1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Luyện thi Đại học Kit 1 - Môn Toán Hình học giải tích trong không gian: Kiến thức cơ bản cần nhớ_P2 (Hướng dẫn giải bài tập tự luyện)

3 18 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 271,42 KB

Nội dung

Luyện thi Đại học Kit 1 - Môn Toán Hình học giải tích trong không gian: Kiến thức cơ bản cần nhớ_P2 (Hướng dẫn giải bài tập tự luyện) của thầy Lê Bá Trần Phương giúp các bạn nắm vững những kiến thức về hình học giải tích trong không gian. Mời các bạn tham khảo!

Khóa học LTĐH mơn Tốn - Thầy Lê Bá Trần Phương Hình học giải tích khơng gian KIẾN THỨC CƠ BẢN CẦN NHỚ (Phần 2) HƯỚNG DẪN GIẢI BÀI TẬP TỰ LUYỆN Giáo viên: LÊ BÁ TRẦN PHƢƠNG Bài Trong không gian với hệ toạ độ Oxyz, cho điểm A(1;0;0), B(0;1;0), C (0;3; 2) mặt phẳng ( ) : x  y   Tìm toạ độ điểm M biết M cách điểm A, B, C mặt phẳng ( ) Lời giải: Giả sử M ( x0 ; y0 ; z0 ) Khi ta có: ( x0  1)  y02  z02  x02  ( y0  1)  z02  x02  ( y0  3)  ( z0  2)   ( x0  1)  y02  z02  x02  ( y0  1)  z 02    x02  ( y0  1)  z02  x02  ( y0  3)  ( z  2)  ( x0  1)  y02  z02  ( x0  y0  2)  x0  y0  (1) (2) (3)  y0  x0 Từ (1) (2) suy   z0   x0  x0   M (1; 1; 2)  Thay vào (3) ta có 5(3 x  x0  10)  (3 x0  2)    23 23 14  x0  23  M ( ; ;  )  3  2 Bài Trong không gian với hệ toạ độ Oxyz, cho hình vng MNPQ có M (5;3;  1), P(2;3;  4) Tìm tọa độ đỉnh Q biết đỉnh N nằm mặt phẳng ( ) : x  y  z   Lời giải: Giả sử N ( x0 ; y0 ; z0 ) Vì N  ( )  x0  y0  z0   (1)  MN  PN MNPQ hình vng  MNP vuông cân N      MN PN  ( x0  5)2  ( y0  3)2  ( z0  1)2  ( x0  2)2  ( y0  3)2  ( z0  4)2    ( x0  5)( x0  2)  ( y0  3)  ( z0  1)( z0  4)    x0  z0     ( x0  5)( x0  2)  ( y0  3)  ( z0  1)( z0  4)  Hocmai.vn – Ngơi trường chung học trị Việt (2) (3) Tổng đài tư vấn: 1900 58-58-12 - Trang | - Khóa học LTĐH mơn Tốn - Thầy Lê Bá Trần Phương Hình học giải tích không gian  y0  2 x0  Từ (1) (2) suy   z0   x0   x0  2, y0  3, z0  1  N (2; 3;  1) Thay vào (3) ta x02  x0     hay   N (3; 1;  2)  x0  3, y0  1, z0  2 Gọi I tâm hình vng  I trung điểm MP NQ  I ( ;3;  ) 2 Vậy: Nếu N (2;3  1) Q(5;3;  4) Nếu N (3;1;  2) Q(4;5;  3) Bài Trong không gian với hệ tọa độ Oxyz, cho ba điểm A (6;-2;3); B (2;-1;3); C (4;0;-1) a Chứng minh rằng: A, B, C ba đỉnh tam giác Tìm độ dài đường cao tam giác ABC kẻ từ đỉnh A b Tìm m n để điểm M (m + 2; 1; 2n + 3) thẳng hàng với A C Lời giải:      a Ta có : AB  (4;1;0); BC  (2;1; 4)   AB, BC   (4; 16; 6)   A, B, C không thẳng hàng  A, B, C đỉnh tam giác    AB, BC  33    AH  d  A, BC   BC   b M  m  2; 1; 2n  3  AM  (m  4;3;2n) phương với AC  2(1; 1; 2)  m  2n    m  1; n  3 1 Bài Cho mặt phẳng  P  : x  y  2z 1  đường thẳng d1 : x 1 y  z   , 3 x 5 y z 5   Tìm điểm M thuộc d1, N thuộc d2 cho MN song song với (P) đường thẳng 5 MN cách (P) khoảng d2 : Lời giải: Gọi M 1  2t;3  3t;2t  , N   6t ';4t '; 5  5t ' d  M ;  P    2t 1   t  0; t  Hocmai.vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | - Khóa học LTĐH mơn Tốn - Thầy Lê Bá Trần Phương Hình học giải tích khơng gian  Trường hợp 1: t   M 1;3;0  , MN  6t ' 4;4t ' 3; 5t '      MN  nP  MN.nP   t '   N 5;0; 5  Trường hợp 2: t   M 3;0;2  , N  1; 4;0   x   2t  Bài Tìm hình chiếu H M(2,-2,1) lên đường thẳng (d ) :  y  1  t  z  2t  Lời giải:  x0   2t0  Gọi tọa độ H ( x0 , y0 , z0 ) ,  y0  1  t0  z  2t   Ta có MH  (1  2t0  2; 1  t0  1;2t0 1)  (2t0 1, t0 , 2t0 1)  Véc tơ phương (d) u (2, 1, 2)   MH u   2(2t0 1)  t0  2(2t0 1)   9t0    t0  / 17 13 Vậy H ( , , ) 9 Giáo viên: Lê Bá Trần Phƣơng Nguồn: Hocmai.vn – Ngơi trường chung học trị Việt Tổng đài tư vấn: 1900 58-58-12 Hocmai.vn - Trang | - ...  Ta có MH  (1  2t0  2; ? ?1  t0  1; 2t0 ? ?1)  (2t0 ? ?1, t0 , 2t0 ? ?1)  Véc tơ phương (d) u (2, ? ?1, 2)   MH u   2(2t0 ? ?1)  t0  2(2t0 ? ?1)   9t0    t0  / 17 ? ?13 Vậy H ( , , )... Lời giải: Gọi M ? ?1  2t;3  3t;2t  , N   6t ';4t '; 5  5t ' d  M ;  P    2t ? ?1   t  0; t  Hocmai.vn – Ngơi trường chung học trị Việt Tổng đài tư vấn: 19 00 5 8-5 8 -1 2 - Trang | - Khóa...Khóa học LTĐH mơn Tốn - Thầy Lê Bá Trần Phương Hình học giải tích khơng gian  y0  2 x0  Từ (1) (2) suy   z0   x0   x0  2, y0  3, z0  ? ?1  N (2; 3;  1) Thay vào (3) ta

Ngày đăng: 02/05/2021, 18:34

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w