Tập giản lược không dư

Một phần của tài liệu Nghiên cứu hệ sinh ánh xạ đóng và ứng dụng trong thể hiện ngữ nghĩa dữ liệu (Trang 78)

Ngoài tập giản lược tự nhiên đã trình bày ở trên, khái niệm tập giản lược không dư của tập luật sinh và thuật toán đề xuất để giản lược tập luật sinh cho trước về tập giản lược không dư được xây dựng thông qua các định nghĩa và thuật toán sau đây. Ý nghĩa khi xây dựng tập giản lược không dư cũng tương tự như tập giản lược tự nhiên.

Định nghĩa 3.7

Cho hai tập luật sinh FG trên tập U hữu hạn. G được gọi là tập giản lược không dư của F nếu,

77

(ii) G có dạng giản lược không dư theo nghĩa sau: gG: G \{g} ≢G

Thuật toán Nonredundant sau được xây dựng với mục tiêu giản lược tập luật sinh F cho trước về tập giản lược không dư. Việc đánh giá độ phức tạp của thuật toán cũng được trình bày ở đây,

Thuật toán 3.4

Algorithm Nonredundant

Format: Nonredundant (F)

Input: - Tập luật sinh F

Output: - Tập giản lược không dư G

Begin

G:=F;

for eachrule g in F do

if IsMember(g,G\{g}) then G:=G\{g}; endif; endfor; returnG; End Nonredundant.

Thuật toán giản lược tập luật sinh cho trước về tập giản lược không dư có độ phức tạp tính toán là O(m2n2) với m là số lượng luật sinh trong tập luật F, n số lượng các phần tử có trong U. Do tích mn chính là chiều dài dữ liệu vào của thuật toán nên

O(m2n2) cũng chính là độ phức tạp đa thức theo chiều dài dữ liệu vào.

Thí dụ 3.5

Cho U = ABCD, F ={AB, CA, AD, BD }. Ta giản lược tập luật sinh F

về dạng không dư theo các bước sau :

+ Loại bỏ luật sinh AD do áp dụng tính chất bắc cầu cho các luật sinh AB BD

+ Như vậy, ta có F G = F \ {AD}

78

Một phần của tài liệu Nghiên cứu hệ sinh ánh xạ đóng và ứng dụng trong thể hiện ngữ nghĩa dữ liệu (Trang 78)

Tải bản đầy đủ (PDF)

(117 trang)