1. Trang chủ
  2. » Giáo án - Bài giảng

Sách luyện thi THPT Quốc gia môn Toán Hình học: Đột phá 8+ kì thi THPT Quốc gia - Phần 2

155 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 155
Dung lượng 17,6 MB

Nội dung

Phần 2 cuốn sách Đột phá 8+ kì thi THPT Quốc gia môn Toán - Tập 2: Hình học có nội dung về chương trình Hình học lớp 10 và 11 được biên soạn chi tiết và đầy đủ nhằm cung cấp cho các em học sinh dễ dàng làm chủ kiến thức Hình học trong kì thi sắp tới. Mời các bạn cùng tham khảo chi tiết cuốn sách tại đây nhé.

PHẦN 1: LỚP 12 CHƯƠNG 1: THỂ TÍCH KHỐI ĐA DIỆN CHUYÊN ĐỀ 1: KHỐI ĐA DIỆN PHẦN 1: LÝ THUYẾT TRỌNG TÂM Hình đa diện Hình đa diện (gọi tắt đa diện) hình tạo số hữu hạn đa giác phẳng thỏa mãn hai điều kiện sau: • Hai đa giác phân biệt khơng có điểm chung có đỉnh chung có cạnh chung • Mỗi cạnh đa giác cạnh chung hai đa giác Khối đa diện Khối đa diện = hình đa diện + phần khơng gian Các hình khối đa diện: giới hạn hình đa diện Chú ý: • Mỗi khối đa diện ln phân chia thành khối tứ diện • Mỗi đỉnh hình đa diện đỉnh chung cạnh • Mỗi hình đa diện có cạnh Các hình khơng phải khối đa diện: • Khơng tồn hình đa diện có cạnh • Khơng tồn hình đa diện có: + Số mặt lớn số cạnh + Số đỉnh lớn số cạnh Khối đa diện Khối đa diện khối đa diện lồi có hai tính Gọi Đ tổng số đỉnh, C tổng số cạnh M chất sau đây: tổng mặt khối đa diện loại n; p Ta • Các mặt đa giác n cạnh có: • Mỗi đỉnh đỉnh chung p cạnh Khối đa diện gọi khối đa diện loại n; p pĐ = 2C = nM Trang PHẦN 2: CƠNG THỨC TÍNH NHANH Khối đa diện Khối đa diện Số đỉnh Số cạnh Số mặt Loại Tứ diện 3;3 Khối lập phương 12 4;3 Bát diện 12 3; 4 Mười hai mặt 20 30 12 5;3 Hai mươi mặt 12 30 20 3;5 Mặt phẳng đối xứng Hình Số mặt phẳng đối xứng Tứ diện Hình lập phương Hình chóp tứ giác Hình hộp chữ nhật Bát diện PHẦN 3: CÁC DẠNG BÀI TẬP Ví dụ 1: Hình đa diện khơng có tâm đối xứng? Trang A Tứ diện B Bát diện C Hình lập phương D Lăng trụ lục giác Hướng dẫn Hình tứ diện khơng có tâm đối xứng → Chọn A Ví dụ 2: Cho hình khối sau: Hình Hình Hình Hình Mỗi hình gồm số hữu hạn đa giác phẳng (kể điểm nó), số đa diện lồi là: A B C D Hướng dẫn Khối đa diện gọi khối đa diện lồi với hai điểm A B điểm thuộc đoạn thẳng AB thuộc khối Có hai khối đa diện lồi là: Hình hình → Chọn B Ví dụ 3: Trong phát biểu sau, phát biểu sai: A Hình chóp hình chóp có tất cạnh bên đáy đa giác B Trong hình chóp góc cạnh bên mặt đáy C Hình chóp hình chóp có đáy đa giác chân đường cao trùng với tâm đáy D Hình chóp hình chóp có tất cạnh Hướng dẫn Hình chóp thỏa mãn hai điều kiện sau: + Đáy đa giác + Chân đường cao hình chóp tâm đáy Các mặt bên hình chóp tam giác cân nên cạnh bên hình chóp chưa cạnh đáy đáp án D phát biểu sai → Chọn D Trang Ví dụ 4: Một hình chóp có 46 cạnh có mặt? A 24 B 46 C 69 D 25 Hướng dẫn Giả sử đa giác đáy có n cạnh, n đỉnh, Hình chóp có 2n cạnh Ta có: 2n  46  n  23 Suy hình chóp có 23 cạnh, từ có 23 mặt bên mặt đáy Vậy tổng cộng hình chóp có 24 mặt → Chọn A Ví dụ 5: Khối tứ diện ABCD Gọi M, N trung điểm BC BD Mặt phẳng (AMN) chia khối tứ diện ABCD thành: A Hai khối tứ diện khối chóp tứ giác B Hai khối tứ diện C Một khối tứ diện khối chóp tứ giác D Hai khối chóp tứ giác Hướng dẫn Mặt phẳng (AMN) chia khối tứ diện ABCD thành khối tứ diện ABMN khối chóp tứ giác A.MNDC → Chọn C PHẦN 4: BÀI TẬP TỔNG HỢP Câu 1: Số mặt phẳng đối xứng hình tứ diện là: A 10 B C D Câu 2: Số mặt phẳng đối xứng hình đa diện loại 4;3 là: A B C D Câu 3: Trong mệnh đề sau, mệnh đề sai? A Tồn hình đa diện có số cạnh B Tồn hình đa diện có số cạnh nhỏ C Số cạnh đa diện luôn lớn D Tồn hình đa diện có số cạnh lớn Câu 4: Tổng độ dài  tất cạnh khối mười hai mặt cạnh A   B   16 C   24 D   60 Câu 5: Trong mệnh đề sau, mệnh đề đúng? Trang A Tồn hình đa diện có số cạnh số đỉnh B Tồn hình đa diện có số cạnh mặt C Số đỉnh số mặt hình đa diện ln D Tồn hình đa diện có số đỉnh số mặt Câu 6: Gọi m số mặt đối xứng hình lập phương, n số mặt đối xứng hình bát diện Khi đó: A Khơng thể so sánh m n B m  n C m  n D m  n Câu 7: Chọn mệnh đề mệnh đề sau? A Hình chóp có đáy tứ giác có mặt cầu ngoại tiếp B Hình chóp có đáy hình thang cân có mặt cầu ngoại tiếp C Hình chóp có đáy hình thang vng có mặt cầu ngoại tiếp D Hình có đáy hình bình hành có mặt cầu ngoại tiếp Câu 8: Phát biểu sau đúng? A Hình hai mươi mặt có 30 đỉnh, 12 cạnh, 20 mặt B Hình hai mươi mặt có 20 đỉnh, 30 cạnh, 12 mặt C Hình hai mươi mặt có 12 đỉnh, 30 cạnh, 20 mặt D Hình hai mươi mặt có 30 đỉnh, 20 cạnh, 12 mặt Câu 9: Một hình đa diện có mặt tam giác số mặt M số cạnh C đa diện thỏa mãn A 3C  M B C  M  C M  C D 3M  C C 20 D 24 Câu 10: Số đỉnh hình mười hai mặt là: A 12 B 19 Câu 11: Trung điểm cạnh tứ diện tạo thành A đỉnh hình tứ diện B đỉnh hình bát diện C đỉnh hình mười hai mặt D đỉnh hình hai mươi mặt Câu 12: Trong mệnh đề sau, mệnh đề sai? A Tồn khối tứ diện khối đa diện B Tồn khối lăng trụ khối đa diện C Tồn khối hộp khối đa diện D Tồn khối chóp tứ giác khối đa diện Câu 13: Hình chóp tứ giác có mặt phẳng đối xứng? A B C D Câu 14: Tổng góc đỉnh tất mặt khối đa diện loại 3;5 là: A 12 B 16 C 20 D 24 Câu 15: Số mặt phẳng đối xứng hình tứ diện là: A 10 B C Trang D Thay điểm (-4;-10;2) đáp án A vào thấy thỏa mãn  Chọn A Ví dụ 5: Trong không gian với hệ tọa độ Oxyz, cho điểm A(-2;3;1), B(2;3;5) đường thẳng : x 1 y  z   Điểm M   mà MA2+MB2 nhỏ có tọa độ: 1 A M(-1;0;4) B M(1;-2;0) C M(-1;-3;1) D M(2;-3;-2) Hướng dẫn Cách 1: Gọi I trung điểm đoạn thẳng AB H hình chiếu I lên đường thẳng  Khi ta có: MI  MA2  MB AB MI  AB HI  AB   MA2  MB   2 MA2+MB2 nhỏ M trùng với H  Ta có I(0;3;3), H thuộc đường thẳng  nên H(1-t;-2+t;2t) IH  (1  t ; 5  t ; 2t  3)   Do HI vng góc  nên ta có HI u   (1  t )  (5  t )  2(2t  3)   t  Vậy M(-1;0;4) Cách 2: Giả sử M(-t+1;t-2;2t)  d Ta có: MA2 = t2 + (t-6)2 + (2t-2)2 = 6t2 - 20t + 40 MB2 = (-t + 2)2 + (t - 4)2 + (2t - 4)2 = 6t2 - 28t + 36 Do MA2+MB2 = 12t2 - 48t + 76 = 12(t-2)2 + 28 ≥ 28 Vậy min(MA2+MB2) = 28  t =  M(-1;0;4)  Chọn A Bài tập tự luyện x  1 t  Câu Khoảng cách đường thẳng (d):  y  2t (d’): z   t  A B 5 C x   t   y  4t là:  z   2t  D 2 Câu Trong không gian tọa độ Oxyz, cho mặt phẳng (P): 3x – 2y – z + = đường thẳng d: x 1 y  z    Gọi Q mặt phẳng chứa d song song với (P) Khoảng cách hai mặt phẳng (P) (Q) là: A 14 B 14 14 C 14 Câu Trong không gian tọa độ Oxyz, cho đường thẳng d: D 14 14 x 1 y z 1   mặt phẳng (P): 2 1 x + y + z + = Khoảng cách đường thẳng d mặt phẳng (P) bằng: A B C 3 D 3 Đáp án: Trang 138 Trang 15 140 1-B 2-B 3-C PHẦN 4: BÀI TẬP TỔNG HỢP x  t  Câu Trong không gian Oxyz, cho đường thẳng (d):  y  1  t Vectơ vectơ phương  z   2t  đường thẳng d?  A u  (1; 1; 2)  B u  (1; 2;0)  C u  (0; 1;6)  D u  (0;1; 6) Câu Trong không gian Oxyz, lập phương trình tắc đường thẳng d qua điểm M(1;-2;3)  x  1  2t  song song với đường thẳng  :  y   t  z  3  t  A d : x 1 y  z    1 1 B d : x 1 y  z    1 C d : x 1 y  z    1 D d : x 1 y  z    1 Câu Trong không gian Oxyz, cho điểm M(2;1;0) đường thẳng  : x 1 y 1 z   Đường thẳng d 1 qua M song song với  là: A x  y 1 z   2 1 B x  y 1 z   1 C x  y 1 z   1 D x  y 1 z   1  x  2  t  Câu Trong không gian Oxyz, cho đường thẳng d :  y  6t Đường thẳng d qua điểm  z  3  điểm sau đây: A M(-1;6;-2) B M(0;12;-3) C M(1;8;1) Câu Trong không gian Oxyz, cho đường thẳng d : D M(1;18;-3) x 1 y 1 z   Điểm M thuộc đường thẳng d có 2 4 cao độ có tọa độ : A M(3;-2;4) B M(4;3;-2) C M(-2;3;-1) Câu Cho điểm A(-1;0;2), B(2;1;-1), C(0;-3;4) đường thẳng d : D M(3;-2;4) x  11 y  z  14   D điểm   thỏa mãn AB  CD Tọa độ điểm đối xứng D qua đường thẳng d là:  2  A D '  ; ;  3 3 B D’(9;0;-5) C D’(5;-3;1) Trang 139 D D’(1;-6;3) Trang 16 141 Câu Cho điểm A(2;1;-3), B(-3;5;2) đường thẳng d : x  y z 1   Phương trình đường thẳng đối xứng với đường thẳng AB qua d là:  x  1  7t '  A  y   4t ' z   t '   x   7t '  B  y   4t ' z   t '   x   7t '  C  y  3  4t ' z   t '  Câu Đường thẳng sau song song với d :  x   7t '  D  y   4t '  z  4  t '  x2 y4 z4   3 A x 1 y  z 1   3 B x2 y4 z4   1 C x 1 y  z 1   1 2 D x 1 y  z 1   1 2 x 1 y  z 1   mặt phẳng (P): 1 x + y - z + m = Với giá trị m đường thẳng d song song với mặt phẳng (P) Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: A m  B m = C m > Câu 10 Trong không gian Oxyz, cho đường thẳng d: D m   x  y 1 z  x 1 y 1 z 1     d’: 2 2 Khoảng cách d d’ là: A B C D  x   2t  Câu 11 Trong không gian tọa độ Oxyz, cho điểm A(0;-1;3) đường thẳng d  y  Khoảng cách  z  t  từ A đến đường thẳng d là: A B 14 C D x y 1 z   Xác định tọa độ điểm M trục hoành cho khoảng 2 cách từ M đến  OM với O gốc tọa độ Câu 12 Cho đường thẳng  : A (-1;0;0) (1;0;0) B (2;0;0) (-2;0;0) C (1;0;0) (-2;0;0) D (2;0;0) (-1;0;0) x   t  Câu 13 Góc đường thẳng d :  y  mặt phẳng (P): y – z + = là: z   t  A 30o B 45o C 60o Câu 14 Trong không gian tọa độ Oxyz, cho đường thẳng d : D 90o x  y 1 z    điểm A(1;7;3) Tìm 3 2 tọa độ điểm M thuộc d cho khoảng cách hai điểm A, M 30 , biết M có hồnh độ ngun Trang 140 Trang 17 142  51 1 17  A  ; ;  7 7  B (9;1;-3) C (3;-3;1) D (6;-1;2) Đáp án: 1-A 2-C 3-D 4-D 11-B 12-D 13-A 14-C 5-A 6-D Trang 141 7-B 8-D 9-A 10-B Trang 18 143 CHUYÊN ĐỀ 4: PHƯƠNG TRÌNH MẶT CẦU PHẦN 1: LÝ THUYẾT TRONG TÂM Phương trình tắc mặt cầu Trong không gian Oxyz, mặt cầu  S tâm I  a;b;c  , Ví dụ: có bán kính R có phương trình là: Mặt cầu  S tâm I 1; 2;3 ,bán kính  x  a    y  b  z  c Phương trình tắc mặt cầu là: 2  R  x  1   y     z  3 2  16 Phương trình tổng quát mặt cầu Trong không gian Oxyz, dạng khai triển 2 Phương trình tổng quát mặt cầu là: x + y + z + 2ax + 2by + 2cz + d = với x  y  z  2x + 4y  z   a + b + c  d > phương trình tổng quát mặt cầu tâm I  a;  b;  c  , có bán kính R  a + b2 + c2  d Vị trí tương đối hai mặt cầu Cho hai mặt cầu: Ví dụ: S1  :  x  a1    y  b1    z  c1  I1  a1 ;b1 ;c1  , bán kính R1 2 2  R 22 có tâm Ta có: I1I  2  S2  : x   y  1   z  3 2  có tâm I  0;1;3 , bán kính R  I  a ;b ;c  , bán kính R  a  a1    b  b1    c2  c1  Cho mặt cầu:  x  1   y     z    có tâm I1 1; 2;3 , bán kính R1   S2  :  x  a    y  b    z  c2   R12 có tâm 2 Nếu: I1I  R1  R , hai mặt cầu  S1  ,  S2  lồng Ta có: I1 I    1  1      3 R1  R  Nếu I1I  R1  R , hai mặt cầu  S1  ,  S2  tiếp xúc R1  R  2  10 Do R1  R  I1 I  R1  R nên hai mặt cầu Nếu R1  R  I1 I  R1  R , hai mặt cầu S1  ,  S2  cắt theo giao tuyến đường tròn S1  ,  S2  cắt theo giao tuyến đường tròn Nếu I1I  R1  R , hai mặt cầu  S1  ,  S2  tiếp xúc Nếu I1 I >R1  R , hai mặt cầu  S1  ,  S2  Trang 142 Trang 144 Vị trí tương đối mặt phẳng mặt cầu Cho mặt cầu  S tâm I  a;b;c  , bán kính R, có Ví dụ: Cho mặt cầu  S tâm I 1;2;3 bán kính R = phương trình: S :  x  a    y  b    z  c  2 có phương trình:  R S : x  y2  z  2x  4y  z   Và mặt phẳng  P  có phương trình:  P  : Ax  By  Cz  D  mặt phẳng  P  : x  y  z  Gọi H hình chiếu I lên mặt phẳng  P  Gọi H hình chiếu I lên mặt phẳng  P  Ta có: IH  d  I;  P    Ta có: IH  d  I;  P    Aa+Bb+Cc+D 2 A +B +C Nếu IH > R, mặt phẳng  P  không cắt mặt cầu 1+2+3 12 + 12 + 12 2 3R Vì IH > R, mặt phẳng  P  không cắt mặt cầu  S  S Nếu IH  R, mặt phẳng  P  tiếp xúc với mặt cầu S Mặt phẳng  P   S gọi tiếp diện mặt cầu Nếu IH < R, mặt phẳng  P  cắt mặt cầu  S theo thiết diện đường tròn  C  có tâm H, bán kính r xác định theo công thức r  R  IH PHẦN 2: CÁC DẠNG BÀI TẬP Dạng 1: Tìm tâm bán kính phương trình mặt cầu Ví dụ minh họa Ví dụ 1: Trong khơng gian Oxyz, cho mặt cầu  S  :  x + 3   y + 1   z  1  Tâm  S có tọa 2 độ là: A  3; 1;1 B  3; 1;1 C  3;1; 1 D  3;1  1 Hướng dẫn Mặt cầu  S :  x + 3   y + 1   z  1  có tâm I  3; 1;1 bán kính R  2 2  Chọn A Ví dụ 2: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu  S có phương trình x  y  z  2x  4y + z   Tìm tọa độ tâm I bán kính R  S A Tâm I  1; 2; 3 bán kính R  B Tâm I 1; 2;3 bán kính R  C Tâm I  1; 2;3 bán kính R  D Tâm I 1; 2;3 bán kính R  16 Trang 143 Trang 145 Hướng dẫn Dựa vào phương trình mặt cầu  S : x  y  z  2x  4y + z   0, ta có: tâm I  1; 2; 3 bán kính R   1  22   3   2   16   Chọn A Ví dụ 3: Phương trình  S : x  y  z  2mx + 4y + 2mz  m  5m  phương trình mặt cầu với điều kiện m? m  B  m  A m  m  C  m  D m  Hướng dẫn Tương ứng với dạng tổng quát x  y  z  2ax + 2by + 2cz  d  0,  S : x  y2  z  2mx  4y  2mz  m  5m  ta có phương trình có a = m, b = 2 , c = m , d = m  5m Phương trình  S phương trình mặt cầu khi: m  2 a  b  c  d  hay m   2     m    m  5m    m  5m     m   Chọn C Bài tập tự luyện Câu Trong không gian với hệ tọa độ Oxyz, cho mặt cầu  S :  x     y  1   z    16 Tìm 2 tọa độ tâm I bán kính R mặt cầu  S A I  2; 1; 3 , R  16 B I  2;1; 3 , R  C I  2; 1;3 , R  16 D I  2; 1;3 , R  Câu Trong hệ tọa độ Oxyz, cho mặt cầu  S  :  x + 1   y     z  3  12 Khẳng định sai 2 khẳng định sau? A  S qua điểm N  3; 4;  B  S qua điểm M 1;0;1 C  S có bán kính R  D  S có tâm I  1; 2;3 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt cầu  S : x  y  z  2x  4y   Tìm tọa độ tâm I bán kính R mặt cầu  S A I  1; 2;0  , R  B I  1; 2;0  , R  C I 1; 2;0  , R  D I 1; 2;0  , R  Đáp án: 1B 2A 3A Trang 144 Trang 146 Dạng 2: Viết phương trình mặt cầu Phương pháp giải Các trường hợp hay gặp phương trình mặt cầu: Trường hợp 1: Mặt cầu tâm I, qua điểm A  x A  x I    yA  yI    zA  zI  Khi bán kính R  IA  2 Trường hợp 2: Mặt cầu đường kính AB,  x  x y  yB z A  z B  ; Tâm I trung điểm AB  I  A B ; A  2    x A  x I    yA  yI    zA  zI  Bán kính R  IA  2 Trường hơp 3: Mặt cầu ngoại tiếp tứ diện ABCD Bước 1: Giả sử phương trình mặt cầu có dạng x  y  z  2ax  2by  2cz  d  với a  b2  c2  d  Bước 2: Vì điểm A, B, C, D thuộc mặt cầu nên ta thay tọa độ A, B, C, D vào hệ phương trình bốn ẩn  x 2A  y 2A  z 2A  2ax A  2by A  2cz A  d   2  x B  y B  z B  2ax B  2by B  2cz B  d   2  x C  y C  z C  2ax C  2by C  2cz C  d   x  y  z  2ax  2by  2cz  d   D D D D D D Bước 3: Giải a, b, c, d , từ tìm phương trình mặt cầu Ví dụ minh họa Ví dụ 1: Trong khơng gian Oxyz cho A  2;1;0  , B  2; 1;  Viết phương trình mặt cầu  S có tâm B qua điểm A A  S :  x     y  1   z    24 B  S  :  x     y  1   z    24 C  S  :  x     y  1  z  24 D  S  :  x     y  1   z    24 2 2 2 2 2 Hướng dẫn Phương trình mặt cầu  S có tâm B  2; 1;  qua điểm A có bán kính là: R  AB       1  1     2  Vậy phương trình mặt cầu  S  :  x     y  1   z    24 2  Chọn B Trang 145 Trang 147 Ví dụ 2: Trong không gian Oxyz cho A  2;1;0  , B  2; 1;  Viết phương trình mặt cầu  S có đường kính AB A S  : x  y   z  1  24 B  S : x  y   z  1  C  S : x  y   z  1  D  S : x  y   z  1  24 2 2 Hướng dẫn Phương trình mặt cầu  S có đường kính AB có  x  x y  yB z A  z B  ; Tâm I trung điểm AB  I  A B ; A    0;0;1 2   AB  Bán kính R       1  1     2 24   Vậy phương trình mặt cầu  S : x  y   z  1   Chọn C Ví dụ 3: Trong khơng gian với hệ tọa độ Oxyz, cho tứ diện ABCO với A 1; 2; 2;  , B  1; 2; 1 , C 1;0; 1 Tìm bán kính mặt cầu  S ngoại tiếp tứ diện ABCO A B 443 C 443 D 443 10 Hướng dẫn Gọi phương trình mặt cầu có dạng x  y  z  2ax  2by  2cz  d  với a  b  c  d  Vì điểm A, B, C, O thuộc mặt cầu nên ta có hệ: d   1    2a  4b  4c  d  d  a  9  2 2a  4b  4c  9 10   1    1  2a  4b  2c  d     2   1  02   1  2a  2c  2a  4b  2c =  c  10  2a  2c  2  d  b  19  10 2 Vậy bán kính mặt cầu ngoại tiếp R  a  b  c  d  443 10  Chọn D Ví dụ 4: Trong khơng gian với hệ tọa độ Oxyz, cho điểm A  2; 1;0  mặt phẳng  P  : x  2y  z   Gọi I hình chiếu vng góc A mặt phẳng  P  Viết phương trình mặt cầu  S qua điểm A có tâm I A  S  :  x  1   y  1   z  1  2 B  S  :  x  1   y  1   z  1  Trang 146 2 Trang 148 C  S  :  x  1   y  1   z  1  2 D  S  :  x  1   y  1   z  1  2 2 Hướng dẫn   Gọi d đường thẳng qua A vng góc với mặt phẳng  P   ud  n P  1; 2;1 x   t  Phương trình đường thẳng d là:  y  1  2t z  t  x   t  t  1  y  1  2t x    d   P   I nên tọa độ điểm I nghiệm hệ    I 1;1; 1 z  t y   x  2y  z   z  1 Bán kính mặt cầu R  IA  Vậy phương trình mặt cầu  S là:  S  :  x  1   y  1   z  1  2  Chọn C Ví dụ 5: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x 1 y  z    điểm 1 I 1; 2;3 Phương trình mặt cầu có tâm I tiếp xúc với d là: A  x  1   y     z  3  B  x  1   y     z    50 C  x + 1   y     z  3  50 D  x  1   y     z + 3  50 2 2 2 2 2 2 Hướng dẫn    IA; u     d qua A  1; 2; 3 có vectơ phương u   2;1; 1  d  I,d   5  u Do đó, suy mặt cầu có tâm I 1; 2;3 , bán kính R  d  I,d   Vậy phương trình mặt cầu là:  x  1   y +2    z    50 2  Chọn B Ví dụ 6: Trong khơng gian với hệ tọa độ Oxyz, cho hai điểm A  2;1;0  , B  2;3;  đường thẳng  x  2t   d  :  y  Viết phương trình mặt cầu S qua hai điểm A, B có tâm nằm đường thẳng d z  2t  A  S  :  x  1   y  1   z    17 B  S :  x  1   y  1   z    C  S :  x  1   y  1   z    D  S :  x  1   y  1   z    16 2 2 2 2 2 2 Hướng dẫn Trang 147 Trang 149 Giả sử I  2t  1; t; 2 t   d tâm mặt cầu  S IA =  2t  1   t  1   2 t  2  9t  6t +2, IB =  2t     t     2t   2  9t  14t + 22 Vì IA  IB  9t  6t +2  9t  14t + 22  t  1 Tọa độ tâm I mặt cầu I  1; 1;  bán kính R  IA  17 Vậy phương trình mặt cầu  S là:  S  :  x  1   y  1   z    17 2  Chọn A Bài tập tự luyện Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm E  2;1;1 , F  0;3; 1 Phương trình mặt cầu  S đường kính EF là: A  S  :  x  1   y    z  B  S  :  x  1   y    z  C  S :  x  1   y    z  D  S :  x  1   y    z  2 2 2 2 Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm I 1; 2;3 , A 1;1;  Phương trình mặt cầu  S tâm I qua điểm A là: A  S  :  x  1   y     z  3  B  S :  x  1   y     z    C  S :  x  1   y     z    D  S :  x  1   y     z    2 2 2 2 2 2 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm I  2;1;1 mặt phẳng  P  : 2x  y  2z   Viết phương trình mặt cầu  S tâm I tiếp xúc với mặt phẳng  P  A  S :  x     y  1   z  1  B  S :  x     y  1   z  1  C  S :  x     y  1   z  1  D  S :  x     y  1   z  1  2 2 2 2 2 2 Đáp án: 1A 2D 3A Dạng 3: Vị trí tương đối Ví dụ minh họa Ví dụ 1: Trong khơng gian với hệ tọa độ Oxyz, cho điểm I  2;1; 1 mặt phẳng  P  : x  2y  2z   Bán kính mặt cầu  S tâm I tiếp xúc với mặt phẳng  P  là: A B 1 C D Hướng dẫn Trang 148 Trang 150 Bán kính mặt cầu  S là: R  d  I,  P     2.1   1  1   2   2   Chọn A Ví dụ 2: Trong hệ tọa độ Oxyz, cho điểm I 1; 2;  mặt phẳng  P  : 2x  2y  z   Viết phương trình mặt cầu  S tâm I cắt mặt phẳng  P  theo đường trịn có chu vi 8π A  S :  x  1   y     z    36 2 C  S :  x  1   y     z    2 B  S :  x  1   y     z    313 D  S :  x  1   y     z    313 313 2 2 Hướng dẫn Bán kính đường trịn là: r  Ta có: d  I,  P    C  2π 2.1  2.2  1.2  22  22  12  13 Do bán kính mặt cầu  S là: R  r  d  I,  P   2 313  13      3 Vậy phương trình mặt cầu  S là:  S :  x  1   y     z    2 313  Chọn C Ví dụ 3: Trong khơng gian Oxyz, cho mặt cầu  S  :  x  1   y     z  3  điểm A  2;3;  2 Xét điểm M thuộc  S cho đường thẳng AM tiếp xúc với  S , M thuộc mặt phẳng có phương trình là? A x  y  z   B 2x  2y  2z  15  C x  y  z   D 2x  2y  2z  15  Hướng dẫn Cách 1: Mặt cầu  S có tâm I 1; 2;3 bán kính R  Ta có IA = Khi AM  IA  R  Hạ MH  AI AH  hay AH = AM 2  AI    10  AI  HA  2HI   H  ; ;  3 3   Khi ta có M thuộc mặt phẳng  P  qua H nhận vectơ IA  1;1;1 làm vectơ pháp tuyến nên M   P  : x  y  z   Trang 149 Trang 151 Cách 2: Ta có AM = IA  R  M thuộc mặt cầu tâm A bán kính AM M thuộc  S Tọa độ M nghiệm hệ phương trình:  x  12   y  2   z  2   2  x     y  3   z    Trừ hai vế hệ phương trình ta điểm M thuộc mặt phẳng  P  : x  y  z    Chọn A Bài tập tự luyện Câu Trong phương trình sau, phương trình mặt phẳng tiếp xúc với mặt cầu  S :  x  1   y  3   z   2  49 điểm M  7; 1;5  ? A  P1  : 6x  2y  3z  55  B  P2  : 6x  2y  2z  34  C  P3  : 2x  2y  3z  27  D  P4  : 6x  2y  3z  55  Câu Trong không gian vớii hệ tọa độ Oxyz, cho mặt phẳng  S : x  y   z    P  : 3x  4y  12  mặt cầu  Khẳng định sau đúng? A  P  qua tâm mặt cầu  S B  P  tiếp xúc với mặt cầu  S C  P  cắt mặt cầu  S theo đường tròn mặt phẳng  P  qua tâm mặt cầu  S D  P  khơng có điểm chung với mặt cầu  S Đáp án: 1A 2D PHẦN 3: BÀI TẬP TỔNG HỢP Câu Trong không gian với hệ tọa độ Oxyz, cho phương trình  S : x  y  z  x  y  2z  10  Khẳng định sau đúng? 1  A  S mặt cầu có tâm I  ; ; 1 2  C  S mặt cầu có bán kính R  Câu Trong không gian B  S phương trình mặt cầu  1 1  D  S mặt cầu có tâm I  ; ; 1  2  46 với hệ tọa độ Oxyz, cho phương trình 2 2 2 S1  :  x     y     z  3  4,  S2  :  x  1   y  2   z  1  9, 2  2 S3  :  2x  1   2y     2z  3  Trang 150 Trang 152 Có phương trình phương trình mặt cầu? A B C D Câu Trong không gian với hệ tọa độ Oxyz, phương trình  S : x  y  z  2m x  4my  8m   phương trình mặt cầu với điều kiện m? A m  m   B   m  C m   D m  m   Câu Trong hệ tọa độ Oxyz, cho mặt cầu  S tâm I bán kính R mặt phẳng  α  Nếu d  I,α   R vị trí tương đối mặt cầu  S mặt phẳng  α  là: A Mặt phẳng  α  tiếp xúc với mặt cầu  S B Mặt phẳng  α  cắt mặt cầu  S C Mặt phẳng  α  mặt cầu  S khơng có điểm chung D Mặt phẳng  α  cắt mặt cầu  S tiếp xúc với mặt cầu  S Câu Trong không gian với hệ tọa độ Oxyz, cho điểm I 1; 3; 2  , gọi A giao điểm đường thẳng x  t   d  :  y   t măt phẳng  P  : x  2y  z  Viết phương trình mặt cầu S tâm I qua điểm A z   A  S :  x  1   y  3   z    21 B  S :  x  1   y  3   z    C  S :  x  1   y  3   z    21 D  S :  x  1   y  3   z    25 2 2 2 2 2 2 Câu 6.Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng  P  : x  y   0,  Q  : x  2y  z  Gọi  S mặt cầu tiếp xúc với mặt phẳng  P  A 1;0;  có tâm thuộc mặt phẳng  Q  Bán kính mặt cầu  S bằng: B A D 3 C Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm I 1; 2; 3 ,A 1;0;  Phương trình mặt cầu  S tâm I qua điểm A là: A  S :  x  1   y     z    B  S :  x  1   y     z    53 C  S :  x  1   y     z    D  S :  x  1   y     z    53 2 2 2 2 2 2 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt cầu  S :  x  1   y     z    56 Gọi I 2 tâm mặt cầu  S Giao điểm OI mặt cầu  S có tọa độ là: A  1; 2; 3  3; 6;9  B  1; 2; 3  3; 6;9  C  1; 2; 3  3; 6; 9  D  1; 2; 3  3;6;9  Trang 151 Trang 10 153 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt cầu  S : x  y  z  2x  6y  4z  Biết OA đường kính mặt cầu  S Tọa độ điểm A là: A  1;3;  B 1; 2;3 C  2; 6; 4  D  2;6;  Câu 10 Trong không gian với hệ tọa độ Oxzy, cho mặt cầu  S : x  y  z  2x  4y  6z + m  Tìm m để  S tiếp xúc với mặt phẳng  P  : x  2y  2z   A m  B m  2 C m  10 D m  10 Câu 11 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu  S : x  y  z  4x  2y  10z + 14  mặt phẳng  P  : x  y  z   Mặt phẳng  P  cắt mặt cầu  S theo đường trịn có chu vi là: A 8π C 4π B 4π D 2π Câu 12 Trong không gian với hệ tọa độ Oxyz, cho điểm I  1; 2; 3 , gọi A giao điểm đường x 1 y  z    mặt phẳng  P  : 2x  2y  z   Viết phương trình mặt cầu  S tâm 3 I qua điểm A thẳng  d  : A  S :  x  1   y     z    21 B  S :  x  1   y     z    25 C  S :  x  1   y     z    21 D  S :  x  1   y     z    25 2 2 2 2 2 2 Đáp án: 1B 2B 11  B 12  D 3A 4D 5D 6A Trang 152 7D 8B 9C 10  D Trang 11 154 ... diện là: A B C D Đáp án: 1-C 2- A 3-A 4-D 5-D 6-D 7- B 8-D 11 - B 12 - D 13 - D 14 - C 15 - C 16 - C 17 - B 18 - C Trang 9-C 10 - C 10 CHUN ĐỀ 2: THỂ TÍCH KHỐI CHĨP PHẦN 1: LÝ THUYẾT TRỌNG TÂM Thể... nhật Hình hộp - Hình hộp: Là hình lăng trụ có đáy hình bình hành - Hình hộp đứng: hình lăng trụ đứng có đáy - Hình hộp đứng có mặt bên hình chữ nhật, mặt đáy hình bình hành hình bình hành - Hình. .. 17: Hình đa diện hình vẽ bên có mặt? A 11 B 12 C 13 D 14 Câu 18: Cho hình sau: Hình Hình Hình Hình Mỗi hình gồm số hữu hạn đa giác phẳng (kể điểm nó), số hình đa diện là: A B C D Đáp án: 1-C 2- A

Ngày đăng: 29/10/2022, 00:18

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w