Phương trình chuẩn tắc của (S) lă(S): V+ V Y— Y£ =1 (Hypeboloit 1 tầng)

Một phần của tài liệu bài tiểu luận không gian afin (Trang 104 - 105)

- Với ở= (1,1), phương trình tham số của đường thẳng (đ;) qu aJ vă có phương ở; lă

Phương trình chuẩn tắc của (S) lă(S): V+ V Y— Y£ =1 (Hypeboloit 1 tầng)

9. Sự phđn loại afin câc siíu mặt bậc hai a) Định nghĩa

Hai siíu mặt bậc hai trong A4" gọi lă cùng loại nếu phương trình chuẩn tắc của chúng có cùng một dạng, cùng với 1 giâ trị k vă r như nhaụ

Nói câch khâc hai siíu mặt bậc haigojj lă cùng loại nếu phương trình chuẩn tắc của chúng hoăn toăn giống nhaụ

b) Nhận xĩt

Muốn cho định nghĩa trín có cơ sở ta phải chứng minh rằng: một siíu mặt bậc hai (S) không thể

thuộc hai loại khâc nhaụ

Thật vậy nếu siíu mặt bậc hai có phương trình dạng (¡) thì mọi tđm của (S) không thuộc (S), nếu (S). có phương trình dạng (II) thì mọi tđm của (S) đều thuộc (S), còn nếu ($) thuộc dạng (II) thì (S) không có tđm. Bởi vậy phương trình của (S) chỉ lă một trong 3 dạng chuẩn tắc đó.

Bđy giờ ta xĩt hai phương trình có cùng một dạng chuẩn tắc nhưng thuộc hai loại khâc nhau, tức lă

chúng khâc nhau bởi r hoặc k. Nhưng r chính lă hạng, còn k lă chỉ số đm quân tính của dạng toăn

phương trong phương trình đó, nín chúng đều lă những bất biến qua phĩp biến đổi tọa độ. Bởi vậy hai phương trình đó không thể lă phương trình chuẩn tắc của một siíu mặt bậc hai (S) được. c) Định lí:

Hai siíu mặt bậc hai gọi lă tương đương afin khi vă chỉ khi chúng cùng thuộc một loạị Nói câch khâc sự phđn loại câc siíu mặt bậc hai níu trong định nghĩa níu trín lă một sự phđn loại afin.

Chứng minh

Giả sử có hai siíu mặt bậc hai (S) vă (S”) cùng thuộc một loạị Điều đó có nghĩa lă có hai mục tiíu tEq; E¡} vă {Eg; E¡} sao cho phương trình của (S) đối với mục tiíu {Eo; E;} vă phương trình của (S ') đối với mục tiíu {Eq; E¡} lă phương trình chuẩn tắc hoăn toăn giống nhaụ Bđy giờ gọi ƒ lă phĩp afin của A” sao cho ƒ(E¿) = E¡ với ¡ = 0,1,...,r vă phĩp biến đổi tuyến tính liín kết của nó lă

@: A* A" biến vector EoE, của cơ sở (FoẸ} thănh EaEi CỦa CƠ SỞ {EoẸ} với ¡ = 1,2,...,?:. Từ đó

suy ra ƒ biến (S) thănh siíu mặt bậc hai mă phương trình của ƒ(S) đối với mục tiíu {Ea: E¡}giống như phương trình của (S) đối với mục tiíu {Eạ; E¡}. Vậy (S) vă (S”) cùng loại vă định lý được chứng minh..

Một phần của tài liệu bài tiểu luận không gian afin (Trang 104 - 105)

Tải bản đầy đủ (PDF)

(108 trang)