1. Trang chủ
  2. » Giáo Dục - Đào Tạo

BÁO cáo bài tập lớn GIẢI TÍCH 1 chủ đề 10 phác họa các bề mặt tròn xoay

31 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Phác họa các bề mặt tròn xoay
Tác giả Phạm Thủy Duyên, Mã Khánh Hào, Phạm Bảo Hoàng, Nguyễn Khánh Quốc, Nguyễn Trương Khánh Vy
Người hướng dẫn TS Nguyễn Đình Dương, TS Nguyễn Ngọc Quỳnh Nhơ
Trường học Đại học Quốc gia TP.HCM
Chuyên ngành Giải tích 1
Thể loại báo cáo
Năm xuất bản 2021
Thành phố TP. Hồ Chí Minh
Định dạng
Số trang 31
Dung lượng 1,53 MB

Nội dung

ĐẠI HỌC QUỐC GIA TP.HCM TRƯỜNG ĐẠI HỌC BÁCH KHOA BÁO CÁO BÀI TẬP LỚN GIẢI TÍCH Chủ đề 10: “Phác họa bề mặt tròn xoay” GVHD: TS NGUYỄN ĐÌNH DƯƠNG TS NGUYỄN NGỌC QUỲNH NHƠ Lớp: L36 Nhóm số: TP HỒ CHÍ MINH, tháng 12 năm 2021 TIEU LUAN MOI download : skknchat123@gmail.com MỤC LỤC BẢNG PHÂN CÔNG DANH MỤC HÌNH ẢNH .3 TÓM TẮT CHƯƠNG CƠ SỞ LÝ THUYẾT CHƯƠNG 2: NỘI DUNG VÀ KẾT QUẢ 12 CHƯƠNG 3: MỞ RỘNG VÀ ÁP DỤNG 24 CHƯƠNG 4: KẾT LUẬN 27 TIEU LUAN MOI download : skknchat123@gmail.com Tên th Phạm T Mã Kh Phạm B Nguyễn K Nguyễn Trư TIEU LUAN MOI download : skknchat123@gmail.com DANH MỤC HÌNH ẢNH Hình 1.1 Hình 1.2 Hình 1.3 Hình 1.4 Hình 1.5 Hình 1.6 Hình 2.1 12 Hình 2.2 12 Hình 2.3 13 Hình 2.4 13 Hình 2.5 14 Hình 2.6 14 Hình 2.7 15 Hình 2.8 15 Hình 2.9 16 Hình 2.10 16 Hình 2.11 17 Hình 2.12 17 Hình 2.13 17 Hình 2.14 18 Hình 2.15 18 Hình 2.16 19 TIEU LUAN MOI download : skknchat123@gmail.com Hình 2.17 21 Hình 2.18 21 Hình 2.19 22 Hình 2.20 22 Hình 2.21 23 Hình 3.1 24 Hình 3.2 25 Hình 3.3 25 TIEU LUAN MOI download : skknchat123@gmail.com TÓM TẮT *Đề bài: -Tạo bề mặt tròn xoay cách cho đồ thị hàm số f(x) = √ x quay quanh trục x, trục y, đường thằng y=k, x=k với k số *Hướng giải quyết: -Input: + Nhập f(x)= √ x +Nhập số k -Output: Hình ảnh bề mặt trịn xoay ( Hình ảnh 3D) *Ý nghĩa toán: -Cung cấp nhìn cụ thể, xác, nhanh chóng hình ảnh bề mặt tròn xoay Matlab TIEU LUAN MOI download : skknchat123@gmail.com CHƯƠNG CƠ SỞ LÝ THUYẾT 1.1/ Sự tạo thành mặt tròn xoay - Là bề mặt không gian Euclide tạo cách quay đường cong (các đường sinh mặt) xung quanh trục quay Bề mặt thu ln có đối xứng phương vị - Các bề mặt tạo đường thẳng bề mặt hình trụ hình nón tùy thuộc vào việc đường thẳng có song song với trục hay khơng + Ví dụ đời sống: bề mặt táo, hình nón (khơng bao gồm phần đế), khối hình nón (khơng bao gồm đầu), hình trụ (khơng bao gồm phần cuối), hình cầu Hình 1.1 + Ví dụ tốn học: Trong khơng gian, cho mặt phẳng (P) chứa đường thẳng Δ đường (C) Khi quay mặt phẳng (P) xung quanh Δ góc 3600 điểm M (C) vạch đường trịn có tâm O thuộc Δ nằm mặt phẳng vng góc với Δ Như quay mặt phẳng (P) quanh Δ đường (C) tạo nên hình gọi mặt trịn xoay (C): đường sinh Δ: trục mặt tròn xoay TIEU LUAN MOI download : skknchat123@gmail.com Hình 1.2 1.2/ MẶT NĨN, KHỐI NÓN: 1.2.1/ Mặt non tron xoay: - Trong măt phăng (P), cho đương thăng d, Δ cắt tai O va chúng tao goc β vơi 0o < β ≤ 90o Khi quay mp(P) xung quanh truc Δ vơi goc β không thay đổi đươc goi la măt non tron xoay đỉnh O Hình 1.3 - Đương thăng Δ goi la truc, đương thăng d đươc goi la đương sinh va goc 2β goi la goc đỉnh 1.2.2/ Khối non tron xoay: - Cho ΔOIM vuông tai I quay quanh canh goc vuông OI thi đương gâp khúc OIM tao môt hinh, goi la hinh non tron xoay (goi tắt la hinh non) (hinh 2) TIEU LUAN MOI download : skknchat123@gmail.com - Đương thăng OI goi la truc, O la đỉnh, OI goi la đương cao va OM goi la đương sinh cua hinh non - Hinh tron tâm I, ban kinh r = IM la đay cua hinh non Hình 1.4 1.2.3/ Cơng thức diên tích hình non thể tíí́ch khối nón: - Cho hinh non co chiêu cao la h, ban kinh đay r va đương sinh la l ta co: + Diện tích xung quanh: Sxq= πrl + Diện tích tồn phần: Stp= πrl + πr2 + Thể tích khối nón: V nón= 3πr h 1.2.4/ Tính chất: - Trường hợp 1: ra: + Nêu cắt măt non tron xoay bơi mp(P) qua đỉnh thi co cac trương hơp sau xay ⇒ + Nếu mp(P) cắt măt non theo đương sinh Thiêt diên la tam giac cân + Nếu mp(P) tiêp xúc vơi măt non theo môt đương sinh Trong trương hơp nay, ta goi đo la măt phăng tiêp diên cua măt non - Trường hợp 2: +Nêu cắt măt non tron xoay bơi mp(Q) không qua đỉnh thi co cac trương hơp sau xay ra: ⇒ + Nêu mp(Q) vuông goc vơi truc hinh non giao tuyên la môt đương tron TIEU LUAN MOI download : skknchat123@gmail.com Hình 2.5 -Khi cho đồ thị quay quanh đường thẳng y=-1/2 Hình 2.6 14 TIEU LUAN MOI download : skknchat123@gmail.com Hình 2.7 -Khi cho đồ thị quay quanh đường thẳng x=-1/2 Hình 2.8 15 TIEU LUAN MOI download : skknchat123@gmail.com Hình 2.9 2.2) Nhận xét: 2.2.1) Khi nhấí́p vào đồ họa Maple tạo ra, menu (mới) xuấí́t cho phép bạn để thay đổi giao diện đồ họa Đặc biệt, bạn thay đổi góc θ = −140◦ ϕ = 80◦ cách: -Sử dụng cuộn mũũ̃i tên menu Chưa có hình -Nhập lại giá trị hộp giá trị menu Hình 2.10 -Theo cách thủ cơng tự xoay đồ họa 2.2.2) Nếu bạn sử dụng đoạn code để hỗ trợ bạn làm tập văn bản, bạn bỏ qua dịng 7, 8, 10 11 đoạn code 16 TIEU LUAN MOI download : skknchat123@gmail.com Hình 2.11 2.2.3) Víí́ dụ: Nếu ta thay hàm số f(x)= √ x hàm số g(x)=x2 Hình 2.12 - Khi cho đồ thị quay quanh trục x Hình 2.13 17 TIEU LUAN MOI download : skknchat123@gmail.com -Khi cho đồ thị quay quanh trục y Hình 2.14 -Khi cho đồ thị quay quanh đường thằng y=-1/2 Hình 2.15 -Khi cho đồ thị quay quanh đường thẳng x=-1/2 18 TIEU LUAN MOI download : skknchat123@gmail.com Hình 2.16 *Nhận xét: - Hàm f(x)= √ x hàm g(x)=x2 hàm ngược x≥0, nên: + Tập xác định f(x) tập giá trị g(x) Và ngược lại tập giá trị f(x) tập xác định g(x) Hay nói cách khác trục x đồ thị f(x) trục y đồ thị g(x) ngược lại + Ngoài ra, đồ thị hàm số cịn đối xứng qua đường thẳng y=x *Do đó: - Bề mặt tròn xoay hàm g(x) quay quanh trục x bề mặt trịn xoay hàm f(x) quay quanh trục y - Bề mặt tròn xoay hàm g(x) quay quanh trục y bề mặt trịn xoay hàm f(x) quay quanh trục x - Bề mặt tròn xoay hàm g(x) quay quanh y=-1/2 bề mặt tròn xoay hàm f(x) quay quanh x=-1/2 - Bề mặt tròn xoay hàm g(x) quay quanh x=-1/2 bề mặt trịn xoay hàm f(x) quay quanh y=-1/2 + Khi cho hai đồ thị f(x)= √ x đồ thị g(x)=x2 quay quanh trục hay đường thẳng tạo hai bề mặt tròn xoay khác 19 TIEU LUAN MOI download : skknchat123@gmail.com + Khi cho đồ thị f(x)= √ x quay quanh trục x, trục y, y=-1/2, x=-1/2 cho đồ thị g(x) quay quanh trục y, trục x, x=-1/2, y=-1/2 cho hai bề mặt tròn xoay giống 2.2.4) Nếu ta thay hàm số y=f(x) thành hàm số x=g(y) 20 TIEU LUAN MOI download : skknchat123@gmail.com Hình 2.17 - Khi cho đồ thị quay quanh trục y Hình 2.18 - Khi cho đồ thị quay quanh trục x 21 TIEU LUAN MOI download : skknchat123@gmail.com Hình 2.19 -Khi cho đồ thị quay quanh đường thằng x=-1/2 Hình 2.20 - Khi cho đồ thị quay quanh đường thẳng y=-1/2 22 TIEU LUAN MOI download : skknchat123@gmail.com Hình 2.21 23 TIEU LUAN MOI download : skknchat123@gmail.com CHƯƠNG 3: MỞ RỘNG VÀ ÁP DỤNG 3.1/ Đề bài: Cho hình tam giác ABC vng cân A, có AB=AC=6 Kẻ đường thẳng qua H vng góc với AB cắắ́t BC D, với H thuộc đoạn thằng AB cho AB=3BH Cho cạnh BC xoay quanh đoạn HD tạo khối trịn xoay Tính thể tích khối trịn xoay 3.1.2/ Hướng giải quyết: C *Phác họa: D B H A *Viết phương trình đường thẳng BC: -Gọi H gốc tọa độ, AB thuộc trục Ox, HD thuộc trục Oy -B(-2;0) C(4;6) -BC đường thằng nên phương trình có dạng: y=ax+b → =-2a+b 6=4a+b →y= x+2 *Sử dụng Maple phác họa hình ảnh khối trịn xoay: 24 TIEU LUAN MOI download : skknchat123@gmail.com -Cho cạnh BC xoay quanh đoạn HD , cho đường thẳng: y=x+2 xoay quanh trục Oy Hình 3.1 Hình 3.2 25 TIEU LUAN MOI download : skknchat123@gmail.com Hình 3.3 - Như vậy, thể tích khối trịn xoay thể tích hai hình nón *Tính thể tích khối trịn xoay ( thể tích hai hình nón ): - Thể tích hình nón thứ ( hình nón lớn ) + Có chiều cao h1=4, bán kính đáy r1=4 ⇒ V1= 64 3π.4 4= π ( đơn vị thể tích) - Thể tích hình nón thứ hai ( hình nón nhỏỏ̉ ) + Có chiều cao h2=2, bán kính đáy r2=2 ⇒ V2 = 3π.2 2= π ( đơn vị thể tích) -Vậy thể tích khối nón là: V=V1+V2= 64 π+ π= 24π ( đơn vị thể tích) 3.2) Nhận xét: -Như vậy, ta sử dụng Maple để phác họa hình ảnh bề mặt tròn xoay ( dạng 3D) cách xác, dễ nhìn Và thơng qua giúắ́p chúắ́ng ta giải toán liên quan đến khối tròn xoay cách dễ dàng 26 TIEU LUAN MOI download : skknchat123@gmail.com CHƯƠNG 4: KẾT LUẬN 4.1) Nhận xét Maple: - Ưu điểm: Tính tốn dễ dàng, tiện lợi, cho kết xác cách phổỏ̉ thông Giúắ́p hiểu thêm ứng dụng toán kỹ thuật Tiết kiệm thao tác thời gian so với cách phác họa tay - Khuyết điểm: Thiết kế đoạn code nhiều thời gian, công sức Đoạn code phức tạp 4.2) Kết luận: -Đề tài hỗ trợ xác định bề mặt tròn xoay cách xác Với phương pháp sử dụng phần mềm Maple giúắ́p thuận tiện dễ dàng việc giải toán tương tự mà giải tay -Với phân công chuẩn bị kỹ lưỡng cố gắắ́ng hết mình, nhóm hoàn thành đề tài giao Maple cho kết mong muốn Qua phần tập lớn nhóm đã: Biết thao tác giải tốn Maple Nâng cao hứng thúắ́ môn học Trao dồi kỹ học tập làm việc nhóm Nâng cao tinh thần trách nhiệm thắắ́t chặt tình đồn kết thành viên nhóm nói riêng bạn khoa Cơ Khí nói chung 27 TIEU LUAN MOI download : skknchat123@gmail.com ... - Bề mặt tròn xoay hàm g(x) quay quanh trục y bề mặt trịn xoay hàm f(x) quay quanh trục x - Bề mặt tròn xoay hàm g(x) quay quanh y= -1/ 2 bề mặt trịn xoay hàm f(x) quay quanh x= -1/ 2 - Bề mặt tròn. .. 15 Hình 2.9 16 Hình 2 .10 16 Hình 2 .11 17 Hình 2 .12 17 Hình 2 .13 17 Hình 2 .14 18 Hình 2 .15 ... quay mặt phẳng (P) quanh Δ đường (C) tạo nên hình gọi mặt tròn xoay (C): đường sinh Δ: trục mặt tròn xoay TIEU LUAN MOI download : skknchat123@gmail.com Hình 1. 2 1. 2/ MẶT NÓN, KHỐI NÓN: 1. 2 .1/ Mặt

Ngày đăng: 24/09/2022, 06:22

HÌNH ẢNH LIÊN QUAN

- Các bề mặt tạo bởi một đường thẳng là các bề mặt hình trụ và hình nón tùy thuộc vào việc đường thẳng có song song với trục hay không. - BÁO cáo bài tập lớn GIẢI TÍCH 1 chủ đề 10 phác họa các bề mặt tròn xoay
c bề mặt tạo bởi một đường thẳng là các bề mặt hình trụ và hình nón tùy thuộc vào việc đường thẳng có song song với trục hay không (Trang 8)
Hình 1.3 - BÁO cáo bài tập lớn GIẢI TÍCH 1 chủ đề 10 phác họa các bề mặt tròn xoay
Hình 1.3 (Trang 9)
Hình 1.2 - BÁO cáo bài tập lớn GIẢI TÍCH 1 chủ đề 10 phác họa các bề mặt tròn xoay
Hình 1.2 (Trang 9)
Hình 1.4 - BÁO cáo bài tập lớn GIẢI TÍCH 1 chủ đề 10 phác họa các bề mặt tròn xoay
Hình 1.4 (Trang 10)
1.3.1/ Mặt trụ trịn xoay: - BÁO cáo bài tập lớn GIẢI TÍCH 1 chủ đề 10 phác họa các bề mặt tròn xoay
1.3.1 Mặt trụ trịn xoay: (Trang 11)
Hình 1.6 - BÁO cáo bài tập lớn GIẢI TÍCH 1 chủ đề 10 phác họa các bề mặt tròn xoay
Hình 1.6 (Trang 11)
Hình 2.1 - BÁO cáo bài tập lớn GIẢI TÍCH 1 chủ đề 10 phác họa các bề mặt tròn xoay
Hình 2.1 (Trang 15)
Hình 2.2 - BÁO cáo bài tập lớn GIẢI TÍCH 1 chủ đề 10 phác họa các bề mặt tròn xoay
Hình 2.2 (Trang 15)
Hình 2.3 - BÁO cáo bài tập lớn GIẢI TÍCH 1 chủ đề 10 phác họa các bề mặt tròn xoay
Hình 2.3 (Trang 16)
Hình 2.5 - BÁO cáo bài tập lớn GIẢI TÍCH 1 chủ đề 10 phác họa các bề mặt tròn xoay
Hình 2.5 (Trang 17)
Hình 2.8 - BÁO cáo bài tập lớn GIẢI TÍCH 1 chủ đề 10 phác họa các bề mặt tròn xoay
Hình 2.8 (Trang 18)
Hình 2.7 - BÁO cáo bài tập lớn GIẢI TÍCH 1 chủ đề 10 phác họa các bề mặt tròn xoay
Hình 2.7 (Trang 18)
Hình 2.9 - BÁO cáo bài tập lớn GIẢI TÍCH 1 chủ đề 10 phác họa các bề mặt tròn xoay
Hình 2.9 (Trang 19)
Hình 2.14 - BÁO cáo bài tập lớn GIẢI TÍCH 1 chủ đề 10 phác họa các bề mặt tròn xoay
Hình 2.14 (Trang 21)
Hình 2.18 - BÁO cáo bài tập lớn GIẢI TÍCH 1 chủ đề 10 phác họa các bề mặt tròn xoay
Hình 2.18 (Trang 24)
Hình 2.17 - BÁO cáo bài tập lớn GIẢI TÍCH 1 chủ đề 10 phác họa các bề mặt tròn xoay
Hình 2.17 (Trang 24)
Hình 2.19 - BÁO cáo bài tập lớn GIẢI TÍCH 1 chủ đề 10 phác họa các bề mặt tròn xoay
Hình 2.19 (Trang 25)
Hình 2.20 - BÁO cáo bài tập lớn GIẢI TÍCH 1 chủ đề 10 phác họa các bề mặt tròn xoay
Hình 2.20 (Trang 25)
Hình 3.1 - BÁO cáo bài tập lớn GIẢI TÍCH 1 chủ đề 10 phác họa các bề mặt tròn xoay
Hình 3.1 (Trang 29)
Hình 3.3 - BÁO cáo bài tập lớn GIẢI TÍCH 1 chủ đề 10 phác họa các bề mặt tròn xoay
Hình 3.3 (Trang 30)

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w