Lượng biến thiên của một biến được giải thích bởi những nhân tố chung trong phân tích được gọi là communality. Biến thiên chung của các biến được mô tả bằng một số ít các nhân tố chung (common factor) cộng với một nhân tố đặc trưng (unique factor) cho mỗi biến. Những nhân tố này không bộc lộ rõ ràng. Nếu các biến được chuẩn hóa thì mô hình nhân tố được thể hiện bằng phương trình sau:
Xi = Ai1F1 + Ai2F2 + Ai3F3 + ...+ AimFm + ViUi
Trong đó
Xi: biến thứ i chuẩn hóa
Aij: hệ số hồi quy bội chuẩn hóa của nhân tố i đối với biến j F: các nhân tố chung
Vi: hệ số hồi qui chuẩn hóa của nhân tố đặc trưng đối với biến i Ui: nhân tố đặc trưng của biến i
m: số nhân tố chung
Các nhân tố đặc trưng có liên quan với nhau và với các nhân tố chung. Bản thân các nhân tố chung cũng có thể được diễn tả như những kết hợp tuyến tính của các biến quan sát.
Fi = Wi1X1 + Wi2F2 + Wi3F3 +...+ WikXk
Trong đó:
k: số biến
Chúng ta có thể chọn quyền số hay trọng số nhân tố sao cho nhân tố thứ nhất giải thích được phần biến thiên nhiều nhất trong toàn bộ biến thiên. Sau đó ta chọn ra một tập hợp các quyền số thứ hai sao cho nhân tố thứ hai giải thích được phần lớn biến thiên còn lại và không có tương quan với nhân tố thứ nhất. Nguyên tắc này được tiếp tục áp dụng như vậy để tiếp tục chọn ra các quyền số của nhân tố tiếp theo. Do vậy các nhân tố được ước lượng sao cho các quyền số của chúng, không giống như các giá trị của các biến gốc, là không có tương quan với nhau. Hơn nữa, nhân tố thứ nhất giải thích được nhiều nhất biến thiên của dữ liệu, nhân tố thứ hai giải thích được nhiều thứ nhì...