt Kiem dinh gia ihiel n„:p-p„ doi ihi^l p„-„u,JM:^.,.„„,,s(M^ Mi p ^ p,,(hoac !l| p > P|, hoac 11, p < p,,) Dieu kien n du Ion: (P4'-PO)) hoac - M , p „ + t ( a ) np„ > n ( l - p „ ) > m > n - n i > Vol mirc y nghia a cho iruoc ta tra gia In Iitt.2) (hoac l(ct)) bang phan phoi chuan -1(a) linh cac gia In :S|(p,) va S;(pi,) (hoac s,(p„) P (l-Pi,)) hoac s, (p,,) ) Kdt I Uiin v(p,) = n p „ - l ( a ) n p , ( l - p ) • ':(P ) = n p + l ( a - Neu t thuoc khoang tm cay thi chap nhan gia Ihiet Ho bac bo gia thiet H| 2)^np,(l-p, ) hoac s (p ) ^ np„ - i ((/} J n p (I - p„) ho.lc Kiem dinh theo test thdng ke ^ \.(p )-np„ ^ l ( a ) ^ n p (1-p ) Kiem dinh gia ihiel kcl luiin NC-u - Neu t khong Ihuoc khoang tin cay thi bac bo gia Ihiet Hu, chap nhan d6i thiet H,, i i „ : p ^ p , ^ d6i thi^t H, ,p^p, me[s,(p„).s^(p„)] (hoac m e ( - c r s , ( p „ ) ] hoac m e [s, ( P „ ) + M ] ) thi cluip nhan gia Ihiel Hi,, bac bo doi t h i ^ H, linh chal A Khong CO linh i.h5i \ Dicu kien- n du ldn; np„>5:n(l-pj>5.m>5.n-m>5 Lap bang ihong ke Tan so quan s;it(m,| Tan so ticu chuan(Mi) M-nil-p„) Tinh gi,i In lesl ihong ke / ; :_('",-M,r (m,-M,}' M, M, ^ 01 nuK V nghia \L cho iruo lu d = 2-1 (sohang Irir 1) la tra gia In / " ( a) Tap chi KHOA HOC * CONG NGHE 152(07 1) 157-165 ' ^'/f{\:a) thi chap nhan gia thiit H„ bac bo gia ihi6t H, Btro-c Trang bi sa eung co kiin thtrc ly thuset ks nang c a ban cho SV - Neu -/ > , : { | a ) rhi j , ^ ^ ^6 gia thiet H,-, chap nhan d6i ihi^t H, De giai bil toin nis chung ta cin din nhung khai mem co ban s i kiim dinh cac buoc kiim dmh gia duet thong ke cic mrcmg hop vi cac phucmg phap kiem dinh gii thiit th6ng ke Btrae 2: T6 chuc SV xas duna qus- trinh aiai bai loan kiem dmh gia thiit thdng ke Xuit phat tu cic buoc kiim dmh aia thiit thong ke la rut qus- tnnh glil bai toin laHD Xic dmh b i , toin la kiim dmh gia tri trung binh hay kiem dinh tx Ie, kiim dmh mot phia hay kiem dmh hai phia {rin Inen kf nang 1) ' • HD Dua s ao HD I d i dat gii thiit dii thiit Iuong ung (rin luven Icy nang I) HD Chpn phuong phap d i dimg kiim dmh sac dmh test thong ke kiim dinh sa tinh cac gia tri tuong irng (rh, Im en In ndng 2) HB Tra cic gii tn test tuona irna tai cic bang so (ren lm in ki nang 3) HD Ket luan bai toin theo yeu ciu d i bii {rin luyin ki' nang I) Birde 3: GV thi hien viec s-an dung , u s trinh tren thong qua s'i du mmh hoa Biro-c GV 16 chiic SV lusen tip s i n dung qus trinh iren bang cich hudng din gii'i nhung bii lap tuong lu yi dti vd bdi lap minh hoa Trong bai \ let chiing toi dua cic s i du ihi hien qus trinh buoc das hoc giii bil loan kiem dmh gii thiit Ihong ke ddi'siii S\' Trucmg Dai hoc Dieu duong Bai toan Trong nghien ctru cau true ona sinh tmh cua benh nhin so lmh lhi smh lmh nua chirng tren 50 benh nhan nam \ o lmh the smh Imh mra chimg so lucmg trung bmh le bao Sertoli Iren Ihiel dien cil naana la x±SD,]\.s>:.^\.}4 Biet s6 l u o n g ' l i ' b i o Senoh tren m,"il OS F cat ngang cua nguoi Iruong X±SD Z"', lutrng Ini -J cuu hi L binh IIhu h.-nh bmh thuong li • -i.O Tac gia kil luan s6 '^inti Ie bao Sertoli trona nahien liieu so \oi ngudi Iruong thinh Ol dd tin cis 90% Birig kien has kiem tra Iai kel Iuan Iren Biroc 2: To chiic S\" xas- dung qus trinh glil bil loan kiem dinh gii thiit thona ke HD T Voi gii thiit bii toin cho dti de nhin diay das Ii bai loin kiim dmh gii mi mung binh tie aia kel Iuan bii toin li "s6 luong trung binh te bio Senoli nghien ciru bl giam nhldu so sdi ngudi mrdng thinh binh thucmg" nen dis li bai loan kiim dmh mdt phia HD2 Dat gia thlit Ho ^ = 20.9 : ddl thlit H,M5:np,=77:n(l.pj.33>5 Vav f e [ 5 4 ] Chip nhan gia ihiit Vai H:,: bac bo d^i thilt H, Su khac biet khdna cd V nghia thdng ke T> le nguoi cd kiin thiic tu cham soc kem ciia nhdm nghien ciiu ean vdi t> Ie ngudi cd kiin thuc tu cham s6c kem benh \ o gan ciia \'iet \ a m = 0,001 tra bang tesl dugc r(0.0005) = 3.29I Co s ( p ) , „ p _ , ( „ 5:(P:) = np - t ( a 2^/np l l - p | 61.18 2)^p.(|-p.j.928; Vis 68£[6I.I8.92.S2] Chip nhin gia thiil H: bac bo ddi thidt H; Su khic bidl khdng co > nghia thdng kd Ts Id nguoi co kiin thii"c nr Cham soc kem cua nhdm nghien cm ain s Cach Dimg test thdng ke y; Dat gia ihiit H p - 0.7 doi thiet H :p^ 0.7 Dieu kien m = 68 n - m = 42 > > i(l-p ) = 3 ; Lap bang thong ke 56 benh nhanlm.i So benh nhan tieu chuini'-M.l 6S Kien Ihuc cham soc kem ^lin ihifc cham soc r Ti'nh gia tn test ihdng ke _(68-"7r (42 -3.506 ^ o , m u c s nghia « = 0.O0I.d6 t u d o 0-2-1 ta eo aii in ,= ,hO.OOI,>^:ri tJO^-;-7 88 \">2