Mô hình cấu trúc tuyến tính (SEM) bao gồm nhiều kỹ thuật thống kê khác nhau như phân tích đường dẫn (Path Analysis), phân tích nhân tố khẳng định (Confirmatory Factor Analysis), Mô hình nhân quả với các biến tiềm ẩn (Causal modeling with Latent variable, và cũng thường gọi là SEM), và thậm chí cả phân tích phương sai (Analysis of Variance), mô hình hồi quy tuyến tính bội (Multiple Linear Regression). Đề tài sẽ tập trung phân tích CFA và SEM. Trong kiểm định thang đo, phương pháp CFA trong phân tích cấu trúc tuyến tính SEM có nhiều ưu điểm hơn so với phương pháp truyền thống như phương pháp hệ số tương quan, phương pháp phân tích nhân tố khám phá EFA, phương pháp đa khái niệm – đa phương pháp MTMM (Bagozzi & Foxall, 1996; được dẫn bởi Thọ
29
& Trang, 2011). Lý do là CFA cho phép chúng ta kiểm định cấu trúc lý thuyết của các thang đo lường như mối quan hệ giữa một khái niệm nghiên cứu với các khái niệm khác mà không bị chệch do sai số đo lường. Hơn nữa, chúng ta có thể kiểm định giá trị hội tụ và giá trị phân biệt của thang đo mà không cần dùng nhiều phương pháp như trong phương pháp truyền thống MTMM (Steenkamp & van Trijp, 1991; được dẫn bởi Thọ & Trang, 2011).
Các đánh giá khi phân tích CFA gồm:
(1) Đánh giá độ tin cậy của thang đo thông qua: (a) Hệ số tin cậy tổng hợp (composite reliability) (Joreskog, 1971), (b) tổng phương sai trích (Fornell & Larcker, 1981) và (c) hệ số tin cậy Cronbach’s Alpha. Theo Hair (1998): “phương sai trích (Variance Extracted) của mỗi khái niệm nên vượt quá 0.5”; và phương sai trích cũng là một chỉ tiêu đo lường độ tin cậy. Nó phản ánh biến thiên chung của các biến quan sát được tính toán bởi biến tiềm ẩn. Schumacker & Lomax (2006) cho rằng trong CFA, một vấn đề quan trọng cần phải quan tâm khác là độ tin cậy của tập hợp các biến quan sát đo lường một khái niệm (nhân tố); và như truyền thống, hệ số tin cậy Cronbach’s Alpha vẫn thường được sử dụng. Nó đo lường tính kiên định nội tại xuyên suốt tập hợp các biến quan sát của các câu trả lời (được dẫn bởi Thọ & Trang, 2011).
(2) Tính đơn hướng/ đơn nguyên (unidimensionality): Theo Steenkamp & Van
Trijp (1991), mức độ phù hợp của mô hình với dữ liệu thị trường cho chúng ta điều kiện cần và đủ để cho tập biến quan sát đạt được tính đơn hướng, trừ trường hợp các sai số của các biến quan sát có tương quan với nhau (được dẫn bởi Thọ & Trang, 2011).
(3) Giá trị hội tụ (Convergent validity) Gerbring & Anderson (1988) cho rằng thang đo đạt được giá trị hội tụ khi các trọng số chuẩn hoá của thang đo đều cao (>0.5); và có ý nghĩa thống kê (P <0.05) (được dẫn bởi Thọ & Trang, 2011).
(4) Giá trị phân biệt (Discriminant validity): Có thể kiểm định giá trị phân biệt của các khái niệm trong mô hình tới hạn (saturated model) mô hình mà các khái niệm nghiên cứu được tự do quan hệ với nhau). Có thể thực hiện kiểm định hệ số tương quan xét trên phạm vi tổng thế giữa các khái niệm có thực sự khác biệt so với 1 hay không. Nếu nó thực sự khác biệt thì các thang đo đạt được giá trị phân biệt.
(5) Giá trị liên hệ lý thuyết (Nomological validity): Các vấn đề từ (1) đến (4) được
30
mô hình lý thuyết (Anderson & Gerbing, 1988). Khi các vấn đề trên thoả mãn thì mô hình đo lường là tốt. Tuy nhiên, rất hiếm mô hình đo lường nào đạt được tất cả các vấn đề trên. Ví dụ, mô hình đo lường vẫn có thể được sử dụng khi thang đo không đạt được tính đơn hướng… (dẫn theo Thọ & Trang, 2011).
Để đo lường mức độ phù hợp của mô hình với thông tin thị trường, các chỉ số thường sử dụng là Chi-square (CMIN); Chi-square điều chỉnh theo bậc tự do (CMIN/df); chỉ số thích hợp so sánh (CFI_ Comparative Fit Index). Chỉ số Tucker & Lewis (TLI_ Tucker & Lewis Index); Chỉ số RMSEA (Root Mean Square Error Approximation). Mô hình được xem là thích hợp với dữ liệu thị trường khi kiểm định Chi-square có P-value > 0.05. Tuy nhiên Chi-square có nhược điểm là phụ thuộc vào kích thước mẫu. Nếu một mô hình nhận được các giá trị GFI, TLI, CFI ≥0.9 (Bentler & Bonett, 1980); CMIN/df ≤ 2, một số trường hợp CMIN/df có thể ≤ 3 (Carmines & McIver, 1981); RMSEA ≤ 0.08, RMSEA ≤ 0.05 được xem là rất tốt (Steiger, 1990); thì mô hình được xem là phù hợp với dữ liệu thị trường, hay tương thích với dữ liệu thị trường. Mô hình nghiên cứu sẽ được đánh giá dựa trên các chỉ tiêu giá trị GFI ≥0.9, TLI ≥0.9, CFI ≥0.9, CMIN/df ≤ 3, RMSEA ≤ 0.08 thì mô hình phù hợp (tương thích) với dữ liệu thị trường (được dẫn bởi Thọ & Trang, 2011).