... trường lao động cạnh tranh hoàn hảo. W 20 0 300 400 500 600 700 800 L S 120 160 20 0 24 0 28 0 320 360 L D 400 360 320 28 0 24 0 20 0 160 a- Mức tiền lương cân bằng và số lượng lao động được thuê là bao ... (65- 30Q)Q +100. Chi phí tư nhân vè vi c nuôi cá TPC=- (20 -20 Q)Q=100 1) Vi t hàm chi phí biên tư nhân : PMC và doanh thu biên tư nhân PMR 2) Tính mức nuôi cá thực tế: Q 3) Tính mức nuôi hiệu quả ... cá BÀI TẬP ÔN TẬP KINH TẾ VI MÔ THỊ TRƯỜNG YẾU TỐ SẢN XUẤT Bài 1: Cho bảng sau về cung và cầu trên một thị trường lao động trên một thị trường lao động cạnh tranh hoàn hảo. W 20 0 300 400 500 600...
Ngày tải lên: 19/08/2012, 23:18
... CẦU 10 12 22 P Q0 3 6 5 D Đường cầu dốc xuống cho biết người mua sẵn sàng và có khả năng mua nhiều hơn với mức giá thấp hơn C©n b»ng- d thõa- thiÕu hôt P Q 0 10 13 18 22 28 0,4 4 ... 1 loại H 2 là số lượng H 2 mà ng mua sẵn sàng và có khả năng mua ở các mức giá khác nhau trong một khoảng t nhất định. (Ceteris Paribus) • Lượng cầu về 1 loại H 2 là số lượng H 2 mà ngmua ... thuận – H2 thiết yếu: tốc độ thay đổi thu nhập > tđộ tđổi cầu – H 2 thông thường: tốc độ thay đổi thu nhập ~ tđộ tđổi cầu – H2 xa xỉ: tốc độ thay đổi thu nhập < tđộ tđổi cầu • H2 thứ...
Ngày tải lên: 31/10/2012, 09:35
Giáo trình kinh tế vĩ mô 2
... ngoại thương vào mô hình và phát triển một mô hình kinh tế vĩ mô cho một nền kinh tế mở nhỏ. Chúng ta sẽ thấ y rằng vi c xem xét nền kinh tế mở làm phức tạp khiá cạnh cầu của mô hình mà không ... dạy kinh tế Fulbright Niên khóa 20 06-07 Kinh t? vi mô Tổng quan lý thuyết David E. Spencer/Chau Van Thanh 7 Biên dịch: Kim Chi Hiệu đính: Châu Văn Thành Ghi chú: Mô hình nền kinh tế đóng ... dạy kinh tế Fulbright Niên khóa 20 06-07 Kinh t? vi mô Tổng quan lý thuyết David E. Spencer/Chau Van Thanh 1 Biên dịch: Kim Chi Hiệu đính: Châu Văn Thành Tổng quan về Lý thuyết Kinh tế...
Ngày tải lên: 31/10/2012, 10:16
kinh tế vi mô 2
... (A-F) 2 Dù b¸o TB trît 5 quý A - F (A-F) 2 1 2 3 4 5 6 7 8 9 10 11 12 13 20 22 23 24 18 23 19 17 22 23 18 23 - - - 21 ,67 23 ,00 21 ,67 21 ,67 20 ,00 19,67 19,33 20 ,67 21 ,00 21 ,33 - - - 2, 33 -5,0 1,33 -2, 67 -3,0 2, 33 3,67 -2, 67 2, 00 Tæng - - - 5, 428 8 25 ,000 1,7689 7, 128 9 9,0000 5, 428 9 13,4689 7, 128 9 4,0000 78,3534 - - - - - 21 ,4 22 ,0 21 ,4 20 ,2 19,8 20 ,8 19,8 20 ,6 - - - - - 1,6 -3,0 -4,4 1,8 3 ,2 -2, 8 3 ,2 Tæng - - - - - 2, 56 9,00 19,36 3 ,24 10 ,24 7,85 10 ,24 62, 48 ... (A-F) 2 1 2 3 4 5 6 7 8 9 10 11 12 13 20 22 23 24 18 23 19 17 22 23 18 23 - - - 21 ,67 23 ,00 21 ,67 21 ,67 20 ,00 19,67 19,33 20 ,67 21 ,00 21 ,33 - - - 2, 33 -5,0 1,33 -2, 67 -3,0 2, 33 3,67 -2, 67 2, 00 Tæng - - - 5, 428 8 25 ,000 1,7689 7, 128 9 9,0000 5, 428 9 13,4689 7, 128 9 4,0000 78,3534 - - - - - 21 ,4 22 ,0 21 ,4 20 ,2 19,8 20 ,8 19,8 20 ,6 - - - - - 1,6 -3,0 -4,4 1,8 3 ,2 -2, 8 3 ,2 Tæng - - - - - 2, 56 9,00 19,36 3 ,24 10 ,24 7,85 10 ,24 62, 48 ... (A-F) 2 1 2 3 4 5 6 7 8 9 10 11 12 13 20 22 23 24 18 23 19 17 22 23 18 23 - - - 21 ,67 23 ,00 21 ,67 21 ,67 20 ,00 19,67 19,33 20 ,67 21 ,00 21 ,33 - - - 2, 33 -5,0 1,33 -2, 67 -3,0 2, 33 3,67 -2, 67 2, 00 Tæng - - - 5, 428 8 25 ,000 1,7689 7, 128 9 9,0000 5, 428 9 13,4689 7, 128 9 4,0000 78,3534 - - - - - 21 ,4 22 ,0 21 ,4 20 ,2 19,8 20 ,8 19,8 20 ,6 - - - - - 1,6 -3,0 -4,4 1,8 3 ,2 -2, 8 3 ,2 Tæng - - - - - 2, 56 9,00 19,36 3 ,24 10 ,24 7,85 10 ,24 62, 48 Các yếu tố ảnh hưởng đến co giÃn của cầu theo giá Tỷ trọng...
Ngày tải lên: 15/09/2013, 14:10
Bài 2 LÝ THUYẾT LỰA CHỌN CỦA NGƯỜI TIÊU DÙNG (kinh tế vi mô 2)
... đổi độ thỏa dụng Hình 2. 3. Tỷ lệ thay thế cận biên Tye lệ thay thế cận biên Hµng ho¸ Y 6 A B C G D U 1 4 3 2 Hµng ho¸ X 2 3 4 6 0 5 5 U 2 U 3 H HÌNH 2. 2: BIỂU ĐỒ ĐƯỜNG BÀNG ... trường là sự cộng theo chiều ngang đường cầu của các cá nhân 2. 2. Từ cầu cá nhân đến cầu thị trường 2. 1. Hành vi người tiêu dùng 2. 1.1. Sở thích người tiêu dùng và đường bàng quan Các giả ... hóa đó Hiệu ứng mạng lưới nghịch HÌNH 2. 1: ĐƯỜNG BÀNG QUAN Hµng ho¸ Y 6 A B C E F D U 1 4 3 2 Hµng ho¸ X 2 3 4 5 6 0 - Điểm A (6 HH Y và 2 HH X) có cùng lợi ích với điểm B (4...
Ngày tải lên: 08/03/2014, 21:41
Bài 3 LỰA CHỌN TRONG ĐIỀU KIỆN RỦI RO (kinh tế vi mô 2)
... mục ĐT (Rp) bằng (1) (2) (3) fmp RbEbrER )1( Phương sai tỷ suất lợi tức của danh mục ĐT bằng Thay (1) vào (2) được 2 2 )1( Pfmp RRbbrE 22 22 2 ()1()1( mmmfmfmp bRrbERbbRRbbrE Copyright ... i n i ix PEVxEVXEVXVar 1 22 2 )( iixx PEVx 2 2 Độ lệch chuẩn Copyright © 20 04 South-Western/Thomson Learning Copyright © 20 04 South-Western/Thomson Learning 3.1 ... Thu nhập từ vi c bán hàng Kết quả 1 Kết quả 2 XS Thu nhập ($) XS Thu nhập ($) TN kỳ vọng ($) Vi c 1: Hoa hồng Vi c 2: Lương CĐ .5 .99 20 00 1510 1000 510 .5 .01 1500 1500 Thu nhập từ vi c bán hàng Copyright...
Ngày tải lên: 08/03/2014, 21:41
Bài 4 LÝ THUYẾT SẢN XUẤT (kinh tế vi mô 2)
... A.K .L , Trong đó : 0 < <1, 0 < <1 VD1: Q=K 0,75 .L 0 ,25 (nền kinh tế Mỹ 1899-19 12) VD2 : Q= K 1 /2 .L 1 /2 Ý nghĩa: 0 < <1, 0 < <1 hàm ý quy luật năng suất cận biên ... (w/r).L K L K 1 K 2 L 1 L 2 A B A(L 1, ,K 1 ) B(L 2, K 2 ) ΔC= 0 -w/r : Độ dốc đường đồng phí C: tổng chi phí w: giá đầu vào lao động r: giá đầu vào vốn Chapter 6: Production 11 of 24 Copyright © 20 09 ... biến đổi 0 10 0 — — 1 10 10 10 10 2 10 30 15 20 3 10 60 20 30 4 10 80 20 20 5 10 95 19 15 6 10 108 18 13 7 10 1 12 16 4 8 10 1 12 14 0 9 10 108 12 4 10 10 100 10 8 SẢN XUẤT VỚI MỘT ĐẦU VÀO BIẾN ĐỔI...
Ngày tải lên: 08/03/2014, 21:41
Bài 5 LÝ THUYẾT CHI PHÍ và LÝ THUYẾT LỢI NHUẬN (kinh tế vi mô 2)
... 20 0 20 8.3 25 33.3 7 50 175 22 5 25 7.1 25 32. 1 8 50 20 4 25 4 29 6.3 25 .5 31.8 9 50 24 2 29 2 38 5.6 26 .9 32. 4 10 50 300 350 58 5 30 35 11 50 385 435 85 4.5 35 39.5 Chi phí của hãng 2 of ... (2) (3) (4) (5) (6) (7) 0 50 0 50 1 50 50 100 50 50 50 100 2 50 78 128 28 25 39 64 3 50 98 148 20 16.7 32. 7 49.3 4 50 1 12 1 62 14 12. 5 28 40.5 5 50 130 180 18 10 26 36 6 50 150 20 0 ... lai. 2 of 35 © 20 08 Prentice Hall Business Publishing • Microeconomics • Robert S. Pindyck, 8e. Tính kinh tế của quy mô Tính KT nhờ quy mô Tính phi KT vì quy mô LAC 2 of 35 © 20 08 Prentice...
Ngày tải lên: 08/03/2014, 22:45
Bài 6 TỐI ĐA HÓA LỢI NHUẬN TRONG ĐIỀU KIỆN CẠNH TRANH HOÀN HẢO (kinh tế vi mô 2)
... bằng cạnh tranh dài hạn Lợi nhuận kế tóan và lợi nhuận kinh tế π = TR − wL − rK Lợi nhuận kinh tế bằng 0 Một hãng kiếm đƣợc lợi nhuận kinh tế thông thƣờng với khoản đầu tƣ của nó, nghĩa là nó ... MC 1 lên MC 2 Hãng sẽ giảm sản lƣợng cho đến khi chi phí cận biên MC 2 =Mc 1 + thuế bằng mức giá thị trƣờng. Chapter 8: Profit Maximization and Competitive Supply 21 of 37 Copyright © 20 09 Pearson ... cung (ngành) E s = (ΔQ/Q)/(ΔP/P) Chapter 8: Profit Maximization and Competitive Supply 22 of 37 Copyright © 20 09 Pearson Education, Inc. Publishing as Prentice Hall • Microeconomics • Pindyck/Rubinfeld,...
Ngày tải lên: 08/03/2014, 22:45
Bài 7 PHÂN TÍCH THỊ TRƯỜNG CẠNH TRANH (kinh tế vi mô 2)
... src=" 522 hGsjcAAAAEC62Lnz9KVL3fZwDQQOAAAASCM7dvzKEq6BwAEAAABp5Gc/a+/uvmIPV0vgAAAAgDRy/nz8+PGL9nC1BA4AAABIL6++2moJV0vgAAAAgPRy+HAsFuuyh6sicAAAAEDa+cd/PGcJV0XgAAAAgLTz8593WMJVETgAAAAg7bS0dHqXylUROAAAACAdeZfKVRE4AAAAIB15l8pVETgAAAAgHbW0dF661G0PKRI4AAAAIE398pcXLCFFAgcAAACkqUOHzltCigQOAAAASFM7d562hBQJHAAAAJC+OjouWUIqBA4AAABIXx98cNESUiFwAAAAQPpqavrIElIhcAAAAED6OnIkZgmpEDgAAAAgfZ0/H4/FuuwhKYEDAAAA0tqvfuU6o8kJHAAAAJDWzp79xBKSEjgAAAAgrbnOaCoEDgAAAEhrra0fW0JSAgcAAACktZaWTktISuAAAACAdNfR4TqjSQgcAAAAQOgJHAAAAJDuPvjgoiUkJnAAAAAAoSdwAAAAQLpzp9ikBA4AAAAg9AQOAAAAIPQEDgAAAEh3R47ELCExgQMAAADS3fnzcUtITOAAAAAAQk/gAAAAAEJP4AAAAABCT+AAAAAAQk/gAAAAgBDo7r5iCQkIHAAAAEDoCRwAAAAQAiNGZFlCAgIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAAKS7nJwRlpCYwAEAAADpLj76192XL9tDAgIHAAAApLvOS5/87dtv20MCAgcAAACEwN5jxxqbm+2hLwIHAAAApL0v/ToIgud37mw5e9YyeiVwAAAAQGg8s337pa4ue/g8gQMAAADS3ugLPf95vrPzx++8Yx+fJ3AAAABAmLgYR68EDgAAAEh7Iz/59M+e37kz1tlpK58mcAAAAEB6i/7m8489vX179+XLdvNbAgcAAACkty98/PnHWs6efefQIbv5LYEDAAAA0tuXft3rw3V79nTEYtbTQ+AAAACA9Bbt83Ibz77xhvX0EDgAAAAgrS37xlf7eqrl7Fl3VOkhcAAAAED6Gjs2cnvJLbfdfHNfA+6o0kPgAAAAgPR1663jgiB48GtfSzCzbc8eixI4AAAAIH1NnTo6CIKR2dkPzZ/f18zeY8ea29qG+aIEDgAAAEhfN900uucHc4uKphcW9jW2ddeu7suXh/OiBA4AAABIXxMmjPztj5f3fYij5ezZfR98MJwXJXAAAABAmpo/f+Knf5oTjZbPm9fX8D+8++6lrq5huyuBAwAAANLUjBljP/PI12bMGBuN9jp8vrNzR1PTsN2VwAEAAABp6pZbxnzmkRE33LDyjjv6mn91375he8tYgQMAAADSUWFhdOTIEZ9/vCg/P8HVRoftLWMFDgAAAEhH/+bfTOjrqQe/9rW+ntp77FhHLDYM1yVwAAAAQDq69dbcvp6akJMzf+bMvp59ubFxGK5L4AAAAIC0U1gYzcnJTjBw 722 39fXU8DzEIXAAAABA2lm0KD/xwMjs7LvnzOnr2WF4iEPgAAAAgLTzr/7VF5PO3FFS0tdTe48dG263UxE4AAAAIL3cdltur/dP+YzEhzh+dujQsFqawAEAAADp5etfn5jiZIJDHK/u23epq2v4LE3gAAAAgDQydmykqGhMisOJD3HsOXJk+OxN4AAAAIA0cuedk65qPsEhjtf+6Z+6L18eJnsTOAAAACCNzJs3/qrmExziON/Zefz06WGyN4EDAAAA0sXdd09K5fKin/FHt9zS11Ov7ts3TFYncAAAAEC6uP32vGv4qAk5OdMLC3t96nBLyzC5X6zAAQAAAGnhtttyc3Kyr+1j3S9W4AAAAIC0cO+9hdf8sUX5+WOj0V6fEjgAAACAQXLbbbkTJoy8nle48w//sNfHz3d2Nre1ZfwCBQ4AAAAYetdzfKPHvGnT+npq3wcfZPwCBQ4AAAAYYtd/fCMIgpHZ2X1danTnwYPdly9n9g4FDgAAABhiDz74lX55nQSXGj1++nRm71DgAAAAgKFUXj555MgR/fJSUydO7OupjH+XisABAAAAQ2bs2MjXvpbXX6 824 oYb5s+c2etTGf8uFYEDAAAAhsx3vztlxIisfnzBOTfd1NdTmf0uFYEDAAAAhsb06TmzZn2xf19z2L5LReAAAACAobF8+dR+f83E71LJ4GUKHAAAADAEHnpoak5O9kC8coJ3qbScPZup+xQ4AAAAYLAVFkbnzh03QC8+efz4vp76ZWtrpq5U4AAAAIDB9v3vFw/ci4/Mzp5eWNjrU/v/5//M1JUKHAAAADCoBu7NKb9VOm1ar48fbmm51NWVkVsVOAAAAGDw3HZb7sC9OeW3bvryl/t6qiMWy8jFChwAAAAwSMaOjTz44FcG4RNNyMkZG4 32+ lSmXoZD4AAAAIBB8oMfTB85csTgfK5bb76518cz9TIcAgcAAAAMhlWriiZMGDlon27qxIm9Pn64paX78uXMW6/AAQAAAANu/vyJs2Z9cTA/Y4LLcJy7eDHzNixwAAAAwMCaPj3nvvt+f5A/6YScnL6e+uBXv8q8JQscAAAAMIDGjo1UVBSPGJE1+J/6tj4uw3H89OnM27PAAQAAAANl7NhIZeWMIakbQRDc3Me 7VI5 k4o1UBA4AAAAYKD/4wfScnOyh+uyTJ0zo9fGWs2czb9UCBwAAAAyItWunDeZtUz7vy1/s87KmHbFYhm1b4AAAAID+t3bttKKiMUP7a8iJRvt66tS5cxm2cIEDAAAA+lk61I0e0wsLe 328 4/z5DNu5wAEAAAD9KX3qRhAEBbm5vT5+LOPuFBvZvHmO33wAAABkjJUr9w3hZ0+ruhEEwdSJE3t9vNVbVAAAAIBepVvdCIKgcNy4Xh/PvBupRPz+AwAAgOs0dmzkBz+YPrT3TOnVyOw+b1J7qasrwbOhI3AAAADAdSksjH7/+8U5OekYC3JHj+7rqdjHHwscAAAAQBAEwfTpORUVxSNGZKXnL2/EDX1em+Kjixcn5ORkzBfCNTgAAADgGt1996R0rhs9+rpT7NkLFzLpaxEZ2qvLAgAAQEitWlU0a9YX0//XmfOFLwyHL4cTHAAAAHB1xo6NPPVUSSjqRhAEOdFor48fP306k74orsEBAAAAV2H+/In33ff7af62lE+bOnFir4/HOjsz6esicAAAAEBKxo6NfPe7U8JycGO4ETgAAAAguenTc5Yvn5qe94K9Nq3nzmXSF0jgAAAAgETGjo3 823 87ee7ccSH99d/05S/3+njL2bOZ9GUSOAAAAKBPt92W++CDXxk5coRVpDmBAwAAAHpRWBhdtuzGoqIxVhEKAgcAAAD8Cz3vSZkzJzdEt0pB4AAAAIDfufvuSXfc8WXvSQkdgQMAAACCQNoIOYEDAACA4U7ayAACBwAAAMPU2LGR 22/ Py/i0MTLS5//3v9TVNTI7OzP+awocAAAADDuFhdFFi/KHyWVEc6LRvp6KffyxwAEAAADhc/fdk/7wD3MLC6NWkWEEDgAAADLf9Ok5CxZ8ecaMse78mqkEDgAAADJWT9e45ZYxLiCa8QQOAAAAMkrPpUOnTx87depo5zWGD4EDAACA0CssjP7rf/2lr3xl9JQpo3Jysi1kGBI4AAAACJ/p03MKCqJTp46+6abROTkR70BB4AAAACBNFRZGCwq+EARBfv4XJk78QjQ6YtKkL8gZ9CqyYcPMUPxC1734Yq+PP3rPPbmjR/tCAgAAhF1u7u+5ZAbXLDJhwshw/EpHftL7/wDGZU/IGekLCQAAAMPZDVYAAAAAhJ3AAQAAAISewAEAAACEnsABAAAAhJ7AAQAAAISewAEAAACEnsABAAAAhJ7AAQAAAISewAEAAACEnsABAAAAhJ7AAQAAAISewAEAAACEXsQKAGAIZWVlWQIwTFy5csUSgIHjBAcAAAAQek5wAMDQu/KP/lUTyGRZtzqtBgw4JzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0ItYAdAjKyvrtz++cuWKhQAAACHiBAcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQehErABie/ubWrF4f/9N/vGI5AACEjhMcAAAAQOgJHAAAAEDoCRwAAABA6AkcAAAAQOgJHAAAAEDoCRwAAABA6AkcAAAAQOgJHAAAAEDoCRwAAABA6AkcAAAAQOgJHAAAAEDoCRwAAABA6AkcAAAAQOgJHAAAAEDoRawAAIZc1q1ZlgAAcD2c4AAAAABCzwkOIInXdv36i2NGlM4eYxUwEK5cuWIJAADXzwkOIJHd+y8sWdNctvxI9XOttgEAAKQtgQPo0+79F8qWH+n5cdXmUxoHAACQtgQOoHft57ru+8GxTz9StfnUsnUfxOOO0wMAAGlH4AB60X6uq6T8UNuZ+Gcef/GNc4srjmocAABAuhE4gM8b0Wvd6NHQGFtccbT9XJc1AQAA6UPgAD4nOrWvutGjoTFWUn5I4wAAANKHwAF8Tmfzrtpp+eMT3Ua67Uy8pPzQidZLtgUAAKQDgQPoRensMU11M5I2jqn3HNy9/4J1AQAAQ07gAHqXl5udtHEEQVC2/IjGAQAADDmBA+hTXm72ye0lC+bmJB4rW36k+rlW6wIAAIaQwAEkEolk1dcUJ20cVZtPaRwAAMAQEjiAJCKRrB3P3rJ+5aTEY1WbTy1b90E8fsXGAACAwSdwACmpXFGQtHG8+Ma5xRVHNQ4AAGDwCRxAqipXFGx/pijxTENjbM53ftF+rsu6AACAwSRwAFfhzrIv7qqdlnimqbmzpPyQxgEAAAwmgQO4OqWzxyS9fWzbmXhJ+aEDzZ3WBQAADA6BA7hqs4qiKTaO3fsvWBcAADAIBA7gWuTlZjfVzSgpiiYeK1t+5LVdv7YuAABgoAkcwDXKy83e98IfLJibk3hsyZrm6udarQsAABhQAgdw7SKRrPqa4qSNo2rzKY0DAAAYUAIHcF0ikawdz96yfuWkxGNVm0/d8b1fxuNXbAwAABgIAgfQDypXFCRtHA2NscUVRzUOAABgIAgcQP+oXFGw/ZmixDMNjbE53/lF+7ku6wIAAPqXwAH0mzvLvrirdlrimabmzpLyQxoHAADQvwQOoD+Vzh7TVDcjf3wkwUzbmXhJ+aEDzZ3WBQAA9BeBA+hns4qiKTaO3fsvWBcAANAvBA6g/+XlZjfVzUh6+9iy5Ude2/Vr6wIAAK6fwAEMiLzc7Pqa4qSNY8ma5urnWq0LAAC4TgIHMFAikaz6muKlC3MTj1VtPlX9XKvbxwIAANdD4AAGUCSStXXDTetXTko8VrX51OKKoxoHAABwzQQOYMBVrihI2jgaGmMaBwAAcM0EDmAwVK4o2FU7LfFMQ2Ns8pKm9nNd1gUAAFwtgQMYJKWzxyRtHD23j9U4AACAqyVwAIOndPaY46/MzB8fSTDT0zh2779gXQAAQOoEDmBQTSkY2VQ3I2njKFt+ROMAAABSJ3AAgy0vN7upbsaCuTmJx8qWH9n6+lnrAgAAUiFwAEMgLze7vqY4aeN44PHj1c+1WhcAAJCUwAEMjUgkq76meOnC3MRjVZtPVT/X6vaxAABAYgIHMGQikaytG25av3JS4rGqzacWVxzVOAAAgAQEDmCIVa4oSNo4GhpjGgcAAJCAwAEMvcoVBbtqpyWeaWiMTV7S1H6uy7oAAIDPEziAtFA6e0zSxtF2Jl5SfkjjAAAAPk/gANJF6ewxx1+ZmT8+kmCmp3Hs3n/BugAAgE8TOIA0MqVgZFPdjKSNo2z5EY0DAAD4NIEDSC95udnNL89cMDcn8VjZ8iObtp22LgAAoIfAAaSd0dER9TXFSRvH6idPVj/Xal0AAEAgcADpKRLJqq8priifmHisavOpR5466faxAACAwAGkqUgk64ePTl6/clLisZq604srjmocAAAwzAkcQFqrXFGwce3kxDMNjbHFFUcvdnZbFwAADFsCB5DuVt0/cVfttMQzDY2xonsPtp/rsi4AABieBA4gBEpnj0naONrOxEvKD2kcAAAwPAkcQDiUzh5zekdJ/vhIgpm2M/GJdzTt3n/BugAAYLgROIDQyMvNbqqbkbhxBEFQtvyIxgEAAMONwAGESV5udvPLMxfMzUk8Vrb8yKZtp60LAACGD4EDCJnR0RH1NcVJG8fqJ09WP9dqXQAAMEwIHED4RCJZ9TXFFeUTE49VbT71yFMn4/ErNgYAABlP4ABCKRLJ+uGjk9evnJR4rKbu9OKKoxoHAABkPIEDCLHKFQUb105OPNPQGFtccfRiZ7d1AQBABhM4gHBbdf/EXbXTEs80NMaK7j3Yfq7LugAAIFMJHEDolc4es6t2WuLbx7adiZeUH9I4AAAgUwkcQCYonT2mqW5G0sYx8Y6m3fsvWBcAAGQegQPIEHm52UkbRxAEZcuPaBwAAJB5BA4gc+TlZp/cXrJgbk7isbLlR6qfa7UuAADIJAIHkFEikaz6muKkjaNq8ymNAwAAMonAAWSansaxfuWkxGNVm08tW/dBPH7FxgAAIAMIHEAGikSyKlcUJG0cL75xbnHFUY0DAAAygMABZKzKFQVbnpiaeKahMba44qjbxwIAQNgJHEAmW7Zo3K7aaYlnGhpjJeWHNA4AAAg1gQPIcKWzx+yqnZb49rFtZ+Il5YdOtF6yLgAACCmBA8h8pbPHNNXNSNo4pt5zcPf+C9YFAABhJHAAw0JebnbSxhEEQdnyIxoHAACEkcABDBd5udknt5csmJuTeKxs+ZHq51qtCwAAwkXgAIaRSCSrvqY4aeOo2nxK4wAAgHAROIDhpadxrF85KfFY1eZTy9Z9EI9fsTEAAAgFgQMYdiKRrMoVBUkbx4tvnFtccVTjAACAUBA4gGGqckXB9meKEs80NMYWVxxtP9dlXQAAkOYEDmD4urPsi7tqpyWeaWiMlZQf0jgAACDNCRzAsFY6e0zS28e2nYmXlB860NxpXQAAkLYEDmC4m1UUTbFx7N5/wboAACA9CRwAQV5udlPdjJKiaOKxsuVHXtv1a+sCAIA0JHAABEEQ5OVm73vhDxbMzUk8tmRNc/VzrdYFAADpRuAA+GeRSFZ9TXHSxlG1+ZTGAQAA6UbgAPidSCRrx7O3rF85KfFY1eZTd3zvl/H4FRsDAIA0IXAAfFblioKkjaOhMba44qjGAQAAaULgAOhF5YqC7c8UJZ5paIzN+c4v2s91WRcAAAw5gQOgd3eWfXFX7bTEM03NnSXlhzQOAAAYcgIHQJ9KZ49pqpuRPz6SYKbtTLyk/NCB5k7rAgCAISRwACQyqyiaYuPYvf+CdQEAwFAROACSyMvNbqqbUVIUTTxWtvzIa7t+bV0AADAkBA6A5PJys/e98AcL5uYkHluyprn6uVbrAgCAwSdwAKQkEsmqryleujA38VjV5lMaBwAADD6BAyBVkUjW1g03rV85KfFY1eZTd3zvl/H4FRsDAIBBI3AAXJ3KFQVJG0dDY2xxxVGNAwAABo3AAXDVKlcU7KqdlnimoTE2eUlT+7ku6wIAgEEgcABci9LZY5I2jp7bx2ocAAAwCAQOgGtUOnvM8Vdm5o+PJJjpaRy791+wLgAAGFACB8C1m1IwsqluRtLGUbb8iMYBAAADSuAAuC55udlNdTMWzM1JPFa2/MjW189aFwAADBCBA+B65eVm19cUJ20cDzx+vPq5VusCAICBIHAA9INIJKu+pnjpwtzEY1WbT1U/1+r2sQAA0O8EDoD+EYlkbd1w0/qVkxKPVW0+tbjiqMYBAAD9S+AA6E+VKwqSNo6GxpjGAQAA/UvgAOhnlSsKdtVOSzzT0BibvKSp/VyXdQEAQL8QOAD6X+nsMUkbR9uZeEn5IY0DAAD6hcABMCBKZ485/srM/PGRBDM9jWP3/gvWBQAA10ngABgoUwpGNtXNSNo4ypYf0TgAAOA6CRwAAygvN7upbsaCuTmJx8qWH9n6+lnrAgCAayZwAAysvNzs+pripI3jgcePVz/Xal0AAHBtBA6AAReJZNXXFFeUT0w8VrX51CNPnXT7WAAAuAYCB8BgiESyfvjo5PUrJyUeq6k7vbjiqMYBAABXS+AAGDyVKwo2rp2ceKahMba44ujFzm7rAgCA1AkcAINq1f0Td9VOSzzT0Bgruvdg+7ku6wIAgBQJHACDrXT2mKSNo+1MvKT8kMYBAAApEjgAhkDp7DGnd5Tkj48kmGk7E594R9Pu/ResCwAAkhI4AIZGXm52U92MxI0jCIKy5Uc0DgAASErgABgyebnZzS/PXDA3J/FY2fIjm7adti4AAEhA4AAYSqOjI+pripM2jtVPnqx+rtW6AIaVrs6LlgCQOoEDYIhFIln1NcUV5RMTj1VtPvXIUyfj8Ss2BjAcfLjrtbp7i842H7AKgBQJHABDLxLJ+uGjk9evnJR4rKbu9OKKoxoHQGbr6rz41rplr69Z0nmmbfuff+tyPG4nAKkQOADSReWKgo1rJyeeaWiMLa44erGz27oAMlLb/t119xYde+PFnp92nmn7/55ss6QAACAASURBVJ75S2sBSIXAAZBGVt0/cVfttMQzDY2xonsPtp/rsi6ATHI5Ht/z1COvLC/rPNP26ccP1tV8uOs1+wFISuAASC+ls8ckbRxtZ+Il5Yc0DoCMcbb5wJYlkw/W1fT67M/+40MuOAqQlMABkHZKZ485vaMkf3wkwUzbmfjEO5p2779gXQCh1nNw46Xyks8c3Pi0zjNt7zyxwq4AEhM4ANJRXm52U92MxI0jCIKy5Uc0DoDwirWe+Ml35vR1cOPTjr3xYqz1hI0BJCBwAKSpvNzsk9tLFszNSTxWtvzIpm2nrQsgXC7H4we3bXrxnqlnm5uSDo8rKln6yvGcgin2BpCAwAGQviKRrPqa4qSNY/WTJ6ufa7UugLDoObix58nVqQzPLK/49gv71A2ApAQOgLTW0zjWr5yUeKxq86ll6z6Ix6/YGECaa359a4oHN6Lj8++ra5r36A9viETsDSD5d85WAJDuf1JHsipXFARBULX5VIKxF984134uXl9THIlkWRpAGuo8175z3bKWxoZUhmeWV/zRmv8qbQCkzgkOgHCoXFGw5YmpiWcaGmOLK466fSxAGmp+feuP75iYSt2Ijs+/p3aXgxsAV0vgAAiNZYvG7aqdlnimoTFWUn5I4wBIH12dF7d/746djz+QyvDNC5eWv9ycP7vU3gCulsABECals8fsqp2W+PaxbWfiJeWHTrResi6AIffhrtfq7i1K8eDGome2f3PD1uzoaHsDuAYCB0DIlM4e01Q3I2njmHrPwd37L1gXwFDp6rz41rplr69Z0nmmLelw4dwF5S8331h2p70BXDOBAyB88nKzkzaOIAjKlh/ROACGRNv+3XX3Fh1748VUhuc/sWXJszsc3AC4TgIHQCjl5Waf3F6yYG5O4rGy5Ueqn2u1LoBBczke3/PUI68sL0vx4MaDO04XLVpmbwDXz5WZAUL7J3gkq76meHHF0YbGWIKxnpvL9txoFoABdbb5wPY//1YqaSMIgvlPbJE2APqRExwAIdbTONavnJR4rGrzqWXrPojHr9gYwADpObjxUnlJKnVjXFHJ0leOqxsA/fy9sRUAhPvP8UhWz+mMnpMafXnxjXPt5+L1NcWRSJalAfSvWOuJN/7ij882N6UyPG/txhl/8vANEd+HA/QzJzgAMkHlioItT0xNPNPQGFtccbT9XJd1AfSXy/H4wW2bXrxnaip1o+fgxsz7V6kbAANB4ADIEMsWjdtVOy3xTENjrKT8kMYB0C9irSd+8p05e55cncrwzPKKb7+wL6dgir0BDBCBAyBzlM4ek/T2sW1n4iXlh060XrIugOvR/PrWFA9uRMfn31fXNO/RHzq4ATCgBA6AjDKrKJpK45h6z0G7Arg2nefat3/vjp2PP5DK8Mzyige2nxxXNMveAAaaigyQafJys5vqZiz4s6NNzZ19Dl1qbbwYHL8YHIkFLZ1BEASF0WBaTjB1dPCtEyemTJlijQC9an59a4ppIzo+/47//FL+7FJLAxgcAgdABsrLzd73wh8srjja0Bj77HOXWoNjfxF0Nj//Lx9u6fzn0vH81KklJSU//elPZQ6AT+vqvPjmX97b0tiQyvDNC5d+7fHnsqOj7Q1g0HiLCkBmikSy6muKF8zN+d1DV+LB6W3BwXuCzubEH9vU1DR16tRNmzbF43GbBAiC4MNdr9XdW5RK3YiOz1/0zPZvbtiqbgAMMoEDIGNFIlk7nr1l/cpJQRAEXeeCX3wnOPlk6h++evXqOXPmtLe32yQwnHV1Xnxr3bLX1yzpPNOWdPjmhUvLX26+sexOewMYgu9+rQAgs1WuKOjujlf/RXnSgxuf19TUtGDBgn379kVc+R8Yltr2797xg/tSSRtBEMx/YkvRomWWBjBUnOAAyHx58VeuoW70aGpq+tGPfmSHwHBzOR7f89QjrywvS6VuFM5d8OCO0+oGwNDyL3IAGe7EiROrV6++nldYvXr1XXfd5ZqjwPBxtvnA9j//loMbAOHiBAdAhvvjP/7jNHkRgPTXc3DjpfKSVOrGuKISBzcA0ocTHACZ7MSJE01NTdf/Ok1NTSdOnHCIA8hssdYTL//7/yPFgxvz1m6c8ScP3+ASRQBpwwkOgEy2Z8+eNHwpgHRzOR4/uG3Ti/dMTfHgxtJXjs+8f5W6AZBWBA6ATPbee++l4UsBpJVY64mffGfOnidTulzRnJXrv/3CvpyCKfYGkG5UZ6AXWVlZlsBn1NTU1NTU2AMwfGye8y9+Gh2fv+Sv3xxXNMtmANKTwAEAAEnMLK/4ozX/1XtSANKZP6MBAKBPDm4AhIVrcAAAQO9uXri0/OVmdQMgFJzgAHpx5cpmS8gMjzyyraZmZ/+81sTy/NmPNf2/0bxz/91igZD68MCBn/3d33WeP590Mjo+//b/6/kby+60NICwcIIDIJN99atT+ +21 Rs9sOxMv+bPO3Z8stFggdLouXXqrtvb1TZtSqRs9BzfUDYBwcYIDIJPNm3dTv73W6JIgCNrOxMtWd+zauLB01DtBvNOGgVBI/eBGEATzn9hStGiZpQGEjhMcAJlsypQJJSWF/fBC0aJgZMFvf1a2umPryTuCSNSGgTR3ubt7z7ZtKR7cKJy74MEdp9UNgJASOAAy3E9/+r1+eJWb/+ozDzzwH1qq371d4wDS2dmWli2PPXZwZ0qXIpr/xJYlz+6I5ubZG0BICRwAGW7KlAkbN5Zf10tMXvvp4xu/VVXbXv3e/PioQksG0k3PwY2XqqtTObgxrqjEwQ2ADCBwAGS+hx/+2rW/USVaFOT9SV9PVv1N2+KNxRoHkFZiHR2pH9yYt3bjt1/Y5+AGQAYQOAAyXyQyoqHh+9fQOEqKgv9z1VeDrERXpG5ojC3eWByfOMeegSF3ubv74Ntvv7huXYoHN5a+cnzm/atuiLjuPkAmEDgAhoW8vJx9+9Zd1XtVNq4N9r0Q/Of7t+xa+1DiyYbG2OTlkfZRGgcwlGIdHT/ZsGFPXV0qw3NWrv/2C/tyCqbYG0DGEDgAhotIZMSqVd84fnxD0qMcJUXB8VeCVfcHPf+oWVr0ftLG0XYmXrIm0p77dXsGhkTPwY2zLS1JJ6Pj8++ra5qzotLBDYAMI3AADC9Tpkx4//3K48c3PDQ1mD8xKPzfd0EpjAbzJwYPTQ2OvxK8XxdM+ZcXFS0tev/4hrvzx3YkeOW2M/GSP+vc/clCSwYGU2cstv3pp1M8uDGzvOKB7SfHFc2yN4DMo1sDDEdTpkyYOy6YO+6ff9p9JRiR9b+fKujjQyacaqosL6muazs/oa+XbTsTL1vdsWvjwtJR7wTxTnsGBlpzY+PO559PZTI6Pn/JX78pbQBkMCc4APhd3UgsL+ejpsryBdPfSzxWtrpj68k7gkjUYoGB03NwI8W6cfPCpeUvN6sbAJlN4ADgKuTlfFRfUZG0cTzwH1qq371d4wAGyIcHDrxUXd1y+HDSyej4/EXPbP/mhq3Z0dH2BpDZBA4Ark5kRHd9RcXS215PPFZV21793vz4qEIbA/pR16VLb9XWvr5pUyo3gu05uHFj2Z32BjAsvk21AgCu+i+PEd1blz8+Pf9E1asPJxir+pu2n+8vrl8dRH7TYmnA9fvwwIGf/d3fpZI2giCY/8SWokXLLA1g+HCCA4BrVHlX7cby/5J4pqExtnhj8cXcOdYFXI/L3d17tm1L8eBG4dwFD+44rW4ADDcCBwDXbtU3/n7X2ocSzzQ0xor+LNI+SuMArtHZlpYtjz12cOfOVIbnP7FlybM7orl59gYw3AgcAFyX0qL3kzaOtjPxkjWR9tyvWxdwVXoObrxUXZ3KwY1xRSUObgAMZwIHANertOj9008tyB/bkWCm7Ux84r+L7f5koXUBKYp1dKR+cGPe2o3ffmGfgxsAw5nAAUA/yMv5qKmyPHHjCIKgbHXH7k8Wun0skNjl7u6Db7/94rp1KR7cWPrK8Zn3r7oh4vL5AMOawAFA/8jL+aj5iXsXTH8v8VjZ6o5N/2O+xgH0JdbR8ZMNG/bU1aUyPGfl+m+/sC+nYIq9ASBwANBvRo/8uL6iImnjWP1XbdXv3q5xAJ/Xc3DjbEvye0tHx+ffV9c0Z0WlgxsA9BA4AOhPkRHd9RUVFfOT/NNrVW37I2/eHh9VaGNAj85YbPvTT6d4cGNmecUD20+OK5plbwD87htRKwCgn/9qGdH9w/ufGj/6o6pXH04wVrOt/dDx4vrVQeQ3LZYGw1xzY+PO559PZTI6Pn/JX78pbQDweU5wADAgKu+q3Vj+XxLPNDTGFm8svpg7x7pg2Oo5uJFi3bh54VIHNwDoi8ABwEBZ9Y2/37X2ocQzDY2xoj+LtI/SOGA4+vDAgZeqq1sOH046GR2fv+iZ7d/csNUVNwDoi8ABwAAqLXo/aeNoOxMvWRNpz /26 dcHw0XXp0lu1ta9v2pTKjWBvXri0/OXmG8vutDcAEhA4ABhYpUXvn35qQf7YjgQzbWfiE/9dbPcnC60LhoMPDxyoe/zxY3v3pjLcc3AjOzra3gBITOAAYMDl5XzUVFmeuHEEQVC2umP3JwvdPhYy2OXu7tQPbhTOXfDgjtMObgCQIoEDgMGQl/NR8xP3Lpj+XuKxstUdm/7HfI0DMtLZlpYtjz2W4sGN+U9sWfLsjmhunr0BkCKBA4BBMnrkx/UVFUkbx+q/aqt+93aNAzLJ5e7uPdu2vVRdnfrBjaJFy+wNgKsicAAweCIjuusrKtbf/aPEY1W17Y+8eXt8VKGNQQboObhxcOfOVIbnrd24uKbewQ0AruVbTSsAYFD/4hnRXXlXbRAEVa8+nGCsZlv7oePF9auDyG9aLA1C6nJ396F33tlTV5fK8LiikoV/9dOcgin2BsC1cYIDgCFQeVftloceTzzT0BhbvLG4fdQc64IwinV0/GTDhhTrxry1G7/9wj51A4Dr4QQHAENj2dzXvzLuVNmTzyeYaWiMlayJND0zJ+83+2wMwuKqDm5Ex+cv+es3xxXNsjcArpMTHAAMmdKi93etfSjx7WPbzsRL1kRORL9uXRAKnbFYfU1NinVjZnnFA9tPqhsA9AuBA4ChVFr0flNledLGMfW7sd2fLLQuSHPNjY0/fvTRlsOHk05Gx+ffV9c079Ef3hBxoBiA/iFwADDE8nI+Sto4giAoW92x+5OFbh8L6akzFtv+9NM7n38+leGbFy51cAOAfidwADD08nI+Ovn/LFkw/b3EY2WrO6rfvV3jgHTz4YEDqR/cWPTM9m9u2OrgBgD9TuAAIC1ERnTXV1QkbRxVte0aB6SPrkuX3qqtfX3TplSGb164tPzl5hvL7rQ3AAaCwAFAuuhpHOvv/lHisara9mXbSuOjCm0MhtaHBw7UPf74sb17UxnuObiRHR1tbwAM1DeTVgBAGv21NKK78q7aIAiqXn04wdiLb55r/6i4fnUQ+U2LpcHgu9zd/fbf/m2KaaNw7oL5G7ZGc/PsDYAB5QQHAGmn8q7aLQ89nnimoTG2eGNx+6g51gWD7GxLy5bHHkuxbsx/YsuSZ3eoGwAMAoEDgHS0bO7ru9Y+lHimoTFWsiaiccCgudzdvWfbtpeqqzvPn086XDh3wYM7ThctWmZvAAwOgQOANFVa9P6utQ8lvn1s25l4yZrIiejXrQsGWs/BjYM7d6YyPG/txsU19Q5uADCYBA4A0ldp0ftNleVJG8fU78Z2f7LQumCAXO7uPvj22yke3BhXVLL0leMz71/lRrAADDKBA4C0lpfzUVNleUnh0cRjZas7dn+y0O1jod/FOjp+smHDnrq6VIbnrd347Rf25RRMsTcABp/AAUC6y8v5aN+67yyY/l7isbLVHdXv3q5xQH/pObjx4rp1Z1uS364oOj7/vromBzcAGEICBwAhEBnRXV9RkbRxVNW2axzQLzpjsfqamhQPbswsr3hg+8lxRbPsDYAhJHAAEA6REd07vv/n6+/+UeKxqtr2OzZ/NT6q0MbgmjU3Nv740UdbDh9OOtlzcGPeoz90cAOAof 920 QoACJHKu2qDIKh69eEEMw2NscUbi+tXB5HftNgYXJXOWGxnbW0qaSMIgpsXLv3G+r+TNgBIE05wABAylXfVbl/1SOKZhsbYnPVT2kfNsS5I3YcHDqR8cOPLi57Z/s0NW9UNANKHwAFA+Nw5a/eutQ8lnmlq/rhkTUTjgFR0Xbr0Vm3t65s2pTJ888Kl5S8fu7HsTnsDIK0IHACEUmnR+02V5fljOxLMtJ2Jl6yJHAhuty5I4MMDB+oef/zY3r2pDPcc3MiOjrY3ANKNwAFAWM0qbE6pcay8sPuThdYFn3e5u7vn4Ebn+fNJhwvnLnhwx2kHNwBIWwIHACGWl/NRU2V5SeHRxGNlqzteO/ctt4+FTzvb0rLlscdSPLgx/4ktS57dEc3NszcA0pbAAUC45eV8tG/ddxZMfy/x2JLHzlS/e7vGAUEQXO7u3rNt20vV1akf3ChatMzeAEhzAgcAoRcZ0V1fUZG0cVTVtmsc0HNw4+DOnakMz1u7cXFNvYMbAISCwAFAJoiM6N7x/T9ff/ePEo9V1bbfsfmr8VGFNsYwdLm7++Dbb6d4cGNc0aylrxyfef8qN4IFIDTfEFoBABmj8q7aIAiqXn04wUxDY2zxxuL61UHkNy02xvAR6+h449lnz7ak9Nt+3tqNM/7kYWkDgHBxggOAjFJ5V+32VY8knmlojM1ZP6V91BzrYjjoObjx4rp1qdSN6LgvO7gBQEgJHABkmjtn7d619qHEM03NH5esiWgcZLzOWOwnGzbsqatLZXhmecUDr/2vnIIp9gZAGAkcAGSg0qL3j2+4O39sR4KZtjPxkjWRA8Ht1kWmam5s/PGjj6Z2cGPifXVN8x79oYMbAISXwAFAZpoy4VRTZXnyxrHywu5PFloXGaYzFtv+9NM7n38+leGZ969+4LWWcUWz7A2AUBM4AMhYeTkfNVWWJ719bNnqjq0nF7h9LBmj5+BGy+HDSSej4/IWPbN93toaBzcAyAACBwCZLC/no/qKiqSN44EnzlW/e7vGQdh1Xbr0Vm1tigc3bv7W/eU/PX5j2Z32BkBmEDgAyHCREd31FRVLb3s98VhVbXv1u7fHszQOwurDAwfqHn/82N69SSejuRMWPbP9m/+pLjs62t4AyJzv+qwAgMz /22 5E99blj0/PP1H16sMJxqpq23/e9NX61Ucjv2mxNEKk69Kld37841TSRhAEhbd+ff7//ffR3Dx7AyDTvuWzAgCGicq7aoMgSNw4GhpjizcW168ONA7C4mxLy/Znnuk8fz6V4fn/8cdFi79jaQBkJG9RAWAYqbyrdtfahxLPNDTGJq/5/fZRc6yLNHe5u3vPtm0vVVenUjcKb739wR2n1Q0AMpjAAcDwUlr0ftLG0XYmXrImonGQzs62tGx57LGDO3emMjzvL59Z8qP/7m0pAGQ2gQOAYae06P3jG+7OH9uRYKancey++DXrIt1c/v/Zu/+wJu883/+fQLJuFkIHaBiEwcEaquVgljlMqQeybQdxBGldj+s5Bqhz7R5h7Toanans+l1YWFnYa/ZotxoYT7nEM+faKsYdt5drB7EltTNdcNs4XkcDh5ExVleHHyO/rJHJsCTw/SOdrmPlzg3yIz+ej7+m8LoCeSdjcr945749nks/+pHMxY2YpcsLz9xIK9zF3AAAQY+CAwAQipKf7LNXGn12HIbvjrb/+1rGBf/hHBx8u7b20jvvyAlnfff1jSc6NQnJzA0AEAooOAAAIUqruWuvNOau+Fg6Ztg52HQ7Vyi5fCwW2ITH0/nBByfKy4d7fJ8BV/2l2MJ/vp5W9N0wJWeUBwCECgoOAEDo0mrutphMPjuO4pqR6n99gY4DC8jldL5dW3vBYpETTtv0p8Xn+jWJTzE3AEBIoeAAAIQ0ZbinxWQqfPacdKyqcaD6X19wK+g4sAAcNttbe/bIW9yI3nT8UtbeBhY3AAAhiIIDABDqlOGeppKKfS+/KR2rahzIb3zO/XuJTAzzxuV0Nr/xxvmjR+WE0/7rnxSfuxOz/D8zNwBAiL6pYwQAAAghKl9qFEJUvfOqRMZqc+bXpbTsFMpf9TAxzDWHzSaz2lA/8aUXKv/3khf+K0MDAIQyNjgAAPhM5UuNbWVbpTNWmzNp91cGfi+DcWHujI+Nvd/YKLPdWPZCvvGdW7QbAABQcAAA8B+ydVd8dhz9Q279biUdB+bIrY4OS0XF9YsXfSbVUU/k/U/L6tfPqn5Pw9wAAKDgAADgt2Trrtw5kBsfNSiR6R9yx20R7aPPMy7MIu/ixrn6ete9ez7DiSv/86ZT3UtyNjM3AAC8KDgAAHiYVnPXXmmU7jiEEIbvjrb/+1rGhVkx3NMjc3FDCJHzl4cKfnBJHfNl5gYAwOcoOAAAeASt5q6jZkPuio+lY4adg/X/L0couXwsZm7C47lw8uSp6mpZixtp6VvO/ptuo4m5AQDwEAoOAAAeLWLRr1tMJp8dx07zp9X/+gIdB2ZmuKfn+N69nefPywlnvfr/Ffyf/6uOW8LcAAD4IgoOAACmpAz3tJhMphyLdKyqcWDXOYNbQceBaZjweC796EcyFzdivpJUeKojreRvmRsAAFO+c2MEAABIvVKGew5tPhAbcbfqnVclYuYfDnf 923 MtO68pf9XD0OCTc3Dw3cOHh3tkPVuySr6TuvV7YarfYW4AAEi9bWMEAAD4VPlSY0zEvZ2WP5fIWG3O/LqU068qIsZ/wcQwlQmPp+vDDy9YLHLC6qgnNvyvZs3ybOYGAIBPfEQFAABZdnzjH9vKtkpnrDanrixx4PcyGBceyeV0vl1bK7PdSFv7cnHzbdoNAABkouAAAECubN0Vnx1H/5Bbv1tJx4Evcthsb+3ZI+djKeqoqE3f/6es2jNhag1zAwBAJgoOAACmIVt35c6B3PioQYlM/5A7botoH32eccHL5XQ2v/HG+aNH5YTT1uQXv3Mz5rmNzA0AgGmh4AAAYHq0mrv2SqN0xyGEMHx3tP3f1zIueBc3eq5e9ZlUR0XlVezP+tsfhUVEMzcAAKaLggMAgGnTau46ajbkrvhYOmbYOVj//3KEksvHhqjxsbH3GxtlLm4sy1xlPPl/l2zYIxS8PQMAYCZ4BQUAYCYiFv26xWTy2XHsNH9a/a8v0HGEoFsdHZaKiusXL/pMqqOi8sqqVtd9qNI+xdwAAJgxCg4AAGZIGe5pMZlMOT6uiFHVOLDrnMGtoOMIFd7FjXP19a5793yGE1esML71L0s2/7UIVzE6AAAe670ZIwAAYOavo+GeQ5sPxEbcrXrnVYmY+YfDXf/2XMvOa8pf9TC04Dbc09N88KCcakMIkfOqSbelRiziUikAAMzGGzNGAADAY6p8qVEX94viozUSGavNmV+XcvpVRcT4L5hYUJrweD46darz/Hk54cQVK3L2HlD/p3zOuAEAwGyh4AAAYBYUZZ77akyfYb/U6SStNqfueqL94Je1v7rExILM9BY3Sl/VFVeJyHjmBgDALOKPBgAAzI5s3ZW2sq3Sl4/tH3LrdytvhmUwrqAx4fFcOHnyVHW1nHYjJjGxsP6YrsRMuwEAwKyj4AAAYNZk667YK40+O46lpaL93irGFQScg4Nv19bK/FhKltG4sdGqWVXM+UQBAJgLFBwAAMwmreauz45DCGEoG2//97WMK3BNeDydH3xworx8uMf3iWNjEhMLX/9+2q7/HaZdwegAAJgjFBwAAMwyrebu7e8V5K74WDpm2DlY/dGLjCsQeRc3LlgscsJpOTkb6/9J8/yrQsWlggEAmEMUHAAAzD5luKfFZPLZcVT9wFl9MU8oOe4NJA6bTebihjoqatO+2qx9PwxLeo6rpQAAMNd4rQUAYE54O459L78pHatqHCiyrHIr6DgCgMvpbH7jjfNHj8oJp+XkFDf8MCavTKhjGB0AAPPx7osRAAAwV6+y4Z7KlxqFEFXvvCoRO9F6b+BuZovJofxVD0PzWw6bTWa1oY6KWrNtW/yaPxUxOuYGAMD8vfViBAAAzKnKlxp1cb8oPlojkbFevJ9fl9L0PxRaxS+YmL8ZHxt77/DhnqtX5YSXPfvs83/2F6pn1nHGDQAA5hkFBwAAc64o89xXY/oM+6X+/m+1OfXXE+2vf0k71snE/Metjo6f/MM/uO7d85lUR0W98K1vLVm3TWhTOeMGAADzj1dfAADmQ7buSlvZVunLx/YPufWvRdwMy2Bc/mB8bOz9xsZz9fVy2o3EFSuM33t9yeZ9Ii6NdgMAgAXBCzAAAPMkW3fFXmn02XEsLRXt91YxroXV73BYKiquX7woJ5yzdWtBdb3q2f/B+UQBAFhAFBwAAMwfreauz45DCGEoG2//97WMa0FMeDwXTp48s3+/zMWNLQcO6IoqxVOrWdwAAGBh8UoMAMC80mru3v5eQe6Kj6Vjhp2D1R+9yLjm2XBPz/G9ezvPn5cTztm6taDygDp7u3hiCaMDAGDBcZJRAADm/dU33NNiMuWbzdarz0nEqn7gFOF5lf/lJ8LtYmhzbcLj+ejUKZnVRkxi4trt2zVfW8/5RAEA8B+8JAMAsACU4Z7W73x738tvSseqGgeKLKvcCi44Orecg4Nv19bKbDeyjMaNVTWaF3dyPlEAAPzr/RUjAABgoVS+1CiEqHrnVYnMidZ7A3czW0wO5a96mNism/B4uj788ILFIif82eJG6oviK6uoNgAA8DcUHAAALKTKlxq//tWfFdQfkshYL97P2Jds3aPQKn7BxGaRc3Dw3cOHh3tkNUdpOTmrjFvCluVwxg0AAPwTf3wAAGCBrVvZ3la2VTpjd/xaX544sCiNcc0Wh812orxcTruhjoraVFmZVfLdsJWbaTcAAPBbFBwAACy8bN0Vn5eP7R9y61+L6BjLYFyPyeV0Nr/xxvmjR+WE03Jyir/34f8YrwAAIABJREFUvZhV/008XSBUnAwFAAD/RcEBAIBfWJnokNVxmET7vVWMa8YcNttbe/b0XL3qM6mOilpfVpZV/Mdhv/+KiGN3BgAAf0fBAQCAv9Bq7torjfrEa9IxQ9n42ZFvMq7pGh8bk7+4sezZZ401NfFZG4S+WCzSMD0AAPwfBQcAAH5Eq7l7qfyV3BUfS8cK9g5Vf/Qi45LvVkeHpaJC5uJG3o4dq1/dqfpPfyiSsrhaCgAAgYKrqAAA4GevzeGeFpMp32y2Xn1OIlb1A6cIz6v8Lz8RbhdDkzA+NvbhW29dv3hRTjhxxYpvbt+uevIpseybIlzF9AAACCD8UQIAAL+jDPe0fufb+15+UzpW1Tiw5s1n3QrOfDmlfofDUlEhs93I2bq14DvfUa3IF08X0G4AABB476AYAQAA/qnypUYhRNU7r0pkrBdH80Vmi8mh/FUPE3vQhMfz0alTnefPywknrliRU1KijvuqWLaWM24AABCgKDgAAPBflS81fv2rPyuoPySRsV68n7Ev2bpHoVX8gol5Dff0NB886Lp3T044Z+tWXWamiEsTX1nFGTcAAAhcvIoDAODX1q1sbyvbKp2xO36tL08cWMSlTMWEx3Ph5MlT1dVy2o2YxMTC2lpd1gti+XrOJwoAQKDjhRwAAH+XrbtirzTGRw1KZPqH3PrXIjrGMkJ5UM7Bwbdra2V+LCXLaNxYXq5Z+vsizSgi43maAQAQ6Cg4AAAIACsTHbI6DpNov7cqBOcz4fF0fvDBifLy4R7f5yLxLm6kfeMbYbo1nE8UAICgQcEBAEBg0Gru2iuN+sRr0jFD2fjZkW+G1GS8ixsXLBY54bScnI3l5Zqkp4V+i4jR8bwCACBoUHAAABAwtJq7l8pfyV3xsXSsYO9Q9UcvhshMHDabzMUNdVTUpsrKrM2bw76SKZ7ZKFRcXhcAgKDCVVQAAAioV+5wT4vJ9K0f7DtxMU8iVvUDpwjP+8vMnygnXcE6CpfTeb6xsefqVTnhtJycVZs2hS2KFE8XCHUMTyQAAILwbRIjAAAgwF68wz1NJRUr4m9WvfOqRKyqceBfrjzbUnoxKDsOh8 12/ uhROUl1VFTB7t0xiYkiepn46vOccQMAgKB9j8QIAAAIRJUvNQohpDsO68XRfJHZYnIof9UTNHd8fGzsvcOHZS5uLHv22ee3bFEtWiSW5nDGDQAAghsFBwAAgarypcbVKy4a9kstMlgv3k/a/RV7rUKr+EUQ3OVbHR0/+Yd/cN275zOpjop64VvfWrJypVDHiJQCzrgBAEDQo+AAACCAZeuutJVtle44+ofc+vJE++tf0o51Bu49HR8b+/Ctt65fvCgn/B+LG0lZQpsqFJxVHQCA4MfrPQAAgS1bd+VG7cvxUYMSmf4ht/61iPaRjAC9j7c6OiwVFTLbjZytW1eXlKgiviRSN4m4NNoNAABCBC/5AAAEvOQn++yVRp8dh2GvaL+3KrDu2oTHc+HkyXP19XI+lpK4YsWWAwd0mZkiepnQF3O1FAAAQgoFBwAAwUCruWuvNOau+Fg6Zigbb7qdGyh3arin5/jevZ3nz8sJ52zdWvCd76g1GqHLE0+tZnEDAIBQw2s/AABBQqu 522 Iy+ew4imtGqj960c /vi3 dx41R1tZzFjZjExM8WNzSJQr9FPLGEJwMAACGIk4wCABBEr+vhnhaT6Vs/2HfiYp5ErOoHThGe95eZP1FOuvzwXjgHB0//3d/JqTaEEFlGY+rzz4eFh3M+UQAAQv2NECMAACCoXtrDPU0lFSvib1a986pErKpx4F+uPNtSetGvOo4Jj6frww8vWCxywjGJiWu3b9c8+aRQqsXTBZxxAwCAUH8XxAgAAAg+lS81CiGkOw7rxdF8kdlicih/1eMPv7NzcPDdw4eHe2T9Mhkvv/y1/Pyw8HARlya+sorFDQAAQMEBAEBwqnypcfWKi4b9RyUy1ov3k3Z/xV6r0Cp+sbC/becHH8hc3FBHRRXs3h2TmCiUapH8AmfcAAAAXvy5AwCAoJWtu9JWtlU60z/k1pcnDixKW6hf0uV0Nr/xhsx2Iy0np/h734tJTBSaRJG6iXYDAAB8joIDAIBglq27cqP25fioQYlM/5Bb/1pE+0jG/P96DpvtrT17eq5e9ZlUR0VtqqzM2rz5s/OJPl0gVGoeXwAA8DkKDgAAglzyk332SqPPjsOwV7TfWzVvv5V3ceP80aNywsuefdZYU/PZx1LSCkVcGg8rAAB4CAUHAADBT6u566jZkLviY+mYoWy86XbuPPw+tzo6TlVXy1zcyNuxY3VJiWrRIhGXJvTFYpGGBxQAAHwRBQcAACEhYtGvW0wmnx1Hcc1I9Ucvzt2vMT 429 n5j47n6ete9ez7D3sWNJStXCqVa6PJEUhZXSwEAAFPhXQIAAKFCGe5pMZlMOT5O51n1A+cu6xq3YvbPcHGro8NSUXH94kU54ZytWz9b3OB8ogAAQM5bHUYAAEAIvfCHew5tPhAbcbfqnVclYuYfDnfdfLal9KJy0jUrP3fC4/no1KnO8+flhBNXrMgpKVFrNEIIsTRHxOh44AAAgO/3OYwAAIBQU/lSY0zEvZ2WP5fIWC+O5ovM0392PWL8F4/544Z7epoPHpTzmRQhRM7WrbrMTCGEUMeIZWs54wYAAJCJggMAgFC04xv/+LWkbsN+qYuYWC/e132SaK8VWsUMO45pLW7EJCYWfOc7ny1uxKWJr6zijBsAAEA+3jcAABCisnVX2sq2Smf6h9z68sSBRTO5LKtzcPD43r0y240so3FjeblaoxFKtVi+nvOJAgCA6eKtAwAAoStbd+XOgdz4qEGJTP+QO+6PF7WPZMi/2QmPp/ODD06Ul8v5WEpMYmJhbW3aN74RFh4uNIkizSgi43loAADAdPERFQAAQppWc9deadRXW/rvPSkRM+wVbftXZUd9JIS42Tt4wf7Jx503fvzTbrujRwih1yW++PXlz6UtzdI/Ffs74t3Dh4d7euT89IyXX/5afn5YeLgQnE8U802hUDAEBL3JyUmGgNBBwQEAQKjTau46ajZsOPy69epzEjFD2fhfFz799puveEuNB9kdPZ9/MVEtti8TTy7y8UPVUVEFu3fHJCYKwflEAQDALKDgAAAAImLRr1tMpnyzecqOY9ItBv7pr/fs93lTPS5R3imMSeJ5rQif4g/kaTk5qzZt+mxxY3GGWPw1zriBhTL5U/6+jeCk+Do7Sgg5vJkAAABCCKEM97SYTKYcyyO+Nz4ifvaKuL1f/q1Zbovanwnn+MNfV0dFbaqszNq8OSw8XCjVInWTSMig3QAAAI+P9xMAAOAzynDPoc0H9r385m99ddItrv2ZcDmme2s9LvHGNeF54K/jy5591lhT89nHUqKXiTSjUMcwdgAAMDvvZBgBAAB4UOVLjTER93Za/vyz/x74pxm0G149LvHhgPhGnFBHRb3wrW8tWbnys29wPlEAADDbKDgAAMDDdnzjH7+W1G3Yf1SM9U7rkylfZLktXvoD/X//dolq0SIhhFDHiJQCoVIzZAAAMLv4iAoAAHiEbN2VtrKtyhu7Hv+m/qdt6LN2Y3GGeGYj7QYAAJgLbHAAAIBHS/y9K+7RWbgdu6Pn5i/vJ3/jjznjBgAAmDtscAAAgEe7YJ+9mxqJo90AAABzioIDAAA82seds3dTtovMEwAAzCk+ogLgERSKbdPKT042cJtBcJuf3fLXZd/mT2fz1rhNf7vNyZ+KH/901v5V+fGPf8w/rQAAYE6xwQEAAB7N7pi9m7Lb3W43IwUAAHOHDQ4As+JPZWS2cZt+dpvbHvNRbxI3ZKSWcpsBepvHBv9FiD/gXzcAABAoKDgAADN0XyRzm0F8m78q/4NEtehxzc5votfrlUredQAAgDnEWw0AjzA5OclthuBtejX8dNJvb43bnI/bdA6IxiJx1SqEWK6ZtYLjxRdf5J9WAAAwpyg4AADAb9iaxNHiz/9racSs3fBzzz3HdAEAwJyi4AAAAL+1uPG5p2av4MjKymLGAABgTnEVFQAAQl7HWbEn7qF2Qwjx5CKRqJ6N21freu4+yZgBAMCcouAAACCEjY2KxiJRXzDV97cvm42fsuzvDSXd1Ud6mTcAAJg7FBwAAISqjrOiQicunpCIPLlIGJMe76cklYlFCUKIqoY+Og4AADB3KDgAAAg9Hvdnixv3+n1mC9flpKWmzvAHqXVC+0ef/1dVQ19R+Sdu9ySPAAAAmHUUHAAAhJieDrE3SXpx43M5NcfXv/n++R//WK/XT/sHqXUi5X8JxW+d0fzEuyP5pmt0HAAAYNZRcAAAEDI8bnFyl6jWy1ncSMzM3dJ6R5dXJITQarWXLl2qq6ubxs9KKhPPHBOq6C9+x2pz5puuDYyM84AAAIBZRMEBAEBo8C5unDfLyWaV1eWbW9TR2s+/olQqd+zYcePGDZ+rHHq9/ofNnSJu80O7Gw+y2px6YxcdBwAAmEVKRgAAQJDzuMWHbwrLTjnZGJ1+7d//syYh+ZHfTU5OvnLlys2bNy9cuPDxxx+bzf9Rl5hMpueeey4rKys5OVkIYX/a9c1v/7x/yD3VD+ofcuuNXe99/+mVOjUPEQAAeHwUHAAABLXBm+LwH4oeu5xsVlld6h+9Gqb08fYgOTk5OTm5qKjowYLj0KFDD2ZW6tR2S6re2OWz42hrXJ6dHskDBQAAHhMfUQEAIEh53OKDelG+VE67oY6N32Sxp23e4bPdkE8brbJbUvW+FjQMJd1n2z7l4QIAAI+JggMAgGDkHBDmfJkfS0kzmoqbb8foVs76b6GNVl069kxupkY6VrDbUX2klwcNAAA8DgoOAACCjq1J7IkTV60+g97Fjaw9h2ZxceMhSqWixZzis+Ooauij4wAAAI+DggMAgCDiHBBvrBFHi+Vkl60tnKPFjYcolYrWw0/v27ZYOlbV0Ldm+8/d7kkeRgAAMAMUHAAABIuOs/IXN/IONq+ubXrMxY3JB/gMV5Ym+Ow4rDZnvukaHQcAAJgBCg4AAALf2KhoLBL1BXKyy9YWGk87lhjWzf+vWVma0HxQJ52x2pwZr/xsYGScRxUAAEwLBQcAAAGu46yo0ImLJ+RkvYsbKnXEQv2y6wxPtDUul87YHS69sYuOAwAATAsFBwAAAcvj/mxx416/z2xiZu6W1jsLsrjxkOz0SLslNT5W6tMx/UNuvbGrw+HiQQYAADJRcAAAEJh6OsTeJJmLGzk1xwsOt6qjtX7yu6/UqWV2HO2X7/NQAwAAOSg4AAAINB63OLlLVOvlL27o8or87U5oo1V2S6pep5aOGUq6z7Z9ymMOAAB8ouAAACCgeBc3zpvlZLPK6vLNLf6zuPEQbbTq0rFncjM10rGC3Y7qI7088gAAQBoFBwAAAcLjFh/Uy1zciNHpC8/cSNu84zEvBDvXlEpFiznFZ8dR1dBHxwEAAKRRcAAAEAgGb4raDGHZKSebVVa38dglTUJyQNwzpVLRevjpfdsWS8eqGvrWbP+52z3JcwEAADwSBQcAAP7Nu7hRvlT02H1m1bHxmyx2/1/c+KLK0gSfHYfV5sw3XaPjAAAAj0TBAQCAH3MOCHO+zMWNNKOpuPl2jG5lgN7XytKEtsbl0hmrzZlUYB8YGeepAQAAHkLBAQCAv7I1iT1x4qrVZ9C7uJG151DALW48JDs90mfH4b18LB0HAAB4CAUHAAD+xzkg3lgjjhbLyS5bW7hQixuKB8zWbWanR944kxYfK9XUeDuO9sv3eaYAAIDPUXAAAOBnOs7KX9zIO9i8urYp0Bc3HpKcsMhuSfXZcRhKuuk4AADA5yg4AADwG2OjorFI1BfIyS5bW2g87VhiWBeUk9BGq+yWVJ+XjzWUdDedG+aJAwAABAUHAAD+ouOsqNCJiyd8Bj9f3FCpI4J4HtpoVYs5xWfHUVxxo/pIL08fAABAwQEAwELzuD9b3LjX7zObmJm7yWIP1sWNhyiVihZzSuHaaOlYVUNf9ZFeLh8LAECIo+AAAGBB9XSIvUlyFjeEEDk1xwsOt6qjtaEzHqVS0VT71L5ti6VjVQ19+aZrdBwAAIQyCg4AABaIxy1O7hLVepmLG1ta7+jyikJzVJWlCT47DqvNSccBAEAoo+AAAGAheBc3zpvlZLPK6kJtceOLKksT2hqXS2esNmdSgX1gZJznFwAAIYiCAwCA+eVxix9Vy1zciNHpC8/cSNu8g7EJIbLTI312HP1Dbr2xi44DAIAQRMEBAMA8GrwpajPEO1VysllldRuPXdIkJDO2z2WnR944kxYfq5TIeDuO9sv3GRcAACGFggMAgHnhcYsP6kX5UtFj95lVx8Z7FzfClEom95DkhEV2S6rPjsNQ0k3HAQBASKHgAABg7jkHRG2GsOyUk00zmoqbb7O4IUEbrbJbUnMzNdIxQ0l307lhxgUAQIig4AAAYI7ZmsSeOJmLG5ss9qw9h1jc8EkbrWoxp/jsOIorblQf6WVcAACEAgoOAADmjHNAvLFGHC2Wk/UubsToVjI2mZRKRYs5xWSMk45VNfRVH+nl8rEAAAQ9Cg4AAOaGd3HjqtVnUB0bn3ewmcWNGVAqFYf2JO3btlg6VtXQl2+6RscBAEBwo+AAAGC2jY2KxiKZixvL1hYaTzuWGNYxthmrLE2oK0uSzlhtznzTtVGXh3EBABCsKDgAAJhVHWdFhU5cPOEz6F3cWF3bpFJHBOh9nXzAwv4mOzbHtTUul85YbU7dhs6BkXGepAAABCUKDgAAZol3caO+QNzr95lNzMzdZLGzuDGLstMjfXYc/UNuvbGLjgMAgKBEwQEAwGzo6ZC5uCGEyKk5XnC4VR2tZWyzKzs98k6rPj5W6lQm/UPuuDX29sv3GRcAAEGGggMAgMfjcYuTu0S1XubixpbWO7q8IsY2R7TRKrslVbrjEEIYSrrpOAAACDIUHAAAPIaeDrE3SZw3y8lmldWxuDEPtNEqx+m03EyNdMxQ0l1/8g7jAgAgaFBwAAAwIx63+FG1zMWNGJ2+8MyNtM07GNv8iFCHt5hTfHYcO/ffrj7Sy7gAAAgOFBwAAEzf4E1RmyHeqZKTzSqr23jskiYhmbHNJ6VS0WJOMRnjpGNVDX27Dtx2uyeZGAAAAf/qzwgAAJgGj1t8+Kaw7JSTVcfGb/jBv1JtLNi7HKXi0J6k2CfCqxr6JGJmy52uT1wt5hSlUsHQAAAIXGxwAAAgm3NA1GbIbDfSjKbi5tu0GwuusjShrixJOmO1OfNN10ZdHsYFAEDgouAAAEAeW5PYEyd67D6D6tj4TRZ71p5DYUo2Jf3Cjs1xbY3LpTNWm1O3oXNgZJxxAQAQoCg4AADwxTkg3lgjjhbLyXoXN2J0KxmbX8lOj/TZcfQPufXGLjoOAAACFAUHAACSvIsbV60+g+rY+LyDzSxu+K3s9Mg7rfr4WKlHp3/IHbfG3n75PuMCACDgUHAAADCFsVHRWCRzcWPZ2kLjaccSw7qQmpDiAQHxC2ujVXZLqnTHIYQwlHTTcQAAEHAoOAAAeJSOs6JCJy6e8Bn0Lm6srm1SqSMYm//TRqtuN+tzMzXSMUNJd/3JO4wLAIAAQsEBAMBv8y5u1BeIe/0+s4mZuZss9lBb3Ah0SqWixZzis+PYuf 929 ZFexgUAQKCg4AAA4AE9HTIXN4QQOTXHCw63qqO1jC3geDuOfdsWS8eqGvqKyj9xuyeZGAAAAfD6zggAABBCCI9bnHpNnDfLySZm5ubUNlFtBPZ7IKWisjRBCFHV0CcRO/HuyMCIu8WcolQqGBoAAP6MDQ4AAITo6RB7k2S2G1lldSxuBI3K0oTjNUulM1abM990jcvHAgDg5yg4AAChzeMWP6oW1Xo5Z9yI0ekLz9xI27yDsQWToryYtsbl0hmrzak3dtFxAADgzyg4AAAhbPCmqM0Q71TJyWaV1W08dkmTkMzYgk92emRb43Lpy8f2D7n1xq6bvWOMCwAA/0TBAQAISR63+KBelC8VPXafWXVsvHdxI0zJuauCVnZ6pN2S6rPjWLq+s/3yfcYFAIAfouAAAIQe54CozRCWnXKyaUZTcfNtFjdCgTZa5bPjEEIYSrrpOAAA8EMUHACAEGNrEnviZC5ubLLYs/YcYnEjdGijVbeb9bmZGumYoaS7+kgv4wIAwK9QcAAAQoZzQLyxRhwtlpP1Lm7E6FYytlCjVCpazCk+O46qhj46DgAA/AoFBwAgNHgXN65afQbVsfHrG9tY3Ahl3o5j37bF0rGqhr6i8k/c7kkmBgCAX7yCMwIAQJAbGxVvlYqLJ+Rkl60tfL7iiEodwdhC/R2SUlFZmiCEqGrok4ideHdkYMTdYk5RKhUMDQCAhcUGBwAgqHWcFRU6Oe2GOjY+72Dz6tom2g18rrI04XjNUumM1ebMN10bGBlnXAAALCwKDgBAkBobFY1For5A3Ov3mU3MzDWediwxrGNseEhRXkxb43LpjNXm1Bu76DgAAFhYFBwAgGDkaJe5uCGEyKk5XnC4lcWNGZh8QBDfzez0SJ+Xj+0fcuuNXTd7x3hWAACwUCg4AADBxeMWJ3eJ/QaZixtbWu/o8ooYG6St1KnldBxL13e2X77PuAAAWBAUHACAINLTIfYmifNmOVnv4oY6WsvYIIc2WmW3pOp1aumYoaT7bNunjAsAgPlHwQEACArexY1qvZzFjRidvvDMDRY3MF3aaNWlY8/kZmqkYwW7HdVHehkXAADzjIIDABD4Bm+K2gyZixtZZXUbj13SJCQzNsyAUqloMaf47DiqGvroOAAAmGcUHACAQOZxiw/qRflS0WP3mfUubqRt3hGmVDI5zJhSqWg9/PS+bYulY1UNfWu2/9ztnmRiAADMDwoOAEDA8i5uWHbKyaYZTSxuYBZVlib47DisNme+6RodBwAA84OCAwAQmGxNMhc31LHxmyz2rD2HWNzA7KosTWg+qJPOWG3OjFd+NjAyzrgAAJhrFBwAgEDjHBBvrBFHi+Vk04ym4ubbMbqVjA1zYZ3hibbG5dIZu8OlN3bRcQAAMNcoOAAAAcXWJPbEiatWn0F1bPz6xjYWNzDXstMj7ZbU+Fipp1n/kFtv7OpwuBgXAABzh4IDABAgxkblL24sW1toPO2IT89mbJgHK3VqmR1H++X7jAsAgDlCwQEACAQdZ0WFTubiRt7B5tW1TSp1BGPDvNFGq+yWVL1OLR0zlHSfbfuUcQEAMBcoOAAA/m1sVDQWifoCca/fZzYxM9d42rHEsI6xzQ/FA5iGNlp16dgzuZka6VjBbkf1kV7GBQDArKPgAAD4MUe7qNCJiyfkZHNqjhccbmVxAwtIqVS0mFN8dhxVDX10HAAAzDoKDgCAX/K4xcldYr9B5uLGltY7urwixoYFp1QqWg8/vW/bYulYVUPfmu0/d7snmRgAALOFggMA4H96OsTeJHHeLCfrXdxQR2sZG/xHZWmCz47DanPmm67RcQAAMFsoOAAA/sS7uFGtl7O4EaPTF565weIG/FNlaULzQZ10xmpzZrzys4GRccYFAMDjo+AAAPiNwZuiNkPm4kZWWd3GY5c0CcmMDX5rneGJtsbl0hm7w6U3dtFxAADw+Cg4AAB+wOMWH9SL8qWix+4z613cSNu8I0ypZHLwc9npkTfOpMXHSj1X+4fcemNX++X7jAsAgMdBwQEAWGjexQ3LTjnZNKOJxQ0EluSERXZLqs+Ow1DSTccBAMDjoOAAACwoW5PMxQ11bPwmiz1rzyEWNxBwtNEquyXV5+VjDSXdTeeGGRcAADNDwQEAWCDOAfHGGnG0WE42zWgqbr4do1vJ2BCgtNGqFnOKz46juOJG9ZFexgUAwAxQcAAAFoKtSeyJE1etPoPq2Pj1jW0sbiAIKJWKFnNK4dpo6VhVQ1/1kV4uHwsAwHRRcAAA5tfYqPzFjWVrC42nHfHp2YwNwUGpVDTVPrVv22LpWFVDX77pGh0HAADTQsEBAJhHHWdFhU7m4kbewebVtU0qdQRjQ5CpLE3w2XFYbU46DgAApoWCAwAwL8ZGRWORqC8Q9/p9ZhMzc42nHUsM6xgbglVlaUJb43LpjNXmTCqwD4yMMy4AAOSg4AAAzD1Hu6jQiYsn5GRzao4XHG5lcQNBLzs90mfH0T/k1hu76DgAAJCDggMAMJc8bnFyl9hvkLm4saX1ji6viLEhRGSnR944kxYfK3UCXW/H0X75PuMCAEAaBQcAYM70dIi9SeK8WU7Wu7ihjtYytgAy+QCmMTPJCYvsllSfHYehpJuOAwAAaRQcAIA54F3cqNbLWdyI0elZ3EAo00ar7JbU3EyNdMxQ0t10bphxAQAwFQoOAMBsG7wpajNkLm5kldVtPHaJxQ2EOG20qsWc4rPjKK64UX2kl3EBAPBIFBwAgNnjcYsP6kX5UtFj95mN0ekLz9xI27wjTKlkcoBSqWgxpxSujZaOVTX0VR/p5fKxAAB8EQUHAGCWeBc3LDvlZDO27dt47JImIZmxAZ9TKhVNtU/t27ZYOlbV0JdvukbHAQDAQyg4AACzQfbihjo2fpPFnlFayeIG8EiVpQl1ZUnSGavNSccBAMBDKDgAAI/HOSDeWCNzcSPNaCpuvh2jW8nYAAk7Nse1NS6XzlhtzqQC+8DIOOMCAMCLggMA8BhsTWJPnLhq9Rn0Lm5k7TnE4gYgR3Z6pM+Oo3/IrTd20XEAAOBFwQEAmBHv4sbRYjnZZWsLjacdLG4A05KdHnmnVR8fK9UJ9g+549bY2y/fZ1wAAFBwAACmr+OsqNbLXNzIO9i8urZJpY5gbMB0aaNVdkuqdMchhDCUdNNxAABAwQEAmI6xUdFYJOoLxL1+n1nv4sYSwzrGBsyYNlrlOJ2Wm6mRjhlKuutP3mFcAIBQRsEBAJCt46yo0ImLJ+Rkc2qOs7gBzIoIdXiLOcVnx7Fz/+3qI70FBU4PAAAgAElEQVSMCwAQsig4AAAyeNzi5C6ZixuJmblbWu/o8ooYW9BTPIBpzCmlUtFiTjEZ46RjVQ19uw7c5vKxAIAQfblkBAAAH3o6xMFvyqk2hBA5NcepNoA5edOmVBzakxT7RHhVQ59EzGy50/WJq8WcolTSOgEAQgsbHACAqXkXN6r1ctqNGJ2exQ1grlWWJtSVJUlnrDZnvunaqMvDuAAAIYWCAwAwhcGbYm+SOG+Wk80qq9t47JI6WsvYgLm2Y3NcW+Ny6YzV5tRt6BwYGWdcAIDQQcEBAPgCj1t8UC/Kl8pc3Cg8cyNt844wJR97BOZJdnqkz46jf8itN3bRcQAAQgdvRgEAv23wpjj8h6LHLiebsW3f1/7kL6k2gPmXnR55p1WvN3b1D7mnyvQPuePW2Nsal2enRzKxqSi+zslKACBIsMEBAPht5UvltBvq2PhNFntGaSXtBrBQtNEquyU1PtbH/wcNJd3tl+8zLgBA0ONdKQBg2tKMplW7X6faABacNlrlOJ 224 bXrVptTImYo6a4rS9qxOY6JPWhykuvpAkBQYYMDADAN3sWNrD2HaDcAPxGhDm8xp+RmaqRjO/ffrj7Sy7gAAEGMggMAINeytYXG044Y3UpGAfgVpVLRYk7Zt22xdKyqoW/XgdtuN2sLAIAgfUFkBAAAn9Sx8S/81dElhnWMAvDTt3RKRWVpghCiqqFPIma23On6xNViTlEqObMmACDYsMEBAKFo3DUqP+xd3KDdAPxfZWnC8Zql0hmrzZlvusblYwEAwYeCAwBCzq22s5YNOpnhnJrjq2ubVOoI5gYEhKK8mLbG5dIZq82pN3bRcQAAggwFBwCEkAm3+8KBXed2F7iG+n2GEzNzt7Te0eUVMTcgsGSnR7Y1Lpe+fGz/kFtv7LrZO8a4AABBg4IDAELFsKPjeEFSp8UsJ5xTc7zgcKs6WsvcgECUnR5pt6T67DiWru9sv3yfcQEAggMFBwAEP+/iximjXs7iRoxOz+IGEAS00SqfHYcQwlDSTccBAAgOFBwAEOScvTflL25kldVtPHaJxQ3INPkApuGHtNGq28363EyNdMxQ0l19pJdxAQACHQUHAAStCbe782T9ifVLZS5uFJ65kbZ5R5iSK4gDwUOpVLSYU3x2HFUNfXQcAIBAR8EBAMHJ2Xvz7VcyLuzfKSecsW3fxmOXNAnJzA0IPt6OY9+2xdKxqoa+ovJP3G6WcQAAAfuSxwgAIPh0nqyXWW2oY+MLvv9ejG4lQwOC+Q2fUlFZmiCEqGrok4ideHdkYMTdYk5RKhUMDQAQcNjgAICg4hoZaN6+Rma7kWY0feu9/tgUvUKhUCg4ngGCXGVpwvGapdIZq82Zb7o2MDLOuAAAAYeCAwCCh+Nc01tr4npsVp9JdWz8Jos9a88hhgaElKK8mLbG5dIZq82pN3bRcQAAAg4FBwAEA+/ixvmKYjnhZWsLjacdfCwFCE3Z6ZFtjculLx/bP+TWG7tu9o4xLgBAAKHgAICAd6vt7CmjXubiRt7B5tW1TSp1BHMDQlZ2eqTdkuqz41i6vrP98n3GBQAIFBQcABDAxl2j75cXndtdIOdCsN7FjSWGdcwNgDZaZbek6nVq6ZihpJuOAwAQKCg4ACBQ3Wo7a9mgu/7uCTlhFjcAPEQbrbp07JncTI10zFDSXX2kl3EBAPwfBQcABJ4Jt/vCgV0yFzcSM3O3tN5hcQPAFymVihZzis+Oo6qhj44DAOD/KDgAIMAMOzqOFyR1Wsxywjk1xwsOt6qjtcwNwCMplYrWw0/v27ZYOlbV0Ldm+8/d7kkmBgDwWxQcABAwvIsbp4x6+Ysburwi5oa5o3gA0wholaUJPjsOq82Zb7pGxwEA8FsUHAAQGKa1uJFVVpdvbmFxA4B8laUJzQd10hmrzZnxys8GRsYZFwDAD1FwAIC/m3C7O0/Wy1zciNHpC8/cSNu8I0ypZHQApmWd4Ym2xuXSGbvDpTd20XEAAPwQBQcA+DVn7 823 X8m4sH+nnHBWWd3GY5c0CcnMDcDMZKdH2i2p8bFSDWn/kFtv7OpwuBgXAMCvUHAAgJ/yLm6cWL902GH3GVbHxm+y2FncAPD4VurUMjuO9sv3GRcAwH9QcACAP3KNDLSY8mUubqQZTcXNt2N0K5kbgFmhjVbZLal6nVo6ZijpPtv2KeMCAPgJCg4A8DuOc01vrYnrsVl9Jr2LG1l7DrG4AWB2aaNVl449k5upkY4V7HZUH+llXAAAf0DBAQB+xDUy0Lx9zfmKYjnhZWsLWdwAMHeUSkWLOcVnx1HV0EfHAQDwBxQcAOAvbrWdlb+4kXeweXVt0+MvboyPj0/+Bg8BgIcolYrWw0/v27ZYOlbV0Ldm+8/dbv4ZAQAsJAoOAFh4467R98uLzu0ukBNetrbQeNqxxLBulo5e+GwLAB8qSxN8dhxWmzPfdI2OAwCwgCg4AGCB3Wo7a9mgu/7uCTlh7+KGSh3B3ADMp8rShOaDOumM1ebMeOVnAyPjjAsAsCAoOABgwUy43d7FDddQv89wYmbultY7s7W4AQDTtc7wRFvjcumM3eHSG7voOAAAC4KCAwAWxrCj43hBkszFjZya4wWHW9XRWuYGYAFlp0faLanxsVIfbesfcuuNXR0OF+MCAMwzCg4AmG8TbveFA7tOGfXyFzd0eUXMDYA/WKlTy+w42i/fZ1wAgPlEwQEA88q7uNFpMcsJZ5XV5ZtbWNwA4Fe00Sq7JdXn5WMNJd1N54YZFwBg3lBwAMA8mXC7O0/Wy1zciNHpC8/cSNu8I4yrnADwP9poVYs5xWfHUVxxo/pIL+MCAMwPCg4AmA/O3ptvv5JxYf9OOeGssrqNxy5pEpKZG/zc5AOYRqhRKhUt5pTCtdHSsaqGvuojvVw+FgAwDyg4AGBueRc3TqxfOuyw+wyrY+M3WewsbgAICEqloqn2qX3bFkvHqhr68k3X6DgAAHONggMA5pBrZKDFlC9zcSPNaCpuvh2jW8ncAASQytIEnx2H1eak4wAAzDUKDgCYK45zTW+tieuxWX0mvYsbWXsOsbgBIBBVlia0NS6XzlhtzqQC+8DIOOMCAMwRCg4AmH2ukYHm7WvOVxTLCS9bW7iAixuKB/DAAZix7PRInx2H9/KxdBwAgDlCwQEAs+xW21n5ixt5B5tX1zaxuAEgCGSnR944kxYfK/UPmrfjaL98n3EBAGYdBQcAzJpx1+j75UXndhfICS9bW2g87VhiWMfcAASN5IRFdkuqz47DUNJNxwEAmHUUHAAwO261nbVs0F1/94ScsHdxQ6WOYG4Agow2WmW3pOZmaqRjhpLupnPDjAsAMIsoOADgcU243d7FDddQv89wYmbultY7LG4ACGLaaFWLOcVnx1FccaP6SC/jAgDMFgoOAHgsw46O4wVJMhc3cmqOFxxuVUdrmRuA4KZUKlrMKYVro6VjVQ191Ud6uXwsAGBWUHAAwAxNuN0XDuw6ZdTLX9zQ5RUxNwAhQqlUNNU+tW/bYulYVUNfvukaHQcA4PFRcADATHgXNzotZjnhrLK6fHMLixsAQlBlaYLPjsNqc9JxAAAeHwUHAEzPhNvdebJe5uJGjE5feOZG2uYdXAgWQUnxAKaBqVSWJrQ1LpfOWG3OpAL7wMg44wIAzBgFBwBMg7P35tuvZFzYv1NOOKusbuOxS5qEZOYGIMRlp0f67Dj6h9x6YxcdBwBgxig4AEAW7+LGifVLhx12n2F1bPwmi53FDQD4XHZ65J1WfXys1L+K3o6j/fJ9xgUAmAEKDgDwzTUy0GLKl7m4kWY0FTffjtGtZG4A8CBttMpuSfXZcRhKuuk4AAAzQMEBAD44zjW9tSaux2b1mfQubmTtOcTiBgA8kjZa5TidlpupkY4ZSrrrT95hXACAaaHgAIApuUYGmrevOV9RLCfM4gYAyBGhDm8xp/jsOHbuv119pJdxAQDko+AAgEeb1uJG3sFmFjcAQCalUtFiTjEZ46RjVQ19uw7c5vKxAAC5ry+MAAAeMu4a/bCm9Pq7J+SEl60tfL7iiEodwdwAYBrvQZWKQ3uSYp8Ir2rok4iZLXe6PnG1mFOUSi5FDADwgQ0OAPgtt9rOWjbo5LQb3sWN1bVNAd1ujI+PT/4Gjz6AeVZZmlBXliSdsdqc+aZroy4P4wIASKPgAIDfHOq7Rt8vLzq3u8A11O8znJiZu8liX2JYF+j3WsnHagAsqB2b49oal0tnrDanbkPnwMg44wIASKDgAAAhhBh2dMhc3BBC5NQcLzjcqo7WMjcAeHzZ6ZE+O47+Ibfe2EXHAQCQQMEBINRNuN0XDuw6ZdTLXNzY0npHl1fE3ABgFmWnR95p1cfHSu2U9Q+549bY2y/fZ1wAgEei4AAQ0oYdHccLkjotZjnhrLI6FjcAYI5oo1V2S6p0xyGEMJR003EAAB6JggNAiJpwuy8dqZa5uBGj0xeeuZG2eQdzA4C5o41WOU6n5WZqpGOGku76k3cYFwDgIRQcAEKRs/fm269kXGqokhPOKqvbeOySJiGZuQHAXItQh7eYU3x2HDv3364+0su4AAAPouAAEFom3O7Ok/Un1i8ddth9htWx8d7FjTAuNQIA80WpVLSYU0zGOOlYVUPfrgO33W4ucQ0A+M0rCCMAEDpcIwPNf5Yrp9oQQqQZTat2v061AUiYnOTYEnPzDlWpOLQnKfaJ8KqGPomY2XKn6xNXizlFqVQwNAAAGxwAQoXjXNNba+JkLm5sstiz9hyi3QCABVRZmnC8Zql0xmpz5puujbo8jAsAQMEBIPi5Rgaat685X1EsJ5xmNBU3347RrWRuALDgivJi2hqXS2esNqduQ+fAyDjjAoAQR8EBIMh5Fzd6bFafSXVsfN7BZhY3AMCvZKdHtjUul758bP+QW2/sutk7xrgAIJRRcAAIWuOu0ffLi2QubixbW2g87VhiWBdqU1I8gOcMAP+UnR5pt6T67DiWru9sv3yfcQFAyKLgABCcbrWdtWzQXX/3hM+kd3FjdW2TSh3B3ADAP2mjVT47DiGEoaSbjgMAQhYFB4Bg413cOLe7wDXU7zOcmJm7yWIPwcUNAAg42mjV7WZ9bqZGOmYo6a4+0su4ACAEUXAACCrDjg6ZixtCiJya4wWHW9XRWuYGAAFBqVS0mFN8dhxVDX10HAAQgig4AASJCbf7woFdp4x6mYsbW1rv6PKKmBsABBZvx7Fv22LpWFVDX1H5J273JBMDgBB6jWAEAILAsKOj+dvflFNtCCGyyurSNu9gaAAQqO9flYrK0gQhRFVDn0TsxLsjAyPuFnOKUslJlAEgJLDBASCwTbjdl45Uy1zciNHpC8/coN0AgCBQWZpwvGapdMZqc+abrg2MjDMuAAgFFBwAApiz9+bbr2RcaqiSE84qq9t47JImIZm5AUBwKMqLaWtcLp2x2px6YxcdBwCEAgoOAAFpwu3uPFl/Yv3SYYfdZ1gdG+9d3AhT8rk8YDYpHsA0sCCy0yPbGpdLXz62f8itN3bd7B1jXAAQ3Cg4AAQe18jA269kXNi/U044zWgqbr7N4gYABKvs9Ei7JdVnx7F0fWf75fuMCwCCGAUHgADjONf01po4mYsbmyz2rD2HWNwAgOCmjVb57DiEEIaSbjoOAAhiFBwAAoZrZKB5+5rzFcVywt7FjRjdSuYGAKFAG 626 3azPzdRIxwwl3dVHehkXAAQlCg4AgcG7uNFjs/pMqmPj8w42s7gBAKFGqVS0mFN8dhxVDX10HAAQlCg4APi7cdfo++VFMhc3lq0tNJ52LDGsY24AEIK8Hce+bYulY1UNfUXln7jdk0wMAILqVYARAPBnt9rO/uRvtrqG+n0m1bHxL/zVUaoNAAj1d7dKRWVpghCiqqFPInbi3ZGBEXeLOUWp5BpAABAk2OAA4Ke8ixvndhfIaTcSM3M3Wey0GwAAr8rShOaDOumM1ebMeOVnAyPjjAsAggMFBwB/NOzosGzQXX/3hJxwTs3xgsOt6mgtc5uB8fHxyd9gGgCCyTrDE22Ny6UzdodLb+yi4wCA4EDBAcC/TLjdFw7sOmXUy1zc2NJ6R5dXxNxmTMmpWAEEr+z0SJ+Xj+0fcuuNXR0OF+MCgEBHwQHAjww7Oo4XJHVazHLCLG4AAHxaqVPL7DjaL99nXAAQ0Cg4APiFCbf70pFqmYsbMTp94ZkbLG4AAOTQRqvsllS9Ti0d+/S+h1kBQECj4ACw8Jy9N99+JeNSQ5WccFZZ3cZjlzQJycwNACCTNlp16dgzuZmaqQL7ti1eZ3iCQQFAQKPgALCQJtzuzpP1J9YvHXbYfYa9ixtpm3eEcdoIAMA0KZWKFnPKIzuOfdsWe68sCwAIaBQcABaMd3Hjwv6dcsJpRhOLGwCAx6FUKloPP71v2+IHv5ibqfnLP1nMcAAE+Rtv15SnUtb87u8Gz7/zPNIAFoTjXNP5imI5SXVsfMH334vRrWRoAIDH513WqGroE0LkZmpazClKpYKxAAhuY273VN9apFIFzd2k4AAw31wjA+fLi3psVjnhNKNp1e7X+UwK4J8mJycZAgJRZWnC15+J2Po3N2k3ACCYcMwAYF5Na3Fjzd+dik/PZmgAgFm3zvBE37u/zxwAIJhQcACYJ+Ou0fde2yBzcWPZ2sLnK46o1BHMDQAAAIAcFBwA5sOttrM/+ZutrqF+n0l1bPwLf3V0iWEdQwMAAAAgHwUHgLk17hr9sKb0+rsn5IQTM3O/+fppFjfmk0LxHx8+53wKAAAACFwUHADmUP/l9ta/2CRncUMIkVNzXJdXxNAAAAAAzEBYoPyiiTExj/z6J7/8JY8i4Icm3O4LB3adKTHIaTcSM3O3tN6h3QAAAADmwlQHzlMdaAeogNngSIiO7hke5nkJBIRhR0fzt7/J4gYAAADg5wfawXR3+IgKgNk04XZ/dPC1TotZTjhGp1/79/+sSUhmbgAAAAAeU8AUHBq1+pFfv3HnTqZOxwMJ+ANn7813v/uHww67nHBWWV3qH70apqRmBQAAAObWjTt3pnWgHaAC5tBiaVzcow+oXC6erMCCm3C7u/7pzQv7d8oJs7gBAAAAzKepDpynOtAOUAH/t1Pnr3/NkxVY4P8bTmdxI81oWrX7dRY3AAAAAA6cZ1fAHGPEREY+8utXe3p4sgILyHGu6XxFsZykOja+4PvvxehWMjQgaCgUis//9+TkJAMBAMA/TXXgPNWBdoAKmILjSxERU33LMzERHhbGUxaYZ66RgfPlRT02q5wwixsAAADAgvBMTMzgQDsQBc5JRn/3d6f61sjo6JMaDc9aYD5Na3Fjzd+dik/PZmgAAADA/BsZHZ3BgXYgCpiCY5FKNdW3xsbHecoC82bcNfreaxtkLm4sW1v4fMURlTqCuQEAAAALQuKQWeJAOxAF0rp4YkxMz/DwF7/eMzycGBPDsxaYB7fazv7kb7a6hvp9JtWx8S/81dElhnUMDQAAAFhAjzyO9h5iB9k9DaRTVyRERz/y61Nd0RfALBp3jb5fXnRud4GcdiMxM9d42kG7AQAAACy4qQ6ZpzrEDlyBtMGx7Mtfvnj9+he/3jsywlMWmFP9l9tb/2KTnGpDCJFTc1yXV8TQAAAAAH8w1SHzsi9/OcjuaSAVHE9GRT3y61wpFpg7E273Rwdf67SY5YQTM3NzapvU0VrmBgAAAPiJqQ6ZpzrEDlyBVHAsnnp/xulyadRqnrjA7Bp2dDR/+5ssbgS38fFxJZfvBQAACFJOl2sGh9gBKqA2OKa+FuwvP/2UggOYRdNa3IjR6df+/T9rEpKZW0C+DNBuAAAABK9ffvrpDA6xA/WdbWD9ulNdSOX24KAuPp7nLjArYn9HvP1KxrDDLiecVVaX+kevhnGQDAAAAPif24ODUx1cB9+dDQusX3d5QsIjv379l7/kiQvMyr8Chapter ... src=" 522 hGsjcAAAAEC62Lnz9KVL3fZwDQQOAAAASCM7dvzKEq6BwAEAAABp5Gc/a+/uvmIPV0vgAAAAgDRy/nz8+PGL9nC1BA4AAABIL6++2moJV0vgAAAAgPRy+HAsFuuyh6sicAAAAEDa+cd/PGcJV0XgAAAAgLTz8593WMJVETgAAAAg7bS0dHqXylUROAAAACAdeZfKVRE4AAAAIB15l8pVETgAAAAgHbW0dF661G0PKRI4AAAAIE398pcXLCFFAgcAAACkqUOHzltCigQOAAAASFM7d562hBQJHAAAAJC+OjouWUIqBA4AAABIXx98cNESUiFwAAAAQPpqavrIElIhcAAAAED6OnIkZgmpEDgAAAAgfZ0/H4/FuuwhKYEDAAAA0tqvfuU6o8kJHAAAAJDWzp79xBKSEjgAAAAgrbnOaCoEDgAAAEhrra0fW0JSAgcAAACktZaWTktISuAAAACAdNfR4TqjSQgcAAAAQOgJHAAAAJDuPvjgoiUkJnAAAAAAoSdwAAAAQLpzp9ikBA4AAAAg9AQOAAAAIPQEDgAAAEh3R47ELCExgQMAAADS3fnzcUtITOAAAAAAQk/gAAAAAEJP4AAAAABCT+AAAAAAQk/gAAAAgBDo7r5iCQkIHAAAAEDoCRwAAAAQAiNGZFlCAgIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAAKS7nJwRlpCYwAEAAADpLj76192XL9tDAgIHAAAApLvOS5/87dtv20MCAgcAAACEwN5jxxqbm+2hLwIHAAAApL0v/ToIgud37mw5e9YyeiVwAAAAQGg8s337pa4ue/g8gQMAAADS3ugLPf95vrPzx++8Yx+fJ3AAAABAmLgYR68EDgAAAEh7Iz/59M+e37kz1tlpK58mcAAAAEB6i/7m8489vX179+XLdvNbAgcAAACkty98/PnHWs6efefQIbv5LYEDAAAA0tuXft3rw3V79nTEYtbTQ+AAAACA9Bbt83Ibz77xhvX0EDgAAAAgrS37xlf7eqrl7Fl3VOkhcAAAAED6Gjs2cnvJLbfdfHNfA+6o0kPgAAAAgPR1663jgiB48GtfSzCzbc8eixI4AAAAIH1NnTo6CIKR2dkPzZ/f18zeY8ea29qG+aIEDgAAAEhfN900uucHc4uKphcW9jW2ddeu7suXh/OiBA4AAABIXxMmjPztj5f3fYij5ezZfR98MJwXJXAAAABAmpo/f+Knf5oTjZbPm9fX8D+8++6lrq5huyuBAwAAANLUjBljP/PI12bMGBuN9jp8vrNzR1PTsN2VwAEAAABp6pZbxnzmkRE33LDyjjv6mn91375he8tYgQMAAADSUWFhdOTIEZ9/vCg/P8HVRoftLWMFDgAAAEhH/+bfTOjrqQe/9rW+ntp77FhHLDYM1yVwAAAAQDq69dbcvp6akJMzf+bMvp59ubFxGK5L4AAAAIC0U1gYzcnJTjBw 722 39fXU8DzEIXAAAABA2lm0KD/xwMjs7LvnzOnr2WF4iEPgAAAAgLTzr/7VF5PO3FFS0tdTe48dG263UxE4AAAAIL3cdltur/dP+YzEhzh+dujQsFqawAEAAADp5etfn5jiZIJDHK/u23epq2v4LE3gAAAAgDQydmykqGhMisOJD3HsOXJk+OxN4AAAAIA0cuedk65qPsEhjtf+6Z+6L18eJnsTOAAAACCNzJs3/qrmExziON/Zefz06WGyN4EDAAAA0sXdd09K5fKin/FHt9zS11Ov7ts3TFYncAAAAEC6uP32vGv4qAk5OdMLC3t96nBLyzC5X6zAAQAAAGnhtttyc3Kyr+1j3S9W4AAAAIC0cO+9hdf8sUX5+WOj0V6fEjgAAACAQXLbbbkTJoy8nle48w//sNfHz3d2Nre1ZfwCBQ4AAAAYetdzfKPHvGnT+npq3wcfZPwCBQ4AAAAYYtd/fCMIgpHZ2X1danTnwYPdly9n9g4FDgAAABhiDz74lX55nQSXGj1++nRm71DgAAAAgKFUXj555MgR/fJSUydO7OupjH+XisABAAAAQ2bs2MjXvpbXX6 824 oYb5s+c2etTGf8uFYEDAAAAhsx3vztlxIisfnzBOTfd1NdTmf0uFYEDAAAAhsb06TmzZn2xf19z2L5LReAAAACAobF8+dR+f83E71LJ4GUKHAAAADAEHnpoak5O9kC8coJ3qbScPZup+xQ4AAAAYLAVFkbnzh03QC8+efz4vp76ZWtrpq5U4AAAAIDB9v3vFw/ci4/Mzp5eWNjrU/v/5//M1JUKHAAAADCoBu7NKb9VOm1ar48fbmm51NWVkVsVOAAAAGDw3HZb7sC9OeW3bvryl/t6qiMWy8jFChwAAAAwSMaOjTz44FcG4RNNyMkZG4 32+ lSmXoZD4AAAAIBB8oMfTB85csTgfK5bb76518cz9TIcAgcAAAAMhlWriiZMGDlon27qxIm9Pn64paX78uXMW6/AAQAAAANu/vyJs2Z9cTA/Y4LLcJy7eDHzNixwAAAAwMCaPj3nvvt+f5A/6YScnL6e+uBXv8q8JQscAAAAMIDGjo1UVBSPGJE1+J/6tj4uw3H89OnM27PAAQAAAANl7NhIZeWMIakbQRDc3Me 7VI5 k4o1UBA4AAAAYKD/4wfScnOyh+uyTJ0zo9fGWs2czb9UCBwAAAAyItWunDeZtUz7vy1/s87KmHbFYhm1b4AAAAID+t3bttKKiMUP7a8iJRvt66tS5cxm2cIEDAAAA+lk61I0e0wsLe 328 4/z5DNu5wAEAAAD9KX3qRhAEBbm5vT5+LOPuFBvZvHmO33wAAABkjJUr9w3hZ0+ruhEEwdSJE3t9vNVbVAAAAIBepVvdCIKgcNy4Xh/PvBupRPz+AwAAgOs0dmzkBz+YPrT3TOnVyOw+b1J7qasrwbOhI3AAAADAdSksjH7/+8U5OekYC3JHj+7rqdjHHwscAAAAQBAEwfTpORUVxSNGZKXnL2/EDX1em+Kjixcn5ORkzBfCNTgAAADgGt1996R0rhs9+rpT7NkLFzLpaxEZ2qvLAgAAQEitWlU0a9YX0//XmfOFLwyHL4cTHAAAAHB1xo6NPPVUSSjqRhAEOdFor48fP306k74orsEBAAAAV2H+/In33ff7af62lE+bOnFir4/HOjsz6esicAAAAEBKxo6NfPe7U8JycGO4ETgAAAAguenTc5Yvn5qe94K9Nq3nzmXSF0jgAAAAgETGjo3 823 87ee7ccSH99d/05S/3+njL2bOZ9GUSOAAAAKBPt92W++CDXxk5coRVpDmBAwAAAHpRWBhdtuzGoqIxVhEKAgcAAAD8Cz3vSZkzJzdEt0pB4AAAAIDfufvuSXfc8WXvSQkdgQMAAACCQNoIOYEDAACA4U7ayAACBwAAAMPU2LGR 22/ Py/i0MTLS5//3v9TVNTI7OzP+awocAAAADDuFhdFFi/KHyWVEc6LRvp6KffyxwAEAAADhc/fdk/7wD3MLC6NWkWEEDgAAADLf9Ok5CxZ8ecaMse78mqkEDgAAADJWT9e45ZYxLiCa8QQOAAAAMkrPpUOnTx87depo5zWGD4EDAACA0CssjP7rf/2lr3xl9JQpo3Jysi1kGBI4AAAACJ/p03MKCqJTp46+6abROTkR70BB4AAAACBNFRZGCwq+EARBfv4XJk78QjQ6YtKkL8gZ9CqyYcPMUPxC1734Yq+PP3rPPbmjR/tCAgAAhF1u7u+5ZAbXLDJhwshw/EpHftL7/wDGZU/IGekLCQAAAMPZDVYAAAAAhJ3AAQAAAISewAEAAACEnsABAAAAhJ7AAQAAAISewAEAAACEnsABAAAAhJ7AAQAAAISewAEAAACEnsABAAAAhJ7AAQAAAISewAEAAACEXsQKAGAIZWVlWQIwTFy5csUSgIHjBAcAAAAQek5wAMDQu/KP/lUTyGRZtzqtBgw4JzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0ItYAdAjKyvrtz++cuWKhQAAACHiBAcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQehErABie/ubWrF4f/9N/vGI5AACEjhMcAAAAQOgJHAAAAEDoCRwAAABA6AkcAAAAQOgJHAAAAEDoCRwAAABA6AkcAAAAQOgJHAAAAEDoCRwAAABA6AkcAAAAQOgJHAAAAEDoCRwAAABA6AkcAAAAQOgJHAAAAEDoRawAAIZc1q1ZlgAAcD2c4AAAAABCzwkOIInXdv36i2NGlM4eYxUwEK5cuWIJAADXzwkOIJHd+y8sWdNctvxI9XOttgEAAKQtgQPo0+79F8qWH+n5cdXmUxoHAACQtgQOoHft57ru+8GxTz9StfnUsnUfxOOO0wMAAGlH4AB60X6uq6T8UNuZ+Gcef/GNc4srjmocAABAuhE4gM8b0Wvd6NHQGFtccbT9XJc1AQAA6UPgAD4nOrWvutGjoTFWUn5I4wAAANKHwAF8Tmfzrtpp+eMT3Ua67Uy8pPzQidZLtgUAAKQDgQPoRensMU11M5I2jqn3HNy9/4J1AQAAQ07gAHqXl5udtHEEQVC2/IjGAQAADDmBA+hTXm72ye0lC+bmJB4rW36k+rlW6wIAAIaQwAEkEolk1dcUJ20cVZtPaRwAAMAQEjiAJCKRrB3P3rJ+5aTEY1WbTy1b90E8fsXGAACAwSdwACmpXFGQtHG8+Ma5xRVHNQ4AAGDwCRxAqipXFGx/pijxTENjbM53ftF+rsu6AACAwSRwAFfhzrIv7qqdlnimqbmzpPyQxgEAAAwmgQO4OqWzxyS9fWzbmXhJ+aEDzZ3WBQAADA6BA7hqs4qiKTaO3fsvWBcAADAIBA7gWuTlZjfVzSgpiiYeK1t+5LVdv7YuAABgoAkcwDXKy83e98IfLJibk3hsyZrm6udarQsAABhQAgdw7SKRrPqa4qSNo2rzKY0DAAAYUAIHcF0ikawdz96yfuWkxGNVm0/d8b1fxuNXbAwAABgIAgfQDypXFCRtHA2NscUVRzUOAABgIAgcQP+oXFGw/ZmixDMNjbE53/lF+7ku6wIAAPqXwAH0mzvLvrirdlrimabmzpLyQxoHAADQvwQOoD+Vzh7TVDcjf3wkwUzbmXhJ+aEDzZ3WBQAA9BeBA+hns4qiKTaO3fsvWBcAANAvBA6g/+XlZjfVzUh6+9iy5Ude2/Vr6wIAAK6fwAEMiLzc7Pqa4qSNY8ma5urnWq0LAAC4TgIHMFAikaz6muKlC3MTj1VtPlX9XKvbxwIAANdD4AAGUCSStXXDTetXTko8VrX51OKKoxoHAABwzQQOYMBVrihI2jgaGmMaBwAAcM0EDmAwVK4o2FU7LfFMQ2Ns8pKm9nNd1gUAAFwtgQMYJKWzxyRtHD23j9U4AACAqyVwAIOndPaY46/MzB8fSTDT0zh2779gXQAAQOoEDmBQTSkY2VQ3I2njKFt+ROMAAABSJ3AAgy0vN7upbsaCuTmJx8qWH9n6+lnrAgAAUiFwAEMgLze7vqY4aeN44PHj1c+1WhcAAJCUwAEMjUgkq76meOnC3MRjVZtPVT/X6vaxAABAYgIHMGQikaytG25av3JS4rGqzacWVxzVOAAAgAQEDmCIVa4oSNo4GhpjGgcAAJCAwAEMvcoVBbtqpyWeaWiMTV7S1H6uy7oAAIDPEziAtFA6e0zSxtF2Jl5SfkjjAAAAPk/gANJF6ewxx1+ZmT8+kmCmp3Hs3n/BugAAgE8TOIA0MqVgZFPdjKSNo2z5EY0DAAD4NIEDSC95udnNL89cMDcn8VjZ8iObtp22LgAAoIfAAaSd0dER9TXFSRvH6idPVj/Xal0AAEAgcADpKRLJqq8priifmHisavOpR5466faxAACAwAGkqUgk64ePTl6/clLisZq604srjmocAAAwzAkcQFqrXFGwce3kxDMNjbHFFUcvdnZbFwAADFsCB5DuVt0/cVfttMQzDY2xonsPtp/rsi4AABieBA4gBEpnj0naONrOxEvKD2kcAAAwPAkcQDiUzh5zekdJ/vhIgpm2M/GJdzTt3n/BugAAYLgROIDQyMvNbqqbkbhxBEFQtvyIxgEAAMONwAGESV5udvPLMxfMzUk8Vrb8yKZtp60LAACGD4EDCJnR0RH1NcVJG8fqJ09WP9dqXQAAMEwIHED4RCJZ9TXFFeUTE49VbT71yFMn4/ErNgYAABlP4ABCKRLJ+uGjk9evnJR4rKbu9OKKoxoHAABkPIEDCLHKFQUb105OPNPQGFtccfRiZ7d1AQBABhM4gHBbdf/EXbXTEs80NMaK7j3Yfq7LugAAIFMJHEDolc4es6t2WuLbx7adiZeUH9I4AAAgUwkcQCYonT2mqW5G0sYx8Y6m3fsvWBcAAGQegQPIEHm52UkbRxAEZcuPaBwAAJB5BA4gc+TlZp/cXrJgbk7isbLlR6qfa7UuAADIJAIHkFEikaz6muKkjaNq8ymNAwAAMonAAWSansaxfuWkxGNVm08tW/dBPH7FxgAAIAMIHEAGikSyKlcUJG0cL75xbnHFUY0DAAAygMABZKzKFQVbnpiaeKahMba44qjbxwIAQNgJHEAmW7Zo3K7aaYlnGhpjJeWHNA4AAAg1gQPIcKWzx+yqnZb49rFtZ+Il5YdOtF6yLgAACCmBA8h8pbPHNNXNSNo4pt5zcPf+C9YFAABhJHAAw0JebnbSxhEEQdnyIxoHAACEkcABDBd5udknt5csmJuTeKxs+ZHq51qtCwAAwkXgAIaRSCSrvqY4aeOo2nxK4wAAgHAROIDhpadxrF85KfFY1eZTy9Z9EI9fsTEAAAgFgQMYdiKRrMoVBUkbx4tvnFtccVTjAACAUBA4gGGqckXB9meKEs80NMYWVxxtP9dlXQAAkOYEDmD4urPsi7tqpyWeaWiMlZQf0jgAACDNCRzAsFY6e0zS28e2nYmXlB860NxpXQAAkLYEDmC4m1UUTbFx7N5/wboAACA9CRwAQV5udlPdjJKiaOKxsuVHXtv1a+sCAIA0JHAABEEQ5OVm73vhDxbMzUk8tmRNc/VzrdYFAADpRuAA+GeRSFZ9TXHSxlG1+ZTGAQAA6UbgAPidSCRrx7O3rF85KfFY1eZTd3zvl/H4FRsDAIA0IXAAfFblioKkjaOhMba44qjGAQAAaULgAOhF5YqC7c8UJZ5paIzN+c4v2s91WRcAAAw5gQOgd3eWfXFX7bTEM03NnSXlhzQOAAAYcgIHQJ9KZ49pqpuRPz6SYKbtTLyk/NCB5k7rAgCAISRwACQyqyiaYuPYvf+CdQEAwFAROACSyMvNbqqbUVIUTTxWtvzIa7t+bV0AADAkBA6A5PJys/e98AcL5uYkHluyprn6uVbrAgCAwSdwAKQkEsmqryleujA38VjV5lMaBwAADD6BAyBVkUjW1g03rV85KfFY1eZTd3zvl/H4FRsDAIBBI3AAXJ3KFQVJG0dDY2xxxVGNAwAABo3AAXDVKlcU7KqdlnimoTE2eUlT+7ku6wIAgEEgcABci9LZY5I2jp7bx2ocAAAwCAQOgGtUOnvM8Vdm5o+PJJjpaRy791+wLgAAGFACB8C1m1IwsqluRtLGUbb8iMYBAAADSuAAuC55udlNdTMWzM1JPFa2/MjW189aFwAADBCBA+B65eVm19cUJ20cDzx+vPq5VusCAICBIHAA9INIJKu+pnjpwtzEY1WbT1U/1+r2sQAA0O8EDoD+EYlkbd1w0/qVkxKPVW0+tbjiqMYBAAD9S+AA6E+VKwqSNo6GxpjGAQAA/UvgAOhnlSsKdtVOSzzT0BibvKSp/VyXdQEAQL8QOAD6X+nsMUkbR9uZeEn5IY0DAAD6hcABMCBKZ485/srM/PGRBDM9jWP3/gvWBQAA10ngABgoUwpGNtXNSNo4ypYf0TgAAOA6CRwAAygvN7upbsaCuTmJx8qWH9n6+lnrAgCAayZwAAysvNzs+pripI3jgcePVz/Xal0AAHBtBA6AAReJZNXXFFeUT0w8VrX51CNPnXT7WAAAuAYCB8BgiESyfvjo5PUrJyUeq6k7vbjiqMYBAABXS+AAGDyVKwo2rp2ceKahMba44ujFzm7rAgCA1AkcAINq1f0Td9VOSzzT0Bgruvdg+7ku6wIAgBQJHACDrXT2mKSNo+1MvKT8kMYBAAApEjgAhkDp7DGnd5Tkj48kmGk7E594R9Pu/ResCwAAkhI4AIZGXm52U92MxI0jCIKy5Uc0DgAASErgABgyebnZzS/PXDA3J/FY2fIjm7adti4AAEhA4AAYSqOjI+pripM2jtVPnqx+rtW6AIaVrs6LlgCQOoEDYIhFIln1NcUV5RMTj1VtPvXIUyfj8Ss2BjAcfLjrtbp7i842H7AKgBQJHABDLxLJ+uGjk9evnJR4rKbu9OKKoxoHQGbr6rz41rplr69Z0nmmbfuff+tyPG4nAKkQOADSReWKgo1rJyeeaWiMLa44erGz27oAMlLb/t119xYde+PFnp92nmn7/55ss6QAACAASURBVJ75S2sBSIXAAZBGVt0/cVfttMQzDY2xonsPtp/rsi6ATHI5Ht/z1COvLC/rPNP26ccP1tV8uOs1+wFISuAASC+ls8ckbRxtZ+Il5Yc0DoCMcbb5wJYlkw/W1fT67M/+40MuOAqQlMABkHZKZ485vaMkf3wkwUzbmfjEO5p2779gXQCh1nNw46Xyks8c3Pi0zjNt7zyxwq4AEhM4ANJRXm52U92MxI0jCIKy5Uc0DoDwirWe+Ml35vR1cOPTjr3xYqz1hI0BJCBwAKSpvNzsk9tLFszNSTxWtvzIpm2nrQsgXC7H4we3bXrxnqlnm5uSDo8rKln6yvGcgin2BpCAwAGQviKRrPqa4qSNY/WTJ6ufa7UugLDoObix58nVqQzPLK/49gv71A2ApAQOgLTW0zjWr5yUeKxq86ll6z6Ix6/YGECaa359a4oHN6Lj8++ra5r36A9viETsDSD5d85WAJDuf1JHsipXFARBULX5VIKxF984134uXl9THIlkWRpAGuo8175z3bKWxoZUhmeWV/zRmv8qbQCkzgkOgHCoXFGw5YmpiWcaGmOLK466fSxAGmp+feuP75iYSt2Ijs+/p3aXgxsAV0vgAAiNZYvG7aqdlnimoTFWUn5I4wBIH12dF7d/746djz+QyvDNC5eWv9ycP7vU3gCulsABECals8fsqp2W+PaxbWfiJeWHTrResi6AIffhrtfq7i1K8eDGome2f3PD1uzoaHsDuAYCB0DIlM4e01Q3I2njmHrPwd37L1gXwFDp6rz41rplr69Z0nmmLelw4dwF5S8331h2p70BXDOBAyB88nKzkzaOIAjKlh/ROACGRNv+3XX3Fh1748VUhuc/sWXJszsc3AC4TgIHQCjl5Waf3F6yYG5O4rGy5Ueqn2u1LoBBczke3/PUI68sL0vx4MaDO04XLVpmbwDXz5WZAUL7J3gkq76meHHF0YbGWIKxnpvL9txoFoABdbb5wPY//1YqaSMIgvlPbJE2APqRExwAIdbTONavnJR4rGrzqWXrPojHr9gYwADpObjxUnlJKnVjXFHJ0leOqxsA/fy9sRUAhPvP8UhWz+mMnpMafXnxjXPt5+L1NcWRSJalAfSvWOuJN/7ij882N6UyPG/txhl/8vANEd+HA/QzJzgAMkHlioItT0xNPNPQGFtccbT9XJd1AfSXy/H4wW2bXrxnaip1o+fgxsz7V6kbAANB4ADIEMsWjdtVOy3xTENjrKT8kMYB0C9irSd+8p05e55cncrwzPKKb7+wL6dgir0BDBCBAyBzlM4ek/T2sW1n4iXlh060XrIugOvR/PrWFA9uRMfn31fXNO/RHzq4ATCgBA6AjDKrKJpK45h6z0G7Arg2nefat3/vjp2PP5DK8Mzyige2nxxXNMveAAaaigyQafJys5vqZiz4s6NNzZ19Dl1qbbwYHL8YHIkFLZ1BEASF0WBaTjB1dPCtEyemTJlijQC9an59a4ppIzo+/47//FL+7FJLAxgcAgdABsrLzd73wh8srjja0Bj77HOXWoNjfxF0Nj//Lx9u6fzn0vH81KklJSU//elPZQ6AT+vqvPjmX97b0tiQyvDNC5d+7fHnsqOj7Q1g0HiLCkBmikSy6muKF8zN+d1DV+LB6W3BwXuCzubEH9vU1DR16tRNmzbF43GbBAiC4MNdr9XdW5RK3YiOz1/0zPZvbtiqbgAMMoEDIGNFIlk7nr1l/cpJQRAEXeeCX3wnOPlk6h++evXqOXPmtLe32yQwnHV1Xnxr3bLX1yzpPNOWdPjmhUvLX26+sexOewMYgu9+rQAgs1WuKOjujlf/RXnSgxuf19TUtGDBgn379kVc+R8Yltr2797xg/tSSRtBEMx/YkvRomWWBjBUnOAAyHx58VeuoW70aGpq+tGPfmSHwHBzOR7f89QjrywvS6VuFM5d8OCO0+oGwNDyL3IAGe7EiROrV6++nldYvXr1XXfd5ZqjwPBxtvnA9j//loMbAOHiBAdAhvvjP/7jNHkRgPTXc3DjpfKSVOrGuKISBzcA0ocTHACZ7MSJE01NTdf/Ok1NTSdOnHCIA8hssdYTL//7/yPFgxvz1m6c8ScP3+ASRQBpwwkOgEy2Z8+eNHwpgHRzOR4/uG3Ti/dMTfHgxtJXjs+8f5W6AZBWBA6ATPbee++l4UsBpJVY64mffGfOnidTulzRnJXrv/3CvpyCKfYGkG5UZ6AXWVlZlsBn1NTU1NTU2AMwfGye8y9+Gh2fv+Sv3xxXNMtmANKTwAEAAEnMLK/4ozX/1XtSANKZP6MBAKBPDm4AhIVrcAAAQO9uXri0/OVmdQMgFJzgAHpx5cpmS8gMjzyyraZmZ/+81sTy/NmPNf2/0bxz/91igZD68MCBn/3d33WeP590Mjo+//b/6/kby+60NICwcIIDIJN99atT+ +21 Rs9sOxMv+bPO3Z8stFggdLouXXqrtvb1TZtSqRs9BzfUDYBwcYIDIJPNm3dTv73W6JIgCNrOxMtWd+zauLB01DtBvNOGgVBI/eBGEATzn9hStGiZpQGEjhMcAJlsypQJJSWF/fBC0aJgZMFvf1a2umPryTuCSNSGgTR3ubt7z7ZtKR7cKJy74MEdp9UNgJASOAAy3E9/+r1+eJWb/+ozDzzwH1qq371d4wDS2dmWli2PPXZwZ0qXIpr/xJYlz+6I5ubZG0BICRwAGW7KlAkbN5Zf10tMXvvp4xu/VVXbXv3e/PioQksG0k3PwY2XqqtTObgxrqjEwQ2ADCBwAGS+hx/+2rW/USVaFOT9SV9PVv1N2+KNxRoHkFZiHR2pH9yYt3bjt1/Y5+AGQAYQOAAyXyQyoqHh+9fQOEqKgv9z1VeDrERXpG5ojC3eWByfOMeegSF3ubv74Ntvv7huXYoHN5a+cnzm/atuiLjuPkAmEDgAhoW8vJx9+9Zd1XtVNq4N9r0Q/Of7t+xa+1DiyYbG2OTlkfZRGgcwlGIdHT/ZsGFPXV0qw3NWrv/2C/tyCqbYG0DGEDgAhotIZMSqVd84fnxD0qMcJUXB8VeCVfcHPf+oWVr0ftLG0XYmXrIm0p77dXsGhkTPwY2zLS1JJ6Pj8++ra5qzotLBDYAMI3AADC9Tpkx4//3K48c3PDQ1mD8xKPzfd0EpjAbzJwYPTQ2OvxK8XxdM+ZcXFS0tev/4hrvzx3YkeOW2M/GSP+vc/clCSwYGU2cstv3pp1M8uDGzvOKB7SfHFc2yN4DMo1sDDEdTpkyYOy6YO+6ff9p9JRiR9b+fKujjQyacaqosL6muazs/oa+XbTsTL1vdsWvjwtJR7wTxTnsGBlpzY+PO559PZTI6Pn/JX78pbQBkMCc4APhd3UgsL+ejpsryBdPfSzxWtrpj68k7gkjUYoGB03NwI8W6cfPCpeUvN6sbAJlN4ADgKuTlfFRfUZG0cTzwH1qq371d4wAGyIcHDrxUXd1y+HDSyej4/EXPbP/mhq3Z0dH2BpDZBA4Ark5kRHd9RcXS215PPFZV21793vz4qEIbA/pR16VLb9XWvr5pUyo3gu05uHFj2Z32BjAsvk21AgCu+i+PEd1blz8+Pf9E1asPJxir+pu2n+8vrl8dRH7TYmnA9fvwwIGf/d3fpZI2giCY/8SWokXLLA1g+HCCA4BrVHlX7cby/5J4pqExtnhj8cXcOdYFXI/L3d17tm1L8eBG4dwFD+44rW4ADDcCBwDXbtU3/n7X2ocSzzQ0xor+LNI+SuMArtHZlpYtjz12cOfOVIbnP7FlybM7orl59gYw3AgcAFyX0qL3kzaOtjPxkjWR9tyvWxdwVXoObrxUXZ3KwY1xRSUObgAMZwIHANertOj9008tyB/bkWCm7Ux84r+L7f5koXUBKYp1dKR+cGPe2o3ffmGfgxsAw5nAAUA/yMv5qKmyPHHjCIKgbHXH7k8Wun0skNjl7u6Db7/94rp1KR7cWPrK8Zn3r7oh4vL5AMOawAFA/8jL+aj5iXsXTH8v8VjZ6o5N/2O+xgH0JdbR8ZMNG/bU1aUyPGfl+m+/sC+nYIq9ASBwANBvRo/8uL6iImnjWP1XbdXv3q5xAJ/Xc3DjbEvye0tHx+ffV9c0Z0WlgxsA9BA4AOhPkRHd9RUVFfOT/NNrVW37I2/eHh9VaGNAj85YbPvTT6d4cGNmecUD20+OK5plbwD87htRKwCgn/9qGdH9w/ufGj/6o6pXH04wVrOt/dDx4vrVQeQ3LZYGw1xzY+PO559PZTI6Pn/JX78pbQDweU5wADAgKu+q3Vj+XxLPNDTGFm8svpg7x7pg2Oo5uJFi3bh54VIHNwDoi8ABwEBZ9Y2/37X2ocQzDY2xoj+LtI/SOGA4+vDAgZeqq1sOH046GR2fv+iZ7d/csNUVNwDoi8ABwAAqLXo/aeNoOxMvWRNpz /26 dcHw0XXp0lu1ta9v2pTKjWBvXri0/OXmG8vutDcAEhA4ABhYpUXvn35qQf7YjgQzbWfiE/9dbPcnC60LhoMPDxyoe/zxY3v3pjLcc3AjOzra3gBITOAAYMDl5XzUVFmeuHEEQVC2umP3JwvdPhYy2OXu7tQPbhTOXfDgjtMObgCQIoEDgMGQl/NR8xP3Lpj+XuKxstUdm/7HfI0DMtLZlpYtjz2W4sGN+U9sWfLsjmhunr0BkCKBA4BBMnrkx/UVFUkbx+q/aqt+93aNAzLJ5e7uPdu2vVRdnfrBjaJFy+wNgKsicAAweCIjuusrKtbf/aPEY1W17Y+8eXt8VKGNQQboObhxcOfOVIbnrd24uKbewQ0AruVbTSsAYFD/4hnRXXlXbRAEVa8+nGCsZlv7oePF9auDyG9aLA1C6nJ396F33tlTV5fK8LiikoV/9dOcgin2BsC1cYIDgCFQeVftloceTzzT0BhbvLG4fdQc64IwinV0/GTDhhTrxry1G7/9wj51A4Dr4QQHAENj2dzXvzLuVNmTzyeYaWiMlayJND0zJ+83+2wMwuKqDm5Ex+cv+es3xxXNsjcArpMTHAAMmdKi93etfSjx7WPbzsRL1kRORL9uXRAKnbFYfU1NinVjZnnFA9tPqhsA9AuBA4ChVFr0flNledLGMfW7sd2fLLQuSHPNjY0/fvTRlsOHk05Gx+ffV9c079Ef3hBxoBiA/iFwADDE8nI+Sto4giAoW92x+5OFbh8L6akzFtv+9NM7n38+leGbFy51cAOAfidwADD08nI+Ovn/LFkw/b3EY2WrO6rfvV3jgHTz4YEDqR/cWPTM9m9u2OrgBgD9TuAAIC1ERnTXV1QkbRxVte0aB6SPrkuX3qqtfX3TplSGb164tPzl5hvL7rQ3AAaCwAFAuuhpHOvv/lHisara9mXbSuOjCm0MhtaHBw7UPf74sb17UxnuObiRHR1tbwAM1DeTVgBAGv21NKK78q7aIAiqXn04wdiLb55r/6i4fnUQ+U2LpcHgu9zd/fbf/m2KaaNw7oL5G7ZGc/PsDYAB5QQHAGmn8q7aLQ89nnimoTG2eGNx+6g51gWD7GxLy5bHHkuxbsx/YsuSZ3eoGwAMAoEDgHS0bO7ru9Y+lHimoTFWsiaiccCgudzdvWfbtpeqqzvPn086XDh3wYM7ThctWmZvAAwOgQOANFVa9P6utQ8lvn1s25l4yZrIiejXrQsGWs/BjYM7d6YyPG/txsU19Q5uADCYBA4A0ldp0ftNleVJG8fU78Z2f7LQumCAXO7uPvj22yke3BhXVLL0leMz71/lRrAADDKBA4C0lpfzUVNleUnh0cRjZas7dn+y0O1jod/FOjp+smHDnrq6VIbnrd347Rf25RRMsTcABp/AAUC6y8v5aN+67yyY/l7isbLVHdXv3q5xQH/pObjx4rp1Z1uS364oOj7/vromBzcAGEICBwAhEBnRXV9RkbRxVNW2axzQLzpjsfqamhQPbswsr3hg+8lxRbPsDYAhJHAAEA6REd07vv/n6+/+UeKxqtr2OzZ/NT6q0MbgmjU3Nv740UdbDh9OOtlzcGPeoz90cAOAof 920 QoACJHKu2qDIKh69eEEMw2NscUbi+tXB5HftNgYXJXOWGxnbW0qaSMIgpsXLv3G+r+TNgBIE05wABAylXfVbl/1SOKZhsbYnPVT2kfNsS5I3YcHDqR8cOPLi57Z/s0NW9UNANKHwAFA+Nw5a/eutQ8lnmlq/rhkTUTjgFR0Xbr0Vm3t65s2pTJ888Kl5S8fu7HsTnsDIK0IHACEUmnR+02V5fljOxLMtJ2Jl6yJHAhuty5I4MMDB+oef/zY3r2pDPcc3MiOjrY3ANKNwAFAWM0qbE6pcay8sPuThdYFn3e5u7vn4Ebn+fNJhwvnLnhwx2kHNwBIWwIHACGWl/NRU2V5SeHRxGNlqzteO/ctt4+FTzvb0rLlscdSPLgx/4ktS57dEc3NszcA0pbAAUC45eV8tG/ddxZMfy/x2JLHzlS/e7vGAUEQXO7u3rNt20vV1akf3ChatMzeAEhzAgcAoRcZ0V1fUZG0cVTVtmsc0HNw4+DOnakMz1u7cXFNvYMbAISCwAFAJoiM6N7x/T9ff/ePEo9V1bbfsfmr8VGFNsYwdLm7++Dbb6d4cGNc0aylrxyfef8qN4IFIDTfEFoBABmj8q7aIAiqXn04wUxDY2zxxuL61UHkNy02xvAR6+h449lnz7ak9Nt+3tqNM/7kYWkDgHBxggOAjFJ5V+32VY8knmlojM1ZP6V91BzrYjjoObjx4rp1qdSN6LgvO7gBQEgJHABkmjtn7d619qHEM03NH5esiWgcZLzOWOwnGzbsqatLZXhmecUDr/2vnIIp9gZAGAkcAGSg0qL3j2+4O39sR4KZtjPxkjWRA8Ht1kWmam5s/PGjj6Z2cGPifXVN8x79oYMbAISXwAFAZpoy4VRTZXnyxrHywu5PFloXGaYzFtv+9NM7n38+leGZ969+4LWWcUWz7A2AUBM4AMhYeTkfNVWWJ719bNnqjq0nF7h9LBmj5+BGy+HDSSej4/IWPbN93toaBzcAyAACBwCZLC/no/qKiqSN44EnzlW/e7vGQdh1Xbr0Vm1tigc3bv7W/eU/PX5j2Z32BkBmEDgAyHCREd31FRVLb3s98VhVbXv1u7fHszQOwurDAwfqHn/82N69SSejuRMWPbP9m/+pLjs62t4AyJzv+qwAgMz /22 5E99blj0/PP1H16sMJxqpq23/e9NX61Ucjv2mxNEKk69Kld37841TSRhAEhbd+ff7//ffR3Dx7AyDTvuWzAgCGicq7aoMgSNw4GhpjizcW168ONA7C4mxLy/Znnuk8fz6V4fn/8cdFi79jaQBkJG9RAWAYqbyrdtfahxLPNDTGJq/5/fZRc6yLNHe5u3vPtm0vVVenUjcKb739wR2n1Q0AMpjAAcDwUlr0ftLG0XYmXrImonGQzs62tGx57LGDO3emMjzvL59Z8qP/7m0pAGQ2gQOAYae06P3jG+7OH9uRYKancey++DXrIt1c/v/Zu/+wJu883/+fQLJuFkIHaBiEwcEaquVgljlMqQeybQdxBGldj+s5Bqhz7R5h7Toanans+l1YWFnYa/ZotxoYT7nEM+faKsYdt5drB7EltTNdcNs4XkcDh5ExVleHHyO/rJHJsCTw/SOdrmPlzg3yIz+ej7+m8LoCeSdjcr945749nks/+pHMxY2YpcsLz9xIK9zF3AAAQY+CAwAQipKf7LNXGn12HIbvjrb/+1rGBf/hHBx8u7b20jvvyAlnfff1jSc6NQnJzA0AEAooOAAAIUqruWuvNOau+Fg6Ztg52HQ7Vyi5fCwW2ITH0/nBByfKy4d7fJ8BV/2l2MJ/vp5W9N0wJWeUBwCECgoOAEDo0mrutphMPjuO4pqR6n99gY4DC8jldL5dW3vBYpETTtv0p8Xn+jWJTzE3AEBIoeAAAIQ0ZbinxWQqfPacdKyqcaD6X19wK+g4sAAcNttbe/bIW9yI3nT8UtbeBhY3AAAhiIIDABDqlOGeppKKfS+/KR2rahzIb3zO/XuJTAzzxuV0Nr/xxvmjR+WE0/7rnxSfuxOz/D8zNwBAiL6pYwQAAAghKl9qFEJUvfOqRMZqc+bXpbTsFMpf9TAxzDWHzSaz2lA/8aUXKv/3khf+K0MDAIQyNjgAAPhM5UuNbWVbpTNWmzNp91cGfi+DcWHujI+Nvd/YKLPdWPZCvvGdW7QbAABQcAAA8B+ydVd8dhz9Q279biUdB+bIrY4OS0XF9YsXfSbVUU/k/U/L6tfPqn5Pw9wAAKDgAADgt2Trrtw5kBsfNSiR6R9yx20R7aPPMy7MIu/ixrn6ete9ez7DiSv/86ZT3UtyNjM3AAC8KDgAAHiYVnPXXmmU7jiEEIbvjrb/+1rGhVkx3NMjc3FDCJHzl4cKfnBJHfNl5gYAwOcoOAAAeASt5q6jZkPuio+lY4adg/X/L0couXwsZm7C47lw8uSp6mpZixtp6VvO/ptuo4m5AQDwEAoOAAAeLWLRr1tMJp8dx07zp9X/+gIdB2ZmuKfn+N69nefPywlnvfr/Ffyf/6uOW8LcAAD4IgoOAACmpAz3tJhMphyLdKyqcWDXOYNbQceBaZjweC796EcyFzdivpJUeKojreRvmRsAAFO+c2MEAABIvVKGew5tPhAbcbfqnVclYuYfDnf 923 MtO68pf9XD0OCTc3Dw3cOHh3tkPVuySr6TuvV7YarfYW4AAEi9bWMEAAD4VPlSY0zEvZ2WP5fIWG3O/LqU068qIsZ/wcQwlQmPp+vDDy9YLHLC6qgnNvyvZs3ybOYGAIBPfEQFAABZdnzjH9vKtkpnrDanrixx4PcyGBceyeV0vl1bK7PdSFv7cnHzbdoNAABkouAAAECubN0Vnx1H/5Bbv1tJx4Evcthsb+3ZI+djKeqoqE3f/6es2jNhag1zAwBAJgoOAACmIVt35c6B3PioQYlM/5A7botoH32eccHL5XQ2v/HG+aNH5YTT1uQXv3Mz5rmNzA0AgGmh4AAAYHq0mrv2SqN0xyGEMHx3tP3f1zIueBc3eq5e9ZlUR0XlVezP+tsfhUVEMzcAAKaLggMAgGnTau46ajbkrvhYOmbYOVj//3KEksvHhqjxsbH3GxtlLm4sy1xlPPl/l2zYIxS8PQMAYCZ4BQUAYCYiFv26xWTy2XHsNH9a/a8v0HGEoFsdHZaKiusXL/pMqqOi8sqqVtd9qNI+xdwAAJgxCg4AAGZIGe5pMZlMOT6uiFHVOLDrnMGtoOMIFd7FjXP19a5793yGE1esML71L0s2/7UIVzE6AAAe670ZIwAAYOavo+GeQ5sPxEbcrXrnVYmY+YfDXf/2XMvOa8pf9TC04Dbc09N88KCcakMIkfOqSbelRiziUikAAMzGGzNGAADAY6p8qVEX94viozUSGavNmV+XcvpVRcT4L5hYUJrweD46darz/Hk54cQVK3L2HlD/p3zOuAEAwGyh4AAAYBYUZZ77akyfYb/U6SStNqfueqL94Je1v7rExILM9BY3Sl/VFVeJyHjmBgDALOKPBgAAzI5s3ZW2sq3Sl4/tH3LrdytvhmUwrqAx4fFcOHnyVHW1nHYjJjGxsP6YrsRMuwEAwKyj4AAAYNZk667YK40+O46lpaL93irGFQScg4Nv19bK/FhKltG4sdGqWVXM+UQBAJgLFBwAAMwmreauz45DCGEoG2//97WMK3BNeDydH3xworx8uMf3iWNjEhMLX/9+2q7/HaZdwegAAJgjFBwAAMwyrebu7e8V5K74WDpm2DlY/dGLjCsQeRc3LlgscsJpOTkb6/9J8/yrQsWlggEAmEMUHAAAzD5luKfFZPLZcVT9wFl9MU8oOe4NJA6bTebihjoqatO+2qx9PwxLeo6rpQAAMNd4rQUAYE54O459L78pHatqHCiyrHIr6DgCgMvpbH7jjfNHj8oJp+XkFDf8MCavTKhjGB0AAPPx7osRAAAwV6+y4Z7KlxqFEFXvvCoRO9F6b+BuZovJofxVD0PzWw6bTWa1oY6KWrNtW/yaPxUxOuYGAMD8vfViBAAAzKnKlxp1cb8oPlojkbFevJ9fl9L0PxRaxS+YmL8ZHxt77/DhnqtX5YSXPfvs83/2F6pn1nHGDQAA5hkFBwAAc64o89xXY/oM+6X+/m+1OfXXE+2vf0k71snE/Metjo6f/MM/uO7d85lUR0W98K1vLVm3TWhTOeMGAADzj1dfAADmQ7buSlvZVunLx/YPufWvRdwMy2Bc/mB8bOz9xsZz9fVy2o3EFSuM33t9yeZ9Ii6NdgMAgAXBCzAAAPMkW3fFXmn02XEsLRXt91YxroXV73BYKiquX7woJ5yzdWtBdb3q2f/B+UQBAFhAFBwAAMwfreauz45DCGEoG2//97WMa0FMeDwXTp48s3+/zMWNLQcO6IoqxVOrWdwAAGBh8UoMAMC80mru3v5eQe6Kj6Vjhp2D1R+9yLjm2XBPz/G9ezvPn5cTztm6taDygDp7u3hiCaMDAGDBcZJRAADm/dU33NNiMuWbzdarz0nEqn7gFOF5lf/lJ8LtYmhzbcLj+ejUKZnVRkxi4trt2zVfW8/5RAEA8B+8JAMAsACU4Z7W73x738tvSseqGgeKLKvcCi44Orecg4Nv19bKbDeyjMaNVTWaF3dyPlEAAPzr/RUjAABgoVS+1CiEqHrnVYnMidZ7A3czW0wO5a96mNism/B4uj788ILFIif82eJG6oviK6uoNgAA8DcUHAAALKTKlxq//tWfFdQfkshYL97P2Jds3aPQKn7BxGaRc3Dw3cOHh3tkNUdpOTmrjFvCluVwxg0AAPwTf3wAAGCBrVvZ3la2VTpjd/xaX544sCiNcc0Wh812orxcTruhjoraVFmZVfLdsJWbaTcAAPBbFBwAACy8bN0Vn5eP7R9y61+L6BjLYFyPyeV0Nr/xxvmjR+WE03Jyir/34f8YrwAAIABJREFUvZhV/008XSBUnAwFAAD/RcEBAIBfWJnokNVxmET7vVWMa8YcNttbe/b0XL3qM6mOilpfVpZV/Mdhv/+KiGN3BgAAf0fBAQCAv9Bq7torjfrEa9IxQ9n42ZFvMq7pGh8bk7+4sezZZ401NfFZG4S+WCzSMD0AAPwfBQcAAH5Eq7l7qfyV3BUfS8cK9g5Vf/Qi45LvVkeHpaJC5uJG3o4dq1/dqfpPfyiSsrhaCgAAgYKrqAAA4GevzeGeFpMp32y2Xn1OIlb1A6cIz6v8Lz8RbhdDkzA+NvbhW29dv3hRTjhxxYpvbt+uevIpseybIlzF9AAACCD8UQIAAL+jDPe0fufb+15+UzpW1Tiw5s1n3QrOfDmlfofDUlEhs93I2bq14DvfUa3IF08X0G4AABB476AYAQAA/qnypUYhRNU7r0pkrBdH80Vmi8mh/FUPE3vQhMfz0alTnefPywknrliRU1KijvuqWLaWM24AABCgKDgAAPBflS81fv2rPyuoPySRsV68n7Ev2bpHoVX8gol5Dff0NB886Lp3T044Z+tWXWamiEsTX1nFGTcAAAhcvIoDAODX1q1sbyvbKp2xO36tL08cWMSlTMWEx3Ph5MlT1dVy2o2YxMTC2lpd1gti+XrOJwoAQKDjhRwAAH+XrbtirzTGRw1KZPqH3PrXIjrGMkJ5UM7Bwbdra2V+LCXLaNxYXq5Z+vsizSgi43maAQAQ6Cg4AAAIACsTHbI6DpNov7cqBOcz4fF0fvDBifLy4R7f5yLxLm6kfeMbYbo1nE8UAICgQcEBAEBg0Gru2iuN+sRr0jFD2fjZkW+G1GS8ixsXLBY54bScnI3l5Zqkp4V+i4jR8bwCACBoUHAAABAwtJq7l8pfyV3xsXSsYO9Q9UcvhshMHDabzMUNdVTUpsrKrM2bw76SKZ7ZKFRcXhcAgKDCVVQAAAioV+5wT4vJ9K0f7DtxMU8iVvUDpwjP+8vMnygnXcE6CpfTeb6xsefqVTnhtJycVZs2hS2KFE8XCHUMTyQAAILwbRIjAAAgwF68wz1NJRUr4m9WvfOqRKyqceBfrjzbUnoxKDsOh8 12/ uhROUl1VFTB7t0xiYkiepn46vOccQMAgKB9j8QIAAAIRJUvNQohpDsO68XRfJHZYnIof9UTNHd8fGzsvcOHZS5uLHv22ee3bFEtWiSW5nDGDQAAghsFBwAAgarypcbVKy4a9kstMlgv3k/a/RV7rUKr+EUQ3OVbHR0/+Yd/cN275zOpjop64VvfWrJypVDHiJQCzrgBAEDQo+AAACCAZeuutJVtle44+ofc+vJE++tf0o51Bu49HR8b+/Ctt65fvCgn/B+LG0lZQpsqFJxVHQCA4MfrPQAAgS1bd+VG7cvxUYMSmf4ht/61iPaRjAC9j7c6OiwVFTLbjZytW1eXlKgiviRSN4m4NNoNAABCBC/5AAAEvOQn++yVRp8dh2GvaL+3KrDu2oTHc+HkyXP19XI+lpK4YsWWAwd0mZkiepnQF3O1FAAAQgoFBwAAwUCruWuvNOau+Fg6Zigbb7qdGyh3arin5/jevZ3nz8sJ52zdWvCd76g1GqHLE0+tZnEDAIBQw2s/AABBQqu 522 Iy+ew4imtGqj960c /vi3 dx41R1tZzFjZjExM8WNzSJQr9FPLGEJwMAACGIk4wCABBEr+vhnhaT6Vs/2HfiYp5ErOoHThGe95eZP1FOuvzwXjgHB0//3d/JqTaEEFlGY+rzz4eFh3M+UQAAQv2NECMAACCoXtrDPU0lFSvib1a986pErKpx4F+uPNtSetGvOo4Jj6frww8vWCxywjGJiWu3b9c8+aRQqsXTBZxxAwCAUH8XxAgAAAg+lS81CiGkOw7rxdF8kdlicih/1eMPv7NzcPDdw4eHe2T9Mhkvv/y1/Pyw8HARlya+sorFDQAAQMEBAEBwqnypcfWKi4b9RyUy1ov3k3Z/xV6r0Cp+sbC/becHH8hc3FBHRRXs3h2TmCiUapH8AmfcAAAAXvy5AwCAoJWtu9JWtlU60z/k1pcnDixKW6hf0uV0Nr/xhsx2Iy0np/h734tJTBSaRJG6iXYDAAB8joIDAIBglq27cqP25fioQYlM/5Bb/1pE+0jG/P96DpvtrT17eq5e9ZlUR0VtqqzM2rz5s/OJPl0gVGoeXwAA8DkKDgAAglzyk332SqPPjsOwV7TfWzVvv5V3ceP80aNywsuefdZYU/PZx1LSCkVcGg8rAAB4CAUHAADBT6u566jZkLviY+mYoWy86XbuPPw+tzo6TlVXy1zcyNuxY3VJiWrRIhGXJvTFYpGGBxQAAHwRBQcAACEhYtGvW0wmnx1Hcc1I9Ucvzt2vMT 429 n5j47n6ete9ez7D3sWNJStXCqVa6PJEUhZXSwEAAFPhXQIAAKFCGe5pMZlMOT5O51n1A+cu6xq3YvbPcHGro8NSUXH94kU54ZytWz9b3OB8ogAAQM5bHUYAAEAIvfCHew5tPhAbcbfqnVclYuYfDnfdfLal9KJy0jUrP3fC4/no1KnO8+flhBNXrMgpKVFrNEIIsTRHxOh44AAAgO/3OYwAAIBQU/lSY0zEvZ2WP5fIWC+O5ovM0392PWL8F4/544Z7epoPHpTzmRQhRM7WrbrMTCGEUMeIZWs54wYAAJCJggMAgFC04xv/+LWkbsN+qYuYWC/e132SaK8VWsUMO45pLW7EJCYWfOc7ny1uxKWJr6zijBsAAEA+3jcAABCisnVX2sq2Smf6h9z68sSBRTO5LKtzcPD43r0y240so3FjeblaoxFKtVi+nvOJAgCA6eKtAwAAoStbd+XOgdz4qEGJTP+QO+6PF7WPZMi/2QmPp/ODD06Ul8v5WEpMYmJhbW3aN74RFh4uNIkizSgi43loAADAdPERFQAAQppWc9deadRXW/rvPSkRM+wVbftXZUd9JIS42Tt4wf7Jx503fvzTbrujRwih1yW++PXlz6UtzdI/Ffs74t3Dh4d7euT89IyXX/5afn5YeLgQnE8U802hUDAEBL3JyUmGgNBBwQEAQKjTau46ajZsOPy69epzEjFD2fhfFz799puveEuNB9kdPZ9/MVEtti8TTy7y8UPVUVEFu3fHJCYKwflEAQDALKDgAAAAImLRr1tMpnyzecqOY9ItBv7pr/fs93lTPS5R3imMSeJ5rQif4g/kaTk5qzZt+mxxY3GGWPw1zriBhTL5U/6+jeCk+Do7Sgg5vJkAAABCCKEM97SYTKYcyyO+Nz4ifvaKuL1f/q1Zbovanwnn+MNfV0dFbaqszNq8OSw8XCjVInWTSMig3QAAAI+P9xMAAOAzynDPoc0H9r385m99ddItrv2ZcDmme2s9LvHGNeF54K/jy5591lhT89nHUqKXiTSjUMcwdgAAMDvvZBgBAAB4UOVLjTER93Za/vyz/x74pxm0G149LvHhgPhGnFBHRb3wrW8tWbnys29wPlEAADDbKDgAAMDDdnzjH7+W1G3Yf1SM9U7rkylfZLktXvoD/X//dolq0SIhhFDHiJQCoVIzZAAAMLv4iAoAAHiEbN2VtrKtyhu7Hv+m/qdt6LN2Y3GGeGYj7QYAAJgLbHAAAIBHS/y9K+7RWbgdu6Pn5i/vJ3/jjznjBgAAmDtscAAAgEe7YJ+9mxqJo90AAABzioIDAAA82seds3dTtovMEwAAzCk+ogLgERSKbdPKT042cJtBcJuf3fLXZd/mT2fz1rhNf7vNyZ+KH/901v5V+fGPf8w/rQAAYE6xwQEAAB7N7pi9m7Lb3W43IwUAAHOHDQ4As+JPZWS2cZt+dpvbHvNRbxI3ZKSWcpsBepvHBv9FiD/gXzcAABAoKDgAADN0XyRzm0F8m78q/4NEtehxzc5votfrlUredQAAgDnEWw0AjzA5OclthuBtejX8dNJvb43bnI/bdA6IxiJx1SqEWK6ZtYLjxRdf5J9WAAAwpyg4AADAb9iaxNHiz/9racSs3fBzzz3HdAEAwJyi4AAAAL+1uPG5p2av4MjKymLGAABgTnEVFQAAQl7HWbEn7qF2Qwjx5CKRqJ6N21freu4+yZgBAMCcouAAACCEjY2KxiJRXzDV97cvm42fsuzvDSXd1Ud6mTcAAJg7FBwAAISqjrOiQicunpCIPLlIGJMe76cklYlFCUKIqoY+Og4AADB3KDgAAAg9Hvdnixv3+n1mC9flpKWmzvAHqXVC+0ef/1dVQ19R+Sdu9ySPAAAAmHUUHAAAhJieDrE3SXpx43M5NcfXv/n++R//WK/XT/sHqXUi5X8JxW+d0fzEuyP5pmt0HAAAYNZRcAAAEDI8bnFyl6jWy1ncSMzM3dJ6R5dXJITQarWXLl2qq6ubxs9KKhPPHBOq6C9+x2pz5puuDYyM84AAAIBZRMEBAEBo8C5unDfLyWaV1eWbW9TR2s+/olQqd+zYcePGDZ+rHHq9/ofNnSJu80O7Gw+y2px6YxcdBwAAmEVKRgAAQJDzuMWHbwrLTjnZGJ1+7d//syYh+ZHfTU5OvnLlys2bNy9cuPDxxx+bzf9Rl5hMpueeey4rKys5OVkIYX/a9c1v/7x/yD3VD+ofcuuNXe99/+mVOjUPEQAAeHwUHAAABLXBm+LwH4oeu5xsVlld6h+9Gqb08fYgOTk5OTm5qKjowYLj0KFDD2ZW6tR2S6re2OWz42hrXJ6dHskDBQAAHhMfUQEAIEh53OKDelG+VE67oY6N32Sxp23e4bPdkE8brbJbUvW+FjQMJd1n2z7l4QIAAI+JggMAgGDkHBDmfJkfS0kzmoqbb8foVs76b6GNVl069kxupkY6VrDbUX2klwcNAAA8DgoOAACCjq1J7IkTV60+g97Fjaw9h2ZxceMhSqWixZzis+Ooauij4wAAAI+DggMAgCDiHBBvrBFHi+Vkl60tnKPFjYcolYrWw0/v27ZYOlbV0Ldm+8/d7kkeRgAAMAMUHAAABIuOs/IXN/IONq+ubXrMxY3JB/gMV5Ym+Ow4rDZnvukaHQcAAJgBCg4AAALf2KhoLBL1BXKyy9YWGk87lhjWzf+vWVma0HxQJ52x2pwZr/xsYGScRxUAAEwLBQcAAAGu46yo0ImLJ+RkvYsbKnXEQv2y6wxPtDUul87YHS69sYuOAwAATAsFBwAAAcvj/mxx416/z2xiZu6W1jsLsrjxkOz0SLslNT5W6tMx/UNuvbGrw+HiQQYAADJRcAAAEJh6OsTeJJmLGzk1xwsOt6qjtX7yu6/UqWV2HO2X7/NQAwAAOSg4AAAINB63OLlLVOvlL27o8or87U5oo1V2S6pep5aOGUq6z7Z9ymMOAAB8ouAAACCgeBc3zpvlZLPK6vLNLf6zuPEQbbTq0rFncjM10rGC3Y7qI7088gAAQBoFBwAAAcLjFh/Uy1zciNHpC8/cSNu84zEvBDvXlEpFiznFZ8dR1dBHxwEAAKRRcAAAEAgGb4raDGHZKSebVVa38dglTUJyQNwzpVLRevjpfdsWS8eqGvrWbP+52z3JcwEAADwSBQcAAP7Nu7hRvlT02H1m1bHxmyx2/1/c+KLK0gSfHYfV5sw3XaPjAAAAj0TBAQCAH3MOCHO+zMWNNKOpuPl2jG5lgN7XytKEtsbl0hmrzZlUYB8YGeepAQAAHkLBAQCAv7I1iT1x4qrVZ9C7uJG151DALW48JDs90mfH4b18LB0HAAB4CAUHAAD+xzkg3lgjjhbLyS5bW7hQixuKB8zWbWanR944kxYfK9XUeDuO9sv3eaYAAIDPUXAAAOBnOs7KX9zIO9i8urYp0Bc3HpKcsMhuSfXZcRhKuuk4AADA5yg4AADwG2OjorFI1BfIyS5bW2g87VhiWBeUk9BGq+yWVJ+XjzWUdDedG+aJAwAABAUHAAD+ouOsqNCJiyd8Bj9f3FCpI4J4HtpoVYs5xWfHUVxxo/pIL08fAABAwQEAwELzuD9b3LjX7zObmJm7yWIP1sWNhyiVihZzSuHaaOlYVUNf9ZFeLh8LAECIo+AAAGBB9XSIvUlyFjeEEDk1xwsOt6qjtaEzHqVS0VT71L5ti6VjVQ19+aZrdBwAAIQyCg4AABaIxy1O7hLVepmLG1ta7+jyikJzVJWlCT47DqvNSccBAEAoo+AAAGAheBc3zpvlZLPK6kJtceOLKksT2hqXS2esNmdSgX1gZJznFwAAIYiCAwCA+eVxix9Vy1zciNHpC8/cSNu8g7EJIbLTI312HP1Dbr2xi44DAIAQRMEBAMA8GrwpajPEO1VysllldRuPXdIkJDO2z2WnR944kxYfq5TIeDuO9sv3GRcAACGFggMAgHnhcYsP6kX5UtFj95lVx8Z7FzfClEom95DkhEV2S6rPjsNQ0k3HAQBASKHgAABg7jkHRG2GsOyUk00zmoqbb7O4IUEbrbJbUnMzNdIxQ0l307lhxgUAQIig4AAAYI7ZmsSeOJmLG5ss9qw9h1jc8EkbrWoxp/jsOIorblQf6WVcAACEAgoOAADmjHNAvLFGHC2Wk/UubsToVjI2mZRKRYs5xWSMk45VNfRVH+nl8rEAAAQ9Cg4AAOaGd3HjqtVnUB0bn3ewmcWNGVAqFYf2JO3btlg6VtXQl2+6RscBAEBwo+AAAGC2jY2KxiKZixvL1hYaTzuWGNYxthmrLE2oK0uSzlhtznzTtVGXh3EBABCsKDgAAJhVHWdFhU5cPOEz6F3cWF3bpFJHBOh9nXzAwv4mOzbHtTUul85YbU7dhs6BkXGepAAABCUKDgAAZol3caO+QNzr95lNzMzdZLGzuDGLstMjfXYc/UNuvbGLjgMAgKBEwQEAwGzo6ZC5uCGEyKk5XnC4VR2tZWyzKzs98k6rPj5W6lQm/UPuuDX29sv3GRcAAEGGggMAgMfjcYuTu0S1XubixpbWO7q8IsY2R7TRKrslVbrjEEIYSrrpOAAACDIUHAAAPIaeDrE3SZw3y8lmldWxuDEPtNEqx+m03EyNdMxQ0l1/8g7jAgAgaFBwAAAwIx63+FG1zMWNGJ2+8MyNtM07GNv8iFCHt5hTfHYcO/ffrj7Sy7gAAAgOFBwAAEzf4E1RmyHeqZKTzSqr23jskiYhmbHNJ6VS0WJOMRnjpGNVDX27Dtx2uyeZGAAAAf/qzwgAAJgGj1t8+Kaw7JSTVcfGb/jBv1JtLNi7HKXi0J6k2CfCqxr6JGJmy52uT1wt5hSlUsHQAAAIXGxwAAAgm3NA1GbIbDfSjKbi5tu0GwuusjShrixJOmO1OfNN10ZdHsYFAEDgouAAAEAeW5PYEyd67D6D6tj4TRZ71p5DYUo2Jf3Cjs1xbY3LpTNWm1O3oXNgZJxxAQAQoCg4AADwxTkg3lgjjhbLyXoXN2J0KxmbX8lOj/TZcfQPufXGLjoOAAACFAUHAACSvIsbV60+g+rY+LyDzSxu+K3s9Mg7rfr4WKlHp3/IHbfG3n75PuMCACDgUHAAADCFsVHRWCRzcWPZ2kLjaccSw7qQmpDiAQHxC2ujVXZLqnTHIYQwlHTTcQAAEHAoOAAAeJSOs6JCJy6e8Bn0Lm6srm1SqSMYm//TRqtuN+tzMzXSMUNJd/3JO4wLAIAAQsEBAMBv8y5u1BeIe/0+s4mZuZss9lBb3Ah0SqWixZzis+PYuf 929 ZFexgUAQKCg4AAA4AE9HTIXN4QQOTXHCw63qqO1jC3geDuOfdsWS8eqGvqKyj9xuyeZGAAAAfD6zggAABBCCI9bnHpNnDfLySZm5ubUNlFtBPZ7IKWisjRBCFHV0CcRO/HuyMCIu8WcolQqGBoAAP6MDQ4AAITo6RB7k2S2G1lldSxuBI3K0oTjNUulM1abM990jcvHAgDg5yg4AAChzeMWP6oW1Xo5Z9yI0ekLz9xI27yDsQWToryYtsbl0hmrzak3dtFxAADgzyg4AAAhbPCmqM0Q71TJyWaV1W08dkmTkMzYgk92emRb43Lpy8f2D7n1xq6bvWOMCwAA/0TBAQAISR63+KBelC8VPXafWXVsvHdxI0zJuauCVnZ6pN2S6rPjWLq+s/3yfcYFAIAfouAAAIQe54CozRCWnXKyaUZTcfNtFjdCgTZa5bPjEEIYSrrpOAAA8EMUHACAEGNrEnviZC5ubLLYs/YcYnEjdGijVbeb9bmZGumYoaS7+kgv4wIAwK9QcAAAQoZzQLyxRhwtlpP1Lm7E6FYytlCjVCpazCk+O46qhj46DgAA/AoFBwAgNHgXN65afQbVsfHrG9tY3Ahl3o5j37bF0rGqhr6i8k/c7kkmBgCAX7yCMwIAQJAbGxVvlYqLJ+Rkl60tfL7iiEodwdhC/R2SUlFZmiCEqGrok4ideHdkYMTdYk5RKhUMDQCAhcUGBwAgqHWcFRU6Oe2GOjY+72Dz6tom2g18rrI04XjNUumM1ebMN10bGBlnXAAALCwKDgBAkBobFY1For5A3Ov3mU3MzDWediwxrGNseEhRXkxb43LpjNXm1Bu76DgAAFhYFBwAgGDkaJe5uCGEyKk5XnC4lcWNGZh8QBDfzez0SJ+Xj+0fcuuNXTd7x3hWAACwUCg4AADBxeMWJ3eJ/QaZixtbWu/o8ooYG6St1KnldBxL13e2X77PuAAAWBAUHACAINLTIfYmifNmOVnv4oY6WsvYIIc2WmW3pOp1aumYoaT7bNunjAsAgPlHwQEACArexY1qvZzFjRidvvDMDRY3MF3aaNWlY8/kZmqkYwW7HdVHehkXAADzjIIDABD4Bm+K2gyZixtZZXUbj13SJCQzNsyAUqloMaf47DiqGvroOAAAmGcUHACAQOZxiw/qRflS0WP3mfUubqRt3hGmVDI5zJhSqWg9/PS+bYulY1UNfWu2/9ztnmRiAADMDwoOAEDA8i5uWHbKyaYZTSxuYBZVlib47DisNme+6RodBwAA84OCAwAQmGxNMhc31LHxmyz2rD2HWNzA7KosTWg+qJPOWG3OjFd+NjAyzrgAAJhrFBwAgEDjHBBvrBFHi+Vk04ym4ubbMbqVjA1zYZ3hibbG5dIZu8OlN3bRcQAAMNcoOAAAAcXWJPbEiatWn0F1bPz6xjYWNzDXstMj7ZbU+Fipp1n/kFtv7OpwuBgXAABzh4IDABAgxkblL24sW1toPO2IT89mbJgHK3VqmR1H++X7jAsAgDlCwQEACAQdZ0WFTubiRt7B5tW1TSp1BGPDvNFGq+yWVL1OLR0zlHSfbfuUcQEAMBcoOAAA/m1sVDQWifoCca/fZzYxM9d42rHEsI6xzQ/FA5iGNlp16dgzuZka6VjBbkf1kV7GBQDArKPgAAD4MUe7qNCJiyfkZHNqjhccbmVxAwtIqVS0mFN8dhxVDX10HAAAzDoKDgCAX/K4xcldYr9B5uLGltY7urwixoYFp1QqWg8/vW/bYulYVUPfmu0/d7snmRgAALOFggMA4H96OsTeJHHeLCfrXdxQR2sZG/xHZWmCz47DanPmm67RcQAAMFsoOAAA/sS7uFGtl7O4EaPTF565weIG/FNlaULzQZ10xmpzZrzys4GRccYFAMDjo+AAAPiNwZuiNkPm4kZWWd3GY5c0CcmMDX5rneGJtsbl0hm7w6U3dtFxAADw+Cg4AAB+wOMWH9SL8qWix+4z613cSNu8I0ypZHLwc9npkTfOpMXHSj1X+4fcemNX++X7jAsAgMdBwQEAWGjexQ3LTjnZNKOJxQ0EluSERXZLqs+Ow1DSTccBAMDjoOAAACwoW5PMxQ11bPwmiz1rzyEWNxBwtNEquyXV5+VjDSXdTeeGGRcAADNDwQEAWCDOAfHGGnG0WE42zWgqbr4do1vJ2BCgtNGqFnOKz46juOJG9ZFexgUAwAxQcAAAFoKtSeyJE1etPoPq2Pj1jW0sbiAIKJWKFnNK4dpo6VhVQ1/1kV4uHwsAwHRRcAAA5tfYqPzFjWVrC42nHfHp2YwNwUGpVDTVPrVv22LpWFVDX77pGh0HAADTQsEBAJhHHWdFhU7m4kbewebVtU0qdQRjQ5CpLE3w2XFYbU46DgAApoWCAwAwL8ZGRWORqC8Q9/p9ZhMzc42nHUsM6xgbglVlaUJb43LpjNXmTCqwD4yMMy4AAOSg4AAAzD1Hu6jQiYsn5GRzao4XHG5lcQNBLzs90mfH0T/k1hu76DgAAJCDggMAMJc8bnFyl9hvkLm4saX1ji6viLEhRGSnR944kxYfK3UCXW/H0X75PuMCAEAaBQcAYM70dIi9SeK8WU7Wu7ihjtYytgAy+QCmMTPJCYvsllSfHYehpJuOAwAAaRQcAIA54F3cqNbLWdyI0elZ3EAo00ar7JbU3EyNdMxQ0t10bphxAQAwFQoOAMBsG7wpajNkLm5kldVtPHaJxQ2EOG20qsWc4rPjKK64UX2kl3EBAPBIFBwAgNnjcYsP6kX5UtFj95mN0ekLz9xI27wjTKlkcoBSqWgxpxSujZaOVTX0VR/p5fKxAAB8EQUHAGCWeBc3LDvlZDO27dt47JImIZmxAZ9TKhVNtU/t27ZYOlbV0JdvukbHAQDAQyg4AACzQfbihjo2fpPFnlFayeIG8EiVpQl1ZUnSGavNSccBAMBDKDgAAI/HOSDeWCNzcSPNaCpuvh2jW8nYAAk7Nse1NS6XzlhtzqQC+8DIOOMCAMCLggMA8BhsTWJPnLhq9Rn0Lm5k7TnE4gYgR3Z6pM+Oo3/IrTd20XEAAOBFwQEAmBHv4sbRYjnZZWsLjacdLG4A05KdHnmnVR8fK9UJ9g+549bY2y/fZ1wAAFBwAACmr+OsqNbLXNzIO9i8urZJpY5gbMB0aaNVdkuqdMchhDCUdNNxAABAwQEAmI6xUdFYJOoLxL1+n1nv4sYSwzrGBsyYNlrlOJ2Wm6mRjhlKuutP3mFcAIBQRsEBAJCt46yo0ImLJ+Rkc2qOs7gBzIoIdXiLOcVnx7Fz/+3qI70FBU4PAAAgAElEQVSMCwAQsig4AAAyeNzi5C6ZixuJmblbWu/o8ooYW9BTPIBpzCmlUtFiTjEZ46RjVQ19uw7c5vKxAIAQfblkBAAAH3o6xMFvyqk2hBA5NcepNoA5edOmVBzakxT7RHhVQ59EzGy50/WJq8WcolTSOgEAQgsbHACAqXkXN6r1ctqNGJ2exQ1grlWWJtSVJUlnrDZnvunaqMvDuAAAIYWCAwAwhcGbYm+SOG+Wk80qq9t47JI6WsvYgLm2Y3NcW+Ny6YzV5tRt6BwYGWdcAIDQQcEBAPgCj1t8UC/Kl8pc3Cg8cyNt844wJR97BOZJdnqkz46jf8itN3bRcQAAQgdvRgEAv23wpjj8h6LHLiebsW3f1/7kL6k2gPmXnR55p1WvN3b1D7mnyvQPuePW2Nsal2enRzKxqSi+zslKACBIsMEBAPht5UvltBvq2PhNFntGaSXtBrBQtNEquyU1PtbH/wcNJd3tl+8zLgBA0ONdKQBg2tKMplW7X6faABacNlrlOJ 224 bXrVptTImYo6a4rS9qxOY6JPWhykuvpAkBQYYMDADAN3sWNrD2HaDcAPxGhDm8xp+RmaqRjO/ffrj7Sy7gAAEGMggMAINeytYXG044Y3UpGAfgVpVLRYk7Zt22xdKyqoW/XgdtuN2sLAIAgfUFkBAAAn9Sx8S/81dElhnWMAvDTt3RKRWVpghCiqqFPIma23On6xNViTlEqObMmACDYsMEBAKFo3DUqP+xd3KDdAPxfZWnC8Zql0hmrzZlvusblYwEAwYeCAwBCzq22s5YNOpnhnJrjq2ubVOoI5gYEhKK8mLbG5dIZq82pN3bRcQAAggwFBwCEkAm3+8KBXed2F7iG+n2GEzNzt7Te0eUVMTcgsGSnR7Y1Lpe+fGz/kFtv7LrZO8a4AABBg4IDAELFsKPjeEFSp8UsJ5xTc7zgcKs6WsvcgECUnR5pt6T67DiWru9sv3yfcQEAggMFBwAEP+/iximjXs7iRoxOz+IGEAS00SqfHYcQwlDSTccBAAgOFBwAEOScvTflL25kldVtPHaJxQ3INPkApuGHtNGq28363EyNdMxQ0l19pJdxAQACHQUHAAStCbe782T9ifVLZS5uFJ65kbZ5R5iSK4gDwUOpVLSYU3x2HFUNfXQcAIBAR8EBAMHJ2Xvz7VcyLuzfKSecsW3fxmOXNAnJzA0IPt6OY9+2xdKxqoa+ovJP3G6WcQAAAfuSxwgAIPh0nqyXWW2oY+MLvv9ejG4lQwOC+Q2fUlFZmiCEqGrok4ideHdkYMTdYk5RKhUMDQAQcNjgAICg4hoZaN6+Rma7kWY0feu9/tgUvUKhUCg4ngGCXGVpwvGapdIZq82Zb7o2MDLOuAAAAYeCAwCCh+Nc01tr4npsVp9JdWz8Jos9a88hhgaElKK8mLbG5dIZq82pN3bRcQAAAg4FBwAEA+/ixvmKYjnhZWsLjacdfCwFCE3Z6ZFtjculLx/bP+TWG7tu9o4xLgBAAKHgAICAd6vt7CmjXubiRt7B5tW1TSp1BHMDQlZ2eqTdkuqz41i6vrP98n3GBQAIFBQcABDAxl2j75cXndtdIOdCsN7FjSWGdcwNgDZaZbek6nVq6ZihpJuOAwAQKCg4ACBQ3Wo7a9mgu/7uCTlhFjcAPEQbrbp07JncTI10zFDSXX2kl3EBAPwfBQcABJ4Jt/vCgV0yFzcSM3O3tN5hcQPAFymVihZzis+Oo6qhj44DAOD/KDgAIMAMOzqOFyR1Wsxywjk1xwsOt6qjtcwNwCMplYrWw0/v27ZYOlbV0Ldm+8/d7kkmBgDwWxQcABAwvIsbp4x6+Ysburwi5oa5o3gA0wholaUJPjsOq82Zb7pGxwEA8FsUHAAQGKa1uJFVVpdvbmFxA4B8laUJzQd10hmrzZnxys8GRsYZFwDAD1FwAIC/m3C7O0/Wy1zciNHpC8/cSNu8I0ypZHQApmWd4Ym2xuXSGbvDpTd20XEAAPwQBQcA+DVn7 823 X8m4sH+nnHBWWd3GY5c0CcnMDcDMZKdH2i2p8bFSDWn/kFtv7OpwuBgXAMCvUHAAgJ/yLm6cWL902GH3GVbHxm+y2FncAPD4VurUMjuO9sv3GRcAwH9QcACAP3KNDLSY8mUubqQZTcXNt2N0K5kbgFmhjVbZLal6nVo6ZijpPtv2KeMCAPgJCg4A8DuOc01vrYnrsVl9Jr2LG1l7DrG4AWB2aaNVl449k5upkY4V7HZUH+llXAAAf0DBAQB+xDUy0Lx9zfmKYjnhZWsLWdwAMHeUSkWLOcVnx1HV0EfHAQDwBxQcAOAvbrWdlb+4kXeweXVt0+MvboyPj0/+Bg8BgIcolYrWw0/v27ZYOlbV0Ldm+8/dbv4ZAQAsJAoOAFh4467R98uLzu0ukBNetrbQeNqxxLBulo5e+GwLAB8qSxN8dhxWmzPfdI2OAwCwgCg4AGCB3Wo7a9mgu/7uCTlh7+KGSh3B3ADMp8rShOaDOumM1ebMeOVnAyPjjAsAsCAoOABgwUy43d7FDddQv89wYmbultY7s7W4AQDTtc7wRFvjcumM3eHSG7voOAAAC4KCAwAWxrCj43hBkszFjZya4wWHW9XRWuYGYAFlp0faLanxsVIfbesfcuuNXR0OF+MCAMwzCg4AmG8TbveFA7tOGfXyFzd0eUXMDYA/WKlTy+w42i/fZ1wAgPlEwQEA88q7uNFpMcsJZ5XV5ZtbWNwA4Fe00Sq7JdXn5WMNJd1N54YZFwBg3lBwAMA8mXC7O0/Wy1zciNHpC8/cSNu8I4yrnADwP9poVYs5xWfHUVxxo/pIL+MCAMwPCg4AmA/O3ptvv5JxYf9OOeGssrqNxy5pEpKZG/zc5AOYRqhRKhUt5pTCtdHSsaqGvuojvVw+FgAwDyg4AGBueRc3TqxfOuyw+wyrY+M3WewsbgAICEqloqn2qX3bFkvHqhr68k3X6DgAAHONggMA5pBrZKDFlC9zcSPNaCpuvh2jW8ncAASQytIEnx2H1eak4wAAzDUKDgCYK45zTW+tieuxWX0mvYsbWXsOsbgBIBBVlia0NS6XzlhtzqQC+8DIOOMCAMwRCg4AmH2ukYHm7WvOVxTLCS9bW7iAixuKB/DAAZix7PRInx2H9/KxdBwAgDlCwQEAs+xW21n5ixt5B5tX1zaxuAEgCGSnR944kxYfK/UPmrfjaL98n3EBAGYdBQcAzJpx1+j75UXndhfICS9bW2g87VhiWMfcAASN5IRFdkuqz47DUNJNxwEAmHUUHAAwO261nbVs0F1/94ScsHdxQ6WOYG4Agow2WmW3pOZmaqRjhpLupnPDjAsAMIsoOADgcU243d7FDddQv89wYmbultY7LG4ACGLaaFWLOcVnx1FccaP6SC/jAgDMFgoOAHgsw46O4wVJMhc3cmqOFxxuVUdrmRuA4KZUKlrMKYVro6VjVQ191Ud6uXwsAGBWUHAAwAxNuN0XDuw6ZdTLX9zQ5RUxNwAhQqlUNNU+tW/bYulYVUNfvukaHQcA4PFRcADATHgXNzotZjnhrLK6fHMLixsAQlBlaYLPjsNqc9JxAAAeHwUHAEzPhNvdebJe5uJGjE5feOZG2uYdXAgWQUnxAKaBqVSWJrQ1LpfOWG3OpAL7wMg44wIAzBgFBwBMg7P35tuvZFzYv1NOOKusbuOxS5qEZOYGIMRlp0f67Dj6h9x6YxcdBwBgxig4AEAW7+LGifVLhx12n2F1bPwmi53FDQD4XHZ65J1WfXys1L+K3o6j/fJ9xgUAmAEKDgDwzTUy0GLKl7m4kWY0FTffjtGtZG4A8CBttMpuSfXZcRhKuuk4AAAzQMEBAD44zjW9tSaux2b1mfQubmTtOcTiBgA8kjZa5TidlpupkY4ZSrrrT95hXACAaaHgAIApuUYGmrevOV9RLCfM4gYAyBGhDm8xp/jsOHbuv119pJdxAQDko+AAgEeb1uJG3sFmFjcAQCalUtFiTjEZ46RjVQ19uw7c5vKxAAC5ry+MAAAeMu4a/bCm9Pq7J+SEl60tfL7iiEodwdwAYBrvQZWKQ3uSYp8Ir2rok4iZLXe6PnG1mFOUSi5FDADwgQ0OAPgtt9rOWjbo5LQb3sWN1bVNAd1ujI+PT/4Gjz6AeVZZmlBXliSdsdqc+aZroy4P4wIASKPgAIDfHOq7Rt8vLzq3u8A11O8znJiZu8liX2JYF+j3WsnHagAsqB2b49oal0tnrDanbkPnwMg44wIASKDgAAAhhBh2dMhc3BBC5NQcLzjcqo7WMjcAeHzZ6ZE+O47+Ibfe2EXHAQCQQMEBINRNuN0XDuw6ZdTLXNzY0npHl1fE3ABgFmWnR95p1cfHSu2U9Q+549bY2y/fZ1wAgEei4AAQ0oYdHccLkjotZjnhrLI6FjcAYI5oo1V2S6p0xyGEMJR003EAAB6JggNAiJpwuy8dqZa5uBGj0xeeuZG2eQdzA4C5o41WOU6n5WZqpGOGku76k3cYFwDgIRQcAEKRs/fm269kXGqokhPOKqvbeOySJiGZuQHAXItQh7eYU3x2HDv3364+0su4AAAPouAAEFom3O7Ok/Un1i8ddth9htWx8d7FjTAuNQIA80WpVLSYU0zGOOlYVUPfrgO33W4ucQ0A+M0rCCMAEDpcIwPNf5Yrp9oQQqQZTat2v061AUiYnOTYEnPzDlWpOLQnKfaJ8KqGPomY2XKn6xNXizlFqVQwNAAAGxwAQoXjXNNba+JkLm5sstiz9hyi3QCABVRZmnC8Zql0xmpz5puujbo8jAsAQMEBIPi5Rgaat685X1EsJ5xmNBU3347RrWRuALDgivJi2hqXS2esNqduQ+fAyDjjAoAQR8EBIMh5Fzd6bFafSXVsfN7BZhY3AMCvZKdHtjUul758bP+QW2/sutk7xrgAIJRRcAAIWuOu0ffLi2QubixbW2g87VhiWBdqU1I8gOcMAP+UnR5pt6T67DiWru9sv3yfcQFAyKLgABCcbrWdtWzQXX/3hM+kd3FjdW2TSh3B3ADAP2mjVT47DiGEoaSbjgMAQhYFB4Bg413cOLe7wDXU7zOcmJm7yWIPwcUNAAg42mjV7WZ9bqZGOmYo6a4+0su4ACAEUXAACCrDjg6ZixtCiJya4wWHW9XRWuYGAAFBqVS0mFN8dhxVDX10HAAQgig4AASJCbf7woFdp4x6mYsbW1rv6PKKmBsABBZvx7Fv22LpWFVDX1H5J273JBMDgBB6jWAEAILAsKOj+dvflFNtCCGyyurSNu9gaAAQqO9flYrK0gQhRFVDn0TsxLsjAyPuFnOKUslJlAEgJLDBASCwTbjdl45Uy1zciNHpC8/coN0AgCBQWZpwvGapdMZqc+abrg2MjDMuAAgFFBwAApiz9+bbr2RcaqiSE84qq9t47JImIZm5AUBwKMqLaWtcLp2x2px6YxcdBwCEAgoOAAFpwu3uPFl/Yv3SYYfdZ1gdG+9d3AhT8rk8YDYpHsA0sCCy0yPbGpdLXz62f8itN3bd7B1jXAAQ3Cg4AAQe18jA269kXNi/U044zWgqbr7N4gYABKvs9Ei7JdVnx7F0fWf75fuMCwCCGAUHgADjONf01po4mYsbmyz2rD2HWNwAgOCmjVb57DiEEIaSbjoOAAhiFBwAAoZrZKB5+5rzFcVywt7FjRjdSuYGAKFAG 626 3azPzdRIxwwl3dVHehkXAAQlCg4AgcG7uNFjs/pMqmPj8w42s7gBAKFGqVS0mFN8dhxVDX10HAAQlCg4APi7cdfo++VFMhc3lq0tNJ52LDGsY24AEIK8Hce+bYulY1UNfUXln7jdk0wMAILqVYARAPBnt9rO/uRvtrqG+n0m1bHxL/zVUaoNAAj1d7dKRWVpghCiqqFPInbi3ZGBEXeLOUWp5BpAABAk2OAA4Ke8ixvndhfIaTcSM3M3Wey0GwAAr8rShOaDOumM1ebMeOVnAyPjjAsAggMFBwB/NOzosGzQXX/3hJxwTs3xgsOt6mgtc5uB8fHxyd9gGgCCyTrDE22Ny6UzdodLb+yi4wCA4EDBAcC/TLjdFw7sOmXUy1zc2NJ6R5dXxNxmTMmpWAEEr+z0SJ+Xj+0fcuuNXR0OF+MCgEBHwQHAjww7Oo4XJHVazHLCLG4AAHxaqVPL7DjaL99nXAAQ0Cg4APiFCbf70pFqmYsbMTp94ZkbLG4AAOTQRqvsllS9Ti0d+/S+h1kBQECj4ACw8Jy9N99+JeNSQ5WccFZZ3cZjlzQJycwNACCTNlp16dgzuZmaqQL7ti1eZ3iCQQFAQKPgALCQJtzuzpP1J9YvHXbYfYa9ixtpm3eEcdoIAMA0KZWKFnPKIzuOfdsWe68sCwAIaBQcABaMd3Hjwv6dcsJpRhOLGwCAx6FUKloPP71v2+IHv5ibqfnLP1nMcAAE+Rtv15SnUtb87u8Gz7/zPNIAFoTjXNP5imI5SXVsfMH334vRrWRoAIDH513WqGroE0LkZmpazClKpYKxAAhuY273VN9apFIFzd2k4AAw31wjA+fLi3psVjnhNKNp1e7X+UwK4J8mJycZAgJRZWnC15+J2Po3N2k3ACCYcMwAYF5Na3Fjzd+dik/PZmgAgFm3zvBE37u/zxwAIJhQcACYJ+Ou0fde2yBzcWPZ2sLnK46o1BHMDQAAAIAcFBwA5sOttrM/+ZutrqF+n0l1bPwLf3V0iWEdQwMAAAAgHwUHgLk17hr9sKb0+rsn5IQTM3O/+fppFjfmk0LxHx8+53wKAAAACFwUHADmUP/l9ta/2CRncUMIkVNzXJdXxNAAAAAAzEBYoPyiiTExj/z6J7/8JY8i4Icm3O4LB3adKTHIaTcSM3O3tN6h3QAAAADmwlQHzlMdaAeogNngSIiO7hke5nkJBIRhR0fzt7/J4gYAAADg5wfawXR3+IgKgNk04XZ/dPC1TotZTjhGp1/79/+sSUhmbgAAAAAeU8AUHBq1+pFfv3HnTqZOxwMJ+ANn7813v/uHww67nHBWWV3qH70apqRmBQAAAObWjTt3pnWgHaAC5tBiaVzcow+oXC6erMCCm3C7u/7pzQv7d8oJs7gBAAAAzKepDpynOtAOUAH/t1Pnr3/NkxVY4P8bTmdxI81oWrX7dRY3AAAAAA6cZ1fAHGPEREY+8utXe3p4sgILyHGu6XxFsZykOja+4PvvxehWMjQgaCgUis//9+TkJAMBAMA/TXXgPNWBdoAKmILjSxERU33LMzERHhbGUxaYZ66RgfPlRT02q5wwixsAAADAgvBMTMzgQDsQBc5JRn/3d6f61sjo6JMaDc9aYD5Na3Fjzd+dik/PZmgAAADA/BsZHZ3BgXYgCpiCY5FKNdW3xsbHecoC82bcNfreaxtkLm4sW1v4fMURlTqCuQEAAAALQuKQWeJAOxAF0rp4YkxMz/DwF7/eMzycGBPDsxaYB7fazv7kb7a6hvp9JtWx8S/81dElhnUMDQAAAFhAjzyO9h5iB9k9DaRTVyRERz/y61Nd0RfALBp3jb5fXnRud4GcdiMxM9d42kG7AQAAACy4qQ6ZpzrEDlyBtMGx7Mtfvnj9+he/3jsywlMWmFP9l9tb/2KTnGpDCJFTc1yXV8TQAAAAAH8w1SHzsi9/OcjuaSAVHE9GRT3y61wpFpg7E273Rwdf67SY5YQTM3NzapvU0VrmBgAAAPiJqQ6ZpzrEDlyBVHAsnnp/xulyadRqnrjA7Bp2dDR/+5ssbgS38fFxJZfvBQAACFJOl2sGh9gBKqA2OKa+FuwvP/2UggOYRdNa3IjR6df+/T9rEpKZW0C+DNBuAAAABK9ffvrpDA6xA/WdbWD9ulNdSOX24KAuPp7nLjArYn9HvP1KxrDDLiecVVaX+kevhnGQDAAAAPif24ODUx1cB9+dDQusX3d5QsIjv379l7/kiQvMyr8Chapter ... src=" 522 hGsjcAAAAEC62Lnz9KVL3fZwDQQOAAAASCM7dvzKEq6BwAEAAABp5Gc/a+/uvmIPV0vgAAAAgDRy/nz8+PGL9nC1BA4AAABIL6++2moJV0vgAAAAgPRy+HAsFuuyh6sicAAAAEDa+cd/PGcJV0XgAAAAgLTz8593WMJVETgAAAAg7bS0dHqXylUROAAAACAdeZfKVRE4AAAAIB15l8pVETgAAAAgHbW0dF661G0PKRI4AAAAIE398pcXLCFFAgcAAACkqUOHzltCigQOAAAASFM7d562hBQJHAAAAJC+OjouWUIqBA4AAABIXx98cNESUiFwAAAAQPpqavrIElIhcAAAAED6OnIkZgmpEDgAAAAgfZ0/H4/FuuwhKYEDAAAA0tqvfuU6o8kJHAAAAJDWzp79xBKSEjgAAAAgrbnOaCoEDgAAAEhrra0fW0JSAgcAAACktZaWTktISuAAAACAdNfR4TqjSQgcAAAAQOgJHAAAAJDuPvjgoiUkJnAAAAAAoSdwAAAAQLpzp9ikBA4AAAAg9AQOAAAAIPQEDgAAAEh3R47ELCExgQMAAADS3fnzcUtITOAAAAAAQk/gAAAAAEJP4AAAAABCT+AAAAAAQk/gAAAAgBDo7r5iCQkIHAAAAEDoCRwAAAAQAiNGZFlCAgIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAAKS7nJwRlpCYwAEAAADpLj76192XL9tDAgIHAAAApLvOS5/87dtv20MCAgcAAACEwN5jxxqbm+2hLwIHAAAApL0v/ToIgud37mw5e9YyeiVwAAAAQGg8s337pa4ue/g8gQMAAADS3ugLPf95vrPzx++8Yx+fJ3AAAABAmLgYR68EDgAAAEh7Iz/59M+e37kz1tlpK58mcAAAAEB6i/7m8489vX179+XLdvNbAgcAAACkty98/PnHWs6efefQIbv5LYEDAAAA0tuXft3rw3V79nTEYtbTQ+AAAACA9Bbt83Ibz77xhvX0EDgAAAAgrS37xlf7eqrl7Fl3VOkhcAAAAED6Gjs2cnvJLbfdfHNfA+6o0kPgAAAAgPR1663jgiB48GtfSzCzbc8eixI4AAAAIH1NnTo6CIKR2dkPzZ/f18zeY8ea29qG+aIEDgAAAEhfN900uucHc4uKphcW9jW2ddeu7suXh/OiBA4AAABIXxMmjPztj5f3fYij5ezZfR98MJwXJXAAAABAmpo/f+Knf5oTjZbPm9fX8D+8++6lrq5huyuBAwAAANLUjBljP/PI12bMGBuN9jp8vrNzR1PTsN2VwAEAAABp6pZbxnzmkRE33LDyjjv6mn91375he8tYgQMAAADSUWFhdOTIEZ9/vCg/P8HVRoftLWMFDgAAAEhH/+bfTOjrqQe/9rW+ntp77FhHLDYM1yVwAAAAQDq69dbcvp6akJMzf+bMvp59ubFxGK5L4AAAAIC0U1gYzcnJTjBw 722 39fXU8DzEIXAAAABA2lm0KD/xwMjs7LvnzOnr2WF4iEPgAAAAgLTzr/7VF5PO3FFS0tdTe48dG263UxE4AAAAIL3cdltur/dP+YzEhzh+dujQsFqawAEAAADp5etfn5jiZIJDHK/u23epq2v4LE3gAAAAgDQydmykqGhMisOJD3HsOXJk+OxN4AAAAIA0cuedk65qPsEhjtf+6Z+6L18eJnsTOAAAACCNzJs3/qrmExziON/Zefz06WGyN4EDAAAA0sXdd09K5fKin/FHt9zS11Ov7ts3TFYncAAAAEC6uP32vGv4qAk5OdMLC3t96nBLyzC5X6zAAQAAAGnhtttyc3Kyr+1j3S9W4AAAAIC0cO+9hdf8sUX5+WOj0V6fEjgAAACAQXLbbbkTJoy8nle48w//sNfHz3d2Nre1ZfwCBQ4AAAAYetdzfKPHvGnT+npq3wcfZPwCBQ4AAAAYYtd/fCMIgpHZ2X1danTnwYPdly9n9g4FDgAAABhiDz74lX55nQSXGj1++nRm71DgAAAAgKFUXj555MgR/fJSUydO7OupjH+XisABAAAAQ2bs2MjXvpbXX6 824 oYb5s+c2etTGf8uFYEDAAAAhsx3vztlxIisfnzBOTfd1NdTmf0uFYEDAAAAhsb06TmzZn2xf19z2L5LReAAAACAobF8+dR+f83E71LJ4GUKHAAAADAEHnpoak5O9kC8coJ3qbScPZup+xQ4AAAAYLAVFkbnzh03QC8+efz4vp76ZWtrpq5U4AAAAIDB9v3vFw/ci4/Mzp5eWNjrU/v/5//M1JUKHAAAADCoBu7NKb9VOm1ar48fbmm51NWVkVsVOAAAAGDw3HZb7sC9OeW3bvryl/t6qiMWy8jFChwAAAAwSMaOjTz44FcG4RNNyMkZG4 32+ lSmXoZD4AAAAIBB8oMfTB85csTgfK5bb76518cz9TIcAgcAAAAMhlWriiZMGDlon27qxIm9Pn64paX78uXMW6/AAQAAAANu/vyJs2Z9cTA/Y4LLcJy7eDHzNixwAAAAwMCaPj3nvvt+f5A/6YScnL6e+uBXv8q8JQscAAAAMIDGjo1UVBSPGJE1+J/6tj4uw3H89OnM27PAAQAAAANl7NhIZeWMIakbQRDc3Me 7VI5 k4o1UBA4AAAAYKD/4wfScnOyh+uyTJ0zo9fGWs2czb9UCBwAAAAyItWunDeZtUz7vy1/s87KmHbFYhm1b4AAAAID+t3bttKKiMUP7a8iJRvt66tS5cxm2cIEDAAAA+lk61I0e0wsLe 328 4/z5DNu5wAEAAAD9KX3qRhAEBbm5vT5+LOPuFBvZvHmO33wAAABkjJUr9w3hZ0+ruhEEwdSJE3t9vNVbVAAAAIBepVvdCIKgcNy4Xh/PvBupRPz+AwAAgOs0dmzkBz+YPrT3TOnVyOw+b1J7qasrwbOhI3AAAADAdSksjH7/+8U5OekYC3JHj+7rqdjHHwscAAAAQBAEwfTpORUVxSNGZKXnL2/EDX1em+Kjixcn5ORkzBfCNTgAAADgGt1996R0rhs9+rpT7NkLFzLpaxEZ2qvLAgAAQEitWlU0a9YX0//XmfOFLwyHL4cTHAAAAHB1xo6NPPVUSSjqRhAEOdFor48fP306k74orsEBAAAAV2H+/In33ff7af62lE+bOnFir4/HOjsz6esicAAAAEBKxo6NfPe7U8JycGO4ETgAAAAguenTc5Yvn5qe94K9Nq3nzmXSF0jgAAAAgETGjo3 823 87ee7ccSH99d/05S/3+njL2bOZ9GUSOAAAAKBPt92W++CDXxk5coRVpDmBAwAAAHpRWBhdtuzGoqIxVhEKAgcAAAD8Cz3vSZkzJzdEt0pB4AAAAIDfufvuSXfc8WXvSQkdgQMAAACCQNoIOYEDAACA4U7ayAACBwAAAMPU2LGR 22/ Py/i0MTLS5//3v9TVNTI7OzP+awocAAAADDuFhdFFi/KHyWVEc6LRvp6KffyxwAEAAADhc/fdk/7wD3MLC6NWkWEEDgAAADLf9Ok5CxZ8ecaMse78mqkEDgAAADJWT9e45ZYxLiCa8QQOAAAAMkrPpUOnTx87depo5zWGD4EDAACA0CssjP7rf/2lr3xl9JQpo3Jysi1kGBI4AAAACJ/p03MKCqJTp46+6abROTkR70BB4AAAACBNFRZGCwq+EARBfv4XJk78QjQ6YtKkL8gZ9CqyYcPMUPxC1734Yq+PP3rPPbmjR/tCAgAAhF1u7u+5ZAbXLDJhwshw/EpHftL7/wDGZU/IGekLCQAAAMPZDVYAAAAAhJ3AAQAAAISewAEAAACEnsABAAAAhJ7AAQAAAISewAEAAACEnsABAAAAhJ7AAQAAAISewAEAAACEnsABAAAAhJ7AAQAAAISewAEAAACEXsQKAGAIZWVlWQIwTFy5csUSgIHjBAcAAAAQek5wAMDQu/KP/lUTyGRZtzqtBgw4JzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0BM4AAAAgNATOAAAAIDQEzgAAACA0ItYAdAjKyvrtz++cuWKhQAAACHiBAcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQegIHAAAAEHoCBwAAABB6AgcAAAAQehErABie/ubWrF4f/9N/vGI5AACEjhMcAAAAQOgJHAAAAEDoCRwAAABA6AkcAAAAQOgJHAAAAEDoCRwAAABA6AkcAAAAQOgJHAAAAEDoCRwAAABA6AkcAAAAQOgJHAAAAEDoCRwAAABA6AkcAAAAQOgJHAAAAEDoRawAAIZc1q1ZlgAAcD2c4AAAAABCzwkOIInXdv36i2NGlM4eYxUwEK5cuWIJAADXzwkOIJHd+y8sWdNctvxI9XOttgEAAKQtgQPo0+79F8qWH+n5cdXmUxoHAACQtgQOoHft57ru+8GxTz9StfnUsnUfxOOO0wMAAGlH4AB60X6uq6T8UNuZ+Gcef/GNc4srjmocAABAuhE4gM8b0Wvd6NHQGFtccbT9XJc1AQAA6UPgAD4nOrWvutGjoTFWUn5I4wAAANKHwAF8Tmfzrtpp+eMT3Ua67Uy8pPzQidZLtgUAAKQDgQPoRensMU11M5I2jqn3HNy9/4J1AQAAQ07gAHqXl5udtHEEQVC2/IjGAQAADDmBA+hTXm72ye0lC+bmJB4rW36k+rlW6wIAAIaQwAEkEolk1dcUJ20cVZtPaRwAAMAQEjiAJCKRrB3P3rJ+5aTEY1WbTy1b90E8fsXGAACAwSdwACmpXFGQtHG8+Ma5xRVHNQ4AAGDwCRxAqipXFGx/pijxTENjbM53ftF+rsu6AACAwSRwAFfhzrIv7qqdlnimqbmzpPyQxgEAAAwmgQO4OqWzxyS9fWzbmXhJ+aEDzZ3WBQAADA6BA7hqs4qiKTaO3fsvWBcAADAIBA7gWuTlZjfVzSgpiiYeK1t+5LVdv7YuAABgoAkcwDXKy83e98IfLJibk3hsyZrm6udarQsAABhQAgdw7SKRrPqa4qSNo2rzKY0DAAAYUAIHcF0ikawdz96yfuWkxGNVm0/d8b1fxuNXbAwAABgIAgfQDypXFCRtHA2NscUVRzUOAABgIAgcQP+oXFGw/ZmixDMNjbE53/lF+7ku6wIAAPqXwAH0mzvLvrirdlrimabmzpLyQxoHAADQvwQOoD+Vzh7TVDcjf3wkwUzbmXhJ+aEDzZ3WBQAA9BeBA+hns4qiKTaO3fsvWBcAANAvBA6g/+XlZjfVzUh6+9iy5Ude2/Vr6wIAAK6fwAEMiLzc7Pqa4qSNY8ma5urnWq0LAAC4TgIHMFAikaz6muKlC3MTj1VtPlX9XKvbxwIAANdD4AAGUCSStXXDTetXTko8VrX51OKKoxoHAABwzQQOYMBVrihI2jgaGmMaBwAAcM0EDmAwVK4o2FU7LfFMQ2Ns8pKm9nNd1gUAAFwtgQMYJKWzxyRtHD23j9U4AACAqyVwAIOndPaY46/MzB8fSTDT0zh2779gXQAAQOoEDmBQTSkY2VQ3I2njKFt+ROMAAABSJ3AAgy0vN7upbsaCuTmJx8qWH9n6+lnrAgAAUiFwAEMgLze7vqY4aeN44PHj1c+1WhcAAJCUwAEMjUgkq76meOnC3MRjVZtPVT/X6vaxAABAYgIHMGQikaytG25av3JS4rGqzacWVxzVOAAAgAQEDmCIVa4oSNo4GhpjGgcAAJCAwAEMvcoVBbtqpyWeaWiMTV7S1H6uy7oAAIDPEziAtFA6e0zSxtF2Jl5SfkjjAAAAPk/gANJF6ewxx1+ZmT8+kmCmp3Hs3n/BugAAgE8TOIA0MqVgZFPdjKSNo2z5EY0DAAD4NIEDSC95udnNL89cMDcn8VjZ8iObtp22LgAAoIfAAaSd0dER9TXFSRvH6idPVj/Xal0AAEAgcADpKRLJqq8priifmHisavOpR5466faxAACAwAGkqUgk64ePTl6/clLisZq604srjmocAAAwzAkcQFqrXFGwce3kxDMNjbHFFUcvdnZbFwAADFsCB5DuVt0/cVfttMQzDY2xonsPtp/rsi4AABieBA4gBEpnj0naONrOxEvKD2kcAAAwPAkcQDiUzh5zekdJ/vhIgpm2M/GJdzTt3n/BugAAYLgROIDQyMvNbqqbkbhxBEFQtvyIxgEAAMONwAGESV5udvPLMxfMzUk8Vrb8yKZtp60LAACGD4EDCJnR0RH1NcVJG8fqJ09WP9dqXQAAMEwIHED4RCJZ9TXFFeUTE49VbT71yFMn4/ErNgYAABlP4ABCKRLJ+uGjk9evnJR4rKbu9OKKoxoHAABkPIEDCLHKFQUb105OPNPQGFtccfRiZ7d1AQBABhM4gHBbdf/EXbXTEs80NMaK7j3Yfq7LugAAIFMJHEDolc4es6t2WuLbx7adiZeUH9I4AAAgUwkcQCYonT2mqW5G0sYx8Y6m3fsvWBcAAGQegQPIEHm52UkbRxAEZcuPaBwAAJB5BA4gc+TlZp/cXrJgbk7isbLlR6qfa7UuAADIJAIHkFEikaz6muKkjaNq8ymNAwAAMonAAWSansaxfuWkxGNVm08tW/dBPH7FxgAAIAMIHEAGikSyKlcUJG0cL75xbnHFUY0DAAAygMABZKzKFQVbnpiaeKahMba44qjbxwIAQNgJHEAmW7Zo3K7aaYlnGhpjJeWHNA4AAAg1gQPIcKWzx+yqnZb49rFtZ+Il5YdOtF6yLgAACCmBA8h8pbPHNNXNSNo4pt5zcPf+C9YFAABhJHAAw0JebnbSxhEEQdnyIxoHAACEkcABDBd5udknt5csmJuTeKxs+ZHq51qtCwAAwkXgAIaRSCSrvqY4aeOo2nxK4wAAgHAROIDhpadxrF85KfFY1eZTy9Z9EI9fsTEAAAgFgQMYdiKRrMoVBUkbx4tvnFtccVTjAACAUBA4gGGqckXB9meKEs80NMYWVxxtP9dlXQAAkOYEDmD4urPsi7tqpyWeaWiMlZQf0jgAACDNCRzAsFY6e0zS28e2nYmXlB860NxpXQAAkLYEDmC4m1UUTbFx7N5/wboAACA9CRwAQV5udlPdjJKiaOKxsuVHXtv1a+sCAIA0JHAABEEQ5OVm73vhDxbMzUk8tmRNc/VzrdYFAADpRuAA+GeRSFZ9TXHSxlG1+ZTGAQAA6UbgAPidSCRrx7O3rF85KfFY1eZTd3zvl/H4FRsDAIA0IXAAfFblioKkjaOhMba44qjGAQAAaULgAOhF5YqC7c8UJZ5paIzN+c4v2s91WRcAAAw5gQOgd3eWfXFX7bTEM03NnSXlhzQOAAAYcgIHQJ9KZ49pqpuRPz6SYKbtTLyk/NCB5k7rAgCAISRwACQyqyiaYuPYvf+CdQEAwFAROACSyMvNbqqbUVIUTTxWtvzIa7t+bV0AADAkBA6A5PJys/e98AcL5uYkHluyprn6uVbrAgCAwSdwAKQkEsmqryleujA38VjV5lMaBwAADD6BAyBVkUjW1g03rV85KfFY1eZTd3zvl/H4FRsDAIBBI3AAXJ3KFQVJG0dDY2xxxVGNAwAABo3AAXDVKlcU7KqdlnimoTE2eUlT+7ku6wIAgEEgcABci9LZY5I2jp7bx2ocAAAwCAQOgGtUOnvM8Vdm5o+PJJjpaRy791+wLgAAGFACB8C1m1IwsqluRtLGUbb8iMYBAAADSuAAuC55udlNdTMWzM1JPFa2/MjW189aFwAADBCBA+B65eVm19cUJ20cDzx+vPq5VusCAICBIHAA9INIJKu+pnjpwtzEY1WbT1U/1+r2sQAA0O8EDoD+EYlkbd1w0/qVkxKPVW0+tbjiqMYBAAD9S+AA6E+VKwqSNo6GxpjGAQAA/UvgAOhnlSsKdtVOSzzT0BibvKSp/VyXdQEAQL8QOAD6X+nsMUkbR9uZeEn5IY0DAAD6hcABMCBKZ485/srM/PGRBDM9jWP3/gvWBQAA10ngABgoUwpGNtXNSNo4ypYf0TgAAOA6CRwAAygvN7upbsaCuTmJx8qWH9n6+lnrAgCAayZwAAysvNzs+pripI3jgcePVz/Xal0AAHBtBA6AAReJZNXXFFeUT0w8VrX51CNPnXT7WAAAuAYCB8BgiESyfvjo5PUrJyUeq6k7vbjiqMYBAABXS+AAGDyVKwo2rp2ceKahMba44ujFzm7rAgCA1AkcAINq1f0Td9VOSzzT0Bgruvdg+7ku6wIAgBQJHACDrXT2mKSNo+1MvKT8kMYBAAApEjgAhkDp7DGnd5Tkj48kmGk7E594R9Pu/ResCwAAkhI4AIZGXm52U92MxI0jCIKy5Uc0DgAASErgABgyebnZzS/PXDA3J/FY2fIjm7adti4AAEhA4AAYSqOjI+pripM2jtVPnqx+rtW6AIaVrs6LlgCQOoEDYIhFIln1NcUV5RMTj1VtPvXIUyfj8Ss2BjAcfLjrtbp7i842H7AKgBQJHABDLxLJ+uGjk9evnJR4rKbu9OKKoxoHQGbr6rz41rplr69Z0nmmbfuff+tyPG4nAKkQOADSReWKgo1rJyeeaWiMLa44erGz27oAMlLb/t119xYde+PFnp92nmn7/55ss6QAACAASURBVJ75S2sBSIXAAZBGVt0/cVfttMQzDY2xonsPtp/rsi6ATHI5Ht/z1COvLC/rPNP26ccP1tV8uOs1+wFISuAASC+ls8ckbRxtZ+Il5Yc0DoCMcbb5wJYlkw/W1fT67M/+40MuOAqQlMABkHZKZ485vaMkf3wkwUzbmfjEO5p2779gXQCh1nNw46Xyks8c3Pi0zjNt7zyxwq4AEhM4ANJRXm52U92MxI0jCIKy5Uc0DoDwirWe+Ml35vR1cOPTjr3xYqz1hI0BJCBwAKSpvNzsk9tLFszNSTxWtvzIpm2nrQsgXC7H4we3bXrxnqlnm5uSDo8rKln6yvGcgin2BpCAwAGQviKRrPqa4qSNY/WTJ6ufa7UugLDoObix58nVqQzPLK/49gv71A2ApAQOgLTW0zjWr5yUeKxq86ll6z6Ix6/YGECaa359a4oHN6Lj8++ra5r36A9viETsDSD5d85WAJDuf1JHsipXFARBULX5VIKxF984134uXl9THIlkWRpAGuo8175z3bKWxoZUhmeWV/zRmv8qbQCkzgkOgHCoXFGw5YmpiWcaGmOLK466fSxAGmp+feuP75iYSt2Ijs+/p3aXgxsAV0vgAAiNZYvG7aqdlnimoTFWUn5I4wBIH12dF7d/746djz+QyvDNC5eWv9ycP7vU3gCulsABECals8fsqp2W+PaxbWfiJeWHTrResi6AIffhrtfq7i1K8eDGome2f3PD1uzoaHsDuAYCB0DIlM4e01Q3I2njmHrPwd37L1gXwFDp6rz41rplr69Z0nmmLelw4dwF5S8331h2p70BXDOBAyB88nKzkzaOIAjKlh/ROACGRNv+3XX3Fh1748VUhuc/sWXJszsc3AC4TgIHQCjl5Waf3F6yYG5O4rGy5Ueqn2u1LoBBczke3/PUI68sL0vx4MaDO04XLVpmbwDXz5WZAUL7J3gkq76meHHF0YbGWIKxnpvL9txoFoABdbb5wPY//1YqaSMIgvlPbJE2APqRExwAIdbTONavnJR4rGrzqWXrPojHr9gYwADpObjxUnlJKnVjXFHJ0leOqxsA/fy9sRUAhPvP8UhWz+mMnpMafXnxjXPt5+L1NcWRSJalAfSvWOuJN/7ij882N6UyPG/txhl/8vANEd+HA/QzJzgAMkHlioItT0xNPNPQGFtccbT9XJd1AfSXy/H4wW2bXrxnaip1o+fgxsz7V6kbAANB4ADIEMsWjdtVOy3xTENjrKT8kMYB0C9irSd+8p05e55cncrwzPKKb7+wL6dgir0BDBCBAyBzlM4ek/T2sW1n4iXlh060XrIugOvR/PrWFA9uRMfn31fXNO/RHzq4ATCgBA6AjDKrKJpK45h6z0G7Arg2nefat3/vjp2PP5DK8Mzyige2nxxXNMveAAaaigyQafJys5vqZiz4s6NNzZ19Dl1qbbwYHL8YHIkFLZ1BEASF0WBaTjB1dPCtEyemTJlijQC9an59a4ppIzo+/47//FL+7FJLAxgcAgdABsrLzd73wh8srjja0Bj77HOXWoNjfxF0Nj//Lx9u6fzn0vH81KklJSU//elPZQ6AT+vqvPjmX97b0tiQyvDNC5d+7fHnsqOj7Q1g0HiLCkBmikSy6muKF8zN+d1DV+LB6W3BwXuCzubEH9vU1DR16tRNmzbF43GbBAiC4MNdr9XdW5RK3YiOz1/0zPZvbtiqbgAMMoEDIGNFIlk7nr1l/cpJQRAEXeeCX3wnOPlk6h++evXqOXPmtLe32yQwnHV1Xnxr3bLX1yzpPNOWdPjmhUvLX26+sexOewMYgu9+rQAgs1WuKOjujlf/RXnSgxuf19TUtGDBgn379kVc+R8Yltr2797xg/tSSRtBEMx/YkvRomWWBjBUnOAAyHx58VeuoW70aGpq+tGPfmSHwHBzOR7f89QjrywvS6VuFM5d8OCO0+oGwNDyL3IAGe7EiROrV6++nldYvXr1XXfd5ZqjwPBxtvnA9j//loMbAOHiBAdAhvvjP/7jNHkRgPTXc3DjpfKSVOrGuKISBzcA0ocTHACZ7MSJE01NTdf/Ok1NTSdOnHCIA8hssdYTL//7/yPFgxvz1m6c8ScP3+ASRQBpwwkOgEy2Z8+eNHwpgHRzOR4/uG3Ti/dMTfHgxtJXjs+8f5W6AZBWBA6ATPbee++l4UsBpJVY64mffGfOnidTulzRnJXrv/3CvpyCKfYGkG5UZ6AXWVlZlsBn1NTU1NTU2AMwfGye8y9+Gh2fv+Sv3xxXNMtmANKTwAEAAEnMLK/4ozX/1XtSANKZP6MBAKBPDm4AhIVrcAAAQO9uXri0/OVmdQMgFJzgAHpx5cpmS8gMjzyyraZmZ/+81sTy/NmPNf2/0bxz/91igZD68MCBn/3d33WeP590Mjo+//b/6/kby+60NICwcIIDIJN99atT+ +21 Rs9sOxMv+bPO3Z8stFggdLouXXqrtvb1TZtSqRs9BzfUDYBwcYIDIJPNm3dTv73W6JIgCNrOxMtWd+zauLB01DtBvNOGgVBI/eBGEATzn9hStGiZpQGEjhMcAJlsypQJJSWF/fBC0aJgZMFvf1a2umPryTuCSNSGgTR3ubt7z7ZtKR7cKJy74MEdp9UNgJASOAAy3E9/+r1+eJWb/+ozDzzwH1qq371d4wDS2dmWli2PPXZwZ0qXIpr/xJYlz+6I5ubZG0BICRwAGW7KlAkbN5Zf10tMXvvp4xu/VVXbXv3e/PioQksG0k3PwY2XqqtTObgxrqjEwQ2ADCBwAGS+hx/+2rW/USVaFOT9SV9PVv1N2+KNxRoHkFZiHR2pH9yYt3bjt1/Y5+AGQAYQOAAyXyQyoqHh+9fQOEqKgv9z1VeDrERXpG5ojC3eWByfOMeegSF3ubv74Ntvv7huXYoHN5a+cnzm/atuiLjuPkAmEDgAhoW8vJx9+9Zd1XtVNq4N9r0Q/Of7t+xa+1DiyYbG2OTlkfZRGgcwlGIdHT/ZsGFPXV0qw3NWrv/2C/tyCqbYG0DGEDgAhotIZMSqVd84fnxD0qMcJUXB8VeCVfcHPf+oWVr0ftLG0XYmXrIm0p77dXsGhkTPwY2zLS1JJ6Pj8++ra5qzotLBDYAMI3AADC9Tpkx4//3K48c3PDQ1mD8xKPzfd0EpjAbzJwYPTQ2OvxK8XxdM+ZcXFS0tev/4hrvzx3YkeOW2M/GSP+vc/clCSwYGU2cstv3pp1M8uDGzvOKB7SfHFc2yN4DMo1sDDEdTpkyYOy6YO+6ff9p9JRiR9b+fKujjQyacaqosL6muazs/oa+XbTsTL1vdsWvjwtJR7wTxTnsGBlpzY+PO559PZTI6Pn/JX78pbQBkMCc4APhd3UgsL+ejpsryBdPfSzxWtrpj68k7gkjUYoGB03NwI8W6cfPCpeUvN6sbAJlN4ADgKuTlfFRfUZG0cTzwH1qq371d4wAGyIcHDrxUXd1y+HDSyej4/EXPbP/mhq3Z0dH2BpDZBA4Ark5kRHd9RcXS215PPFZV21793vz4qEIbA/pR16VLb9XWvr5pUyo3gu05uHFj2Z32BjAsvk21AgCu+i+PEd1blz8+Pf9E1asPJxir+pu2n+8vrl8dRH7TYmnA9fvwwIGf/d3fpZI2giCY/8SWokXLLA1g+HCCA4BrVHlX7cby/5J4pqExtnhj8cXcOdYFXI/L3d17tm1L8eBG4dwFD+44rW4ADDcCBwDXbtU3/n7X2ocSzzQ0xor+LNI+SuMArtHZlpYtjz12cOfOVIbnP7FlybM7orl59gYw3AgcAFyX0qL3kzaOtjPxkjWR9tyvWxdwVXoObrxUXZ3KwY1xRSUObgAMZwIHANertOj9008tyB/bkWCm7Ux84r+L7f5koXUBKYp1dKR+cGPe2o3ffmGfgxsAw5nAAUA/yMv5qKmyPHHjCIKgbHXH7k8Wun0skNjl7u6Db7/94rp1KR7cWPrK8Zn3r7oh4vL5AMOawAFA/8jL+aj5iXsXTH8v8VjZ6o5N/2O+xgH0JdbR8ZMNG/bU1aUyPGfl+m+/sC+nYIq9ASBwANBvRo/8uL6iImnjWP1XbdXv3q5xAJ/Xc3DjbEvye0tHx+ffV9c0Z0WlgxsA9BA4AOhPkRHd9RUVFfOT/NNrVW37I2/eHh9VaGNAj85YbPvTT6d4cGNmecUD20+OK5plbwD87htRKwCgn/9qGdH9w/ufGj/6o6pXH04wVrOt/dDx4vrVQeQ3LZYGw1xzY+PO559PZTI6Pn/JX78pbQDweU5wADAgKu+q3Vj+XxLPNDTGFm8svpg7x7pg2Oo5uJFi3bh54VIHNwDoi8ABwEBZ9Y2/37X2ocQzDY2xoj+LtI/SOGA4+vDAgZeqq1sOH046GR2fv+iZ7d/csNUVNwDoi8ABwAAqLXo/aeNoOxMvWRNpz /26 dcHw0XXp0lu1ta9v2pTKjWBvXri0/OXmG8vutDcAEhA4ABhYpUXvn35qQf7YjgQzbWfiE/9dbPcnC60LhoMPDxyoe/zxY3v3pjLcc3AjOzra3gBITOAAYMDl5XzUVFmeuHEEQVC2umP3JwvdPhYy2OXu7tQPbhTOXfDgjtMObgCQIoEDgMGQl/NR8xP3Lpj+XuKxstUdm/7HfI0DMtLZlpYtjz2W4sGN+U9sWfLsjmhunr0BkCKBA4BBMnrkx/UVFUkbx+q/aqt+93aNAzLJ5e7uPdu2vVRdnfrBjaJFy+wNgKsicAAweCIjuusrKtbf/aPEY1W17Y+8eXt8VKGNQQboObhxcOfOVIbnrd24uKbewQ0AruVbTSsAYFD/4hnRXXlXbRAEVa8+nGCsZlv7oePF9auDyG9aLA1C6nJ396F33tlTV5fK8LiikoV/9dOcgin2BsC1cYIDgCFQeVftloceTzzT0BhbvLG4fdQc64IwinV0/GTDhhTrxry1G7/9wj51A4Dr4QQHAENj2dzXvzLuVNmTzyeYaWiMlayJND0zJ+83+2wMwuKqDm5Ex+cv+es3xxXNsjcArpMTHAAMmdKi93etfSjx7WPbzsRL1kRORL9uXRAKnbFYfU1NinVjZnnFA9tPqhsA9AuBA4ChVFr0flNledLGMfW7sd2fLLQuSHPNjY0/fvTRlsOHk05Gx+ffV9c079Ef3hBxoBiA/iFwADDE8nI+Sto4giAoW92x+5OFbh8L6akzFtv+9NM7n38+leGbFy51cAOAfidwADD08nI+Ovn/LFkw/b3EY2WrO6rfvV3jgHTz4YEDqR/cWPTM9m9u2OrgBgD9TuAAIC1ERnTXV1QkbRxVte0aB6SPrkuX3qqtfX3TplSGb164tPzl5hvL7rQ3AAaCwAFAuuhpHOvv/lHisara9mXbSuOjCm0MhtaHBw7UPf74sb17UxnuObiRHR1tbwAM1DeTVgBAGv21NKK78q7aIAiqXn04wdiLb55r/6i4fnUQ+U2LpcHgu9zd/fbf/m2KaaNw7oL5G7ZGc/PsDYAB5QQHAGmn8q7aLQ89nnimoTG2eGNx+6g51gWD7GxLy5bHHkuxbsx/YsuSZ3eoGwAMAoEDgHS0bO7ru9Y+lHimoTFWsiaiccCgudzdvWfbtpeqqzvPn086XDh3wYM7ThctWmZvAAwOgQOANFVa9P6utQ8lvn1s25l4yZrIiejXrQsGWs/BjYM7d6YyPG/txsU19Q5uADCYBA4A0ldp0ftNleVJG8fU78Z2f7LQumCAXO7uPvj22yke3BhXVLL0leMz71/lRrAADDKBA4C0lpfzUVNleUnh0cRjZas7dn+y0O1jod/FOjp+smHDnrq6VIbnrd347Rf25RRMsTcABp/AAUC6y8v5aN+67yyY/l7isbLVHdXv3q5xQH/pObjx4rp1Z1uS364oOj7/vromBzcAGEICBwAhEBnRXV9RkbRxVNW2axzQLzpjsfqamhQPbswsr3hg+8lxRbPsDYAhJHAAEA6REd07vv/n6+/+UeKxqtr2OzZ/NT6q0MbgmjU3Nv740UdbDh9OOtlzcGPeoz90cAOAof 920 QoACJHKu2qDIKh69eEEMw2NscUbi+tXB5HftNgYXJXOWGxnbW0qaSMIgpsXLv3G+r+TNgBIE05wABAylXfVbl/1SOKZhsbYnPVT2kfNsS5I3YcHDqR8cOPLi57Z/s0NW9UNANKHwAFA+Nw5a/eutQ8lnmlq/rhkTUTjgFR0Xbr0Vm3t65s2pTJ888Kl5S8fu7HsTnsDIK0IHACEUmnR+02V5fljOxLMtJ2Jl6yJHAhuty5I4MMDB+oef/zY3r2pDPcc3MiOjrY3ANKNwAFAWM0qbE6pcay8sPuThdYFn3e5u7vn4Ebn+fNJhwvnLnhwx2kHNwBIWwIHACGWl/NRU2V5SeHRxGNlqzteO/ctt4+FTzvb0rLlscdSPLgx/4ktS57dEc3NszcA0pbAAUC45eV8tG/ddxZMfy/x2JLHzlS/e7vGAUEQXO7u3rNt20vV1akf3ChatMzeAEhzAgcAoRcZ0V1fUZG0cVTVtmsc0HNw4+DOnakMz1u7cXFNvYMbAISCwAFAJoiM6N7x/T9ff/ePEo9V1bbfsfmr8VGFNsYwdLm7++Dbb6d4cGNc0aylrxyfef8qN4IFIDTfEFoBABmj8q7aIAiqXn04wUxDY2zxxuL61UHkNy02xvAR6+h449lnz7ak9Nt+3tqNM/7kYWkDgHBxggOAjFJ5V+32VY8knmlojM1ZP6V91BzrYjjoObjx4rp1qdSN6LgvO7gBQEgJHABkmjtn7d619qHEM03NH5esiWgcZLzOWOwnGzbsqatLZXhmecUDr/2vnIIp9gZAGAkcAGSg0qL3j2+4O39sR4KZtjPxkjWRA8Ht1kWmam5s/PGjj6Z2cGPifXVN8x79oYMbAISXwAFAZpoy4VRTZXnyxrHywu5PFloXGaYzFtv+9NM7n38+leGZ969+4LWWcUWz7A2AUBM4AMhYeTkfNVWWJ719bNnqjq0nF7h9LBmj5+BGy+HDSSej4/IWPbN93toaBzcAyAACBwCZLC/no/qKiqSN44EnzlW/e7vGQdh1Xbr0Vm1tigc3bv7W/eU/PX5j2Z32BkBmEDgAyHCREd31FRVLb3s98VhVbXv1u7fHszQOwurDAwfqHn/82N69SSejuRMWPbP9m/+pLjs62t4AyJzv+qwAgMz /22 5E99blj0/PP1H16sMJxqpq23/e9NX61Ucjv2mxNEKk69Kld37841TSRhAEhbd+ff7//ffR3Dx7AyDTvuWzAgCGicq7aoMgSNw4GhpjizcW168ONA7C4mxLy/Znnuk8fz6V4fn/8cdFi79jaQBkJG9RAWAYqbyrdtfahxLPNDTGJq/5/fZRc6yLNHe5u3vPtm0vVVenUjcKb739wR2n1Q0AMpjAAcDwUlr0ftLG0XYmXrImonGQzs62tGx57LGDO3emMjzvL59Z8qP/7m0pAGQ2gQOAYae06P3jG+7OH9uRYKancey++DXrIt1c/v/Zu/+wJu883/+fQLJuFkIHaBiEwcEaquVgljlMqQeybQdxBGldj+s5Bqhz7R5h7Toanans+l1YWFnYa/ZotxoYT7nEM+faKsYdt5drB7EltTNdcNs4XkcDh5ExVleHHyO/rJHJsCTw/SOdrmPlzg3yIz+ej7+m8LoCeSdjcr945749nks/+pHMxY2YpcsLz9xIK9zF3AAAQY+CAwAQipKf7LNXGn12HIbvjrb/+1rGBf/hHBx8u7b20jvvyAlnfff1jSc6NQnJzA0AEAooOAAAIUqruWuvNOau+Fg6Ztg52HQ7Vyi5fCwW2ITH0/nBByfKy4d7fJ8BV/2l2MJ/vp5W9N0wJWeUBwCECgoOAEDo0mrutphMPjuO4pqR6n99gY4DC8jldL5dW3vBYpETTtv0p8Xn+jWJTzE3AEBIoeAAAIQ0ZbinxWQqfPacdKyqcaD6X19wK+g4sAAcNttbe/bIW9yI3nT8UtbeBhY3AAAhiIIDABDqlOGeppKKfS+/KR2rahzIb3zO/XuJTAzzxuV0Nr/xxvmjR+WE0/7rnxSfuxOz/D8zNwBAiL6pYwQAAAghKl9qFEJUvfOqRMZqc+bXpbTsFMpf9TAxzDWHzSaz2lA/8aUXKv/3khf+K0MDAIQyNjgAAPhM5UuNbWVbpTNWmzNp91cGfi+DcWHujI+Nvd/YKLPdWPZCvvGdW7QbAABQcAAA8B+ydVd8dhz9Q279biUdB+bIrY4OS0XF9YsXfSbVUU/k/U/L6tfPqn5Pw9wAAKDgAADgt2Trrtw5kBsfNSiR6R9yx20R7aPPMy7MIu/ixrn6ete9ez7DiSv/86ZT3UtyNjM3AAC8KDgAAHiYVnPXXmmU7jiEEIbvjrb/+1rGhVkx3NMjc3FDCJHzl4cKfnBJHfNl5gYAwOcoOAAAeASt5q6jZkPuio+lY4adg/X/L0couXwsZm7C47lw8uSp6mpZixtp6VvO/ptuo4m5AQDwEAoOAAAeLWLRr1tMJp8dx07zp9X/+gIdB2ZmuKfn+N69nefPywlnvfr/Ffyf/6uOW8LcAAD4IgoOAACmpAz3tJhMphyLdKyqcWDXOYNbQceBaZjweC796EcyFzdivpJUeKojreRvmRsAAFO+c2MEAABIvVKGew5tPhAbcbfqnVclYuYfDnf 923 MtO68pf9XD0OCTc3Dw3cOHh3tkPVuySr6TuvV7YarfYW4AAEi9bWMEAAD4VPlSY0zEvZ2WP5fIWG3O/LqU068qIsZ/wcQwlQmPp+vDDy9YLHLC6qgnNvyvZs3ybOYGAIBPfEQFAABZdnzjH9vKtkpnrDanrixx4PcyGBceyeV0vl1bK7PdSFv7cnHzbdoNAABkouAAAECubN0Vnx1H/5Bbv1tJx4Evcthsb+3ZI+djKeqoqE3f/6es2jNhag1zAwBAJgoOAACmIVt35c6B3PioQYlM/5A7botoH32eccHL5XQ2v/HG+aNH5YTT1uQXv3Mz5rmNzA0AgGmh4AAAYHq0mrv2SqN0xyGEMHx3tP3f1zIueBc3eq5e9ZlUR0XlVezP+tsfhUVEMzcAAKaLggMAgGnTau46ajbkrvhYOmbYOVj//3KEksvHhqjxsbH3GxtlLm4sy1xlPPl/l2zYIxS8PQMAYCZ4BQUAYCYiFv26xWTy2XHsNH9a/a8v0HGEoFsdHZaKiusXL/pMqqOi8sqqVtd9qNI+xdwAAJgxCg4AAGZIGe5pMZlMOT6uiFHVOLDrnMGtoOMIFd7FjXP19a5793yGE1esML71L0s2/7UIVzE6AAAe670ZIwAAYOavo+GeQ5sPxEbcrXrnVYmY+YfDXf/2XMvOa8pf9TC04Dbc09N88KCcakMIkfOqSbelRiziUikAAMzGGzNGAADAY6p8qVEX94viozUSGavNmV+XcvpVRcT4L5hYUJrweD46darz/Hk54cQVK3L2HlD/p3zOuAEAwGyh4AAAYBYUZZ77akyfYb/U6SStNqfueqL94Je1v7rExILM9BY3Sl/VFVeJyHjmBgDALOKPBgAAzI5s3ZW2sq3Sl4/tH3LrdytvhmUwrqAx4fFcOHnyVHW1nHYjJjGxsP6YrsRMuwEAwKyj4AAAYNZk667YK40+O46lpaL93irGFQScg4Nv19bK/FhKltG4sdGqWVXM+UQBAJgLFBwAAMwmreauz45DCGEoG2//97WMK3BNeDydH3xworx8uMf3iWNjEhMLX/9+2q7/HaZdwegAAJgjFBwAAMwyrebu7e8V5K74WDpm2DlY/dGLjCsQeRc3LlgscsJpOTkb6/9J8/yrQsWlggEAmEMUHAAAzD5luKfFZPLZcVT9wFl9MU8oOe4NJA6bTebihjoqatO+2qx9PwxLeo6rpQAAMNd4rQUAYE54O459L78pHatqHCiyrHIr6DgCgMvpbH7jjfNHj8oJp+XkFDf8MCavTKhjGB0AAPPx7osRAAAwV6+y4Z7KlxqFEFXvvCoRO9F6b+BuZovJofxVD0PzWw6bTWa1oY6KWrNtW/yaPxUxOuYGAMD8vfViBAAAzKnKlxp1cb8oPlojkbFevJ9fl9L0PxRaxS+YmL8ZHxt77/DhnqtX5YSXPfvs83/2F6pn1nHGDQAA5hkFBwAAc64o89xXY/oM+6X+/m+1OfXXE+2vf0k71snE/Metjo6f/MM/uO7d85lUR0W98K1vLVm3TWhTOeMGAADzj1dfAADmQ7buSlvZVunLx/YPufWvRdwMy2Bc/mB8bOz9xsZz9fVy2o3EFSuM33t9yeZ9Ii6NdgMAgAXBCzAAAPMkW3fFXmn02XEsLRXt91YxroXV73BYKiquX7woJ5yzdWtBdb3q2f/B+UQBAFhAFBwAAMwfreauz45DCGEoG2//97WMa0FMeDwXTp48s3+/zMWNLQcO6IoqxVOrWdwAAGBh8UoMAMC80mru3v5eQe6Kj6Vjhp2D1R+9yLjm2XBPz/G9ezvPn5cTztm6taDygDp7u3hiCaMDAGDBcZJRAADm/dU33NNiMuWbzdarz0nEqn7gFOF5lf/lJ8LtYmhzbcLj+ejUKZnVRkxi4trt2zVfW8/5RAEA8B+8JAMAsACU4Z7W73x738tvSseqGgeKLKvcCi44Orecg4Nv19bKbDeyjMaNVTWaF3dyPlEAAPzr/RUjAABgoVS+1CiEqHrnVYnMidZ7A3czW0wO5a96mNism/B4uj788ILFIif82eJG6oviK6uoNgAA8DcUHAAALKTKlxq//tWfFdQfkshYL97P2Jds3aPQKn7BxGaRc3Dw3cOHh3tkNUdpOTmrjFvCluVwxg0AAPwTf3wAAGCBrVvZ3la2VTpjd/xaX544sCiNcc0Wh812orxcTruhjoraVFmZVfLdsJWbaTcAAPBbFBwAACy8bN0Vn5eP7R9y61+L6BjLYFyPyeV0Nr/xxvmjR+WE03Jyir/34f8YrwAAIABJREFUvZhV/008XSBUnAwFAAD/RcEBAIBfWJnokNVxmET7vVWMa8YcNttbe/b0XL3qM6mOilpfVpZV/Mdhv/+KiGN3BgAAf0fBAQCAv9Bq7torjfrEa9IxQ9n42ZFvMq7pGh8bk7+4sezZZ401NfFZG4S+WCzSMD0AAPwfBQcAAH5Eq7l7qfyV3BUfS8cK9g5Vf/Qi45LvVkeHpaJC5uJG3o4dq1/dqfpPfyiSsrhaCgAAgYKrqAAA4GevzeGeFpMp32y2Xn1OIlb1A6cIz6v8Lz8RbhdDkzA+NvbhW29dv3hRTjhxxYpvbt+uevIpseybIlzF9AAACCD8UQIAAL+jDPe0fufb+15+UzpW1Tiw5s1n3QrOfDmlfofDUlEhs93I2bq14DvfUa3IF08X0G4AABB476AYAQAA/qnypUYhRNU7r0pkrBdH80Vmi8mh/FUPE3vQhMfz0alTnefPywknrliRU1KijvuqWLaWM24AABCgKDgAAPBflS81fv2rPyuoPySRsV68n7Ev2bpHoVX8gol5Dff0NB886Lp3T044Z+tWXWamiEsTX1nFGTcAAAhcvIoDAODX1q1sbyvbKp2xO36tL08cWMSlTMWEx3Ph5MlT1dVy2o2YxMTC2lpd1gti+XrOJwoAQKDjhRwAAH+XrbtirzTGRw1KZPqH3PrXIjrGMkJ5UM7Bwbdra2V+LCXLaNxYXq5Z+vsizSgi43maAQAQ6Cg4AAAIACsTHbI6DpNov7cqBOcz4fF0fvDBifLy4R7f5yLxLm6kfeMbYbo1nE8UAICgQcEBAEBg0Gru2iuN+sRr0jFD2fjZkW+G1GS8ixsXLBY54bScnI3l5Zqkp4V+i4jR8bwCACBoUHAAABAwtJq7l8pfyV3xsXSsYO9Q9UcvhshMHDabzMUNdVTUpsrKrM2bw76SKZ7ZKFRcXhcAgKDCVVQAAAioV+5wT4vJ9K0f7DtxMU8iVvUDpwjP+8vMnygnXcE6CpfTeb6xsefqVTnhtJycVZs2hS2KFE8XCHUMTyQAAILwbRIjAAAgwF68wz1NJRUr4m9WvfOqRKyqceBfrjzbUnoxKDsOh8 12/ uhROUl1VFTB7t0xiYkiepn46vOccQMAgKB9j8QIAAAIRJUvNQohpDsO68XRfJHZYnIof9UTNHd8fGzsvcOHZS5uLHv22ee3bFEtWiSW5nDGDQAAghsFBwAAgarypcbVKy4a9kstMlgv3k/a/RV7rUKr+EUQ3OVbHR0/+Yd/cN275zOpjop64VvfWrJypVDHiJQCzrgBAEDQo+AAACCAZeuutJVtle44+ofc+vJE++tf0o51Bu49HR8b+/Ctt65fvCgn/B+LG0lZQpsqFJxVHQCA4MfrPQAAgS1bd+VG7cvxUYMSmf4ht/61iPaRjAC9j7c6OiwVFTLbjZytW1eXlKgiviRSN4m4NNoNAABCBC/5AAAEvOQn++yVRp8dh2GvaL+3KrDu2oTHc+HkyXP19XI+lpK4YsWWAwd0mZkiepnQF3O1FAAAQgoFBwAAwUCruWuvNOau+Fg6Zigbb7qdGyh3arin5/jevZ3nz8sJ52zdWvCd76g1GqHLE0+tZnEDAIBQw2s/AABBQqu 522 Iy+ew4imtGqj960c /vi3 dx41R1tZzFjZjExM8WNzSJQr9FPLGEJwMAACGIk4wCABBEr+vhnhaT6Vs/2HfiYp5ErOoHThGe95eZP1FOuvzwXjgHB0//3d/JqTaEEFlGY+rzz4eFh3M+UQAAQv2NECMAACCoXtrDPU0lFSvib1a986pErKpx4F+uPNtSetGvOo4Jj6frww8vWCxywjGJiWu3b9c8+aRQqsXTBZxxAwCAUH8XxAgAAAg+lS81CiGkOw7rxdF8kdlicih/1eMPv7NzcPDdw4eHe2T9Mhkvv/y1/Pyw8HARlya+sorFDQAAQMEBAEBwqnypcfWKi4b9RyUy1ov3k3Z/xV6r0Cp+sbC/becHH8hc3FBHRRXs3h2TmCiUapH8AmfcAAAAXvy5AwCAoJWtu9JWtlU60z/k1pcnDixKW6hf0uV0Nr/xhsx2Iy0np/h734tJTBSaRJG6iXYDAAB8joIDAIBglq27cqP25fioQYlM/5Bb/1pE+0jG/P96DpvtrT17eq5e9ZlUR0VtqqzM2rz5s/OJPl0gVGoeXwAA8DkKDgAAglzyk332SqPPjsOwV7TfWzVvv5V3ceP80aNywsuefdZYU/PZx1LSCkVcGg8rAAB4CAUHAADBT6u566jZkLviY+mYoWy86XbuPPw+tzo6TlVXy1zcyNuxY3VJiWrRIhGXJvTFYpGGBxQAAHwRBQcAACEhYtGvW0wmnx1Hcc1I9Ucvzt2vMT 429 n5j47n6ete9ez7D3sWNJStXCqVa6PJEUhZXSwEAAFPhXQIAAKFCGe5pMZlMOT5O51n1A+cu6xq3YvbPcHGro8NSUXH94kU54ZytWz9b3OB8ogAAQM5bHUYAAEAIvfCHew5tPhAbcbfqnVclYuYfDnfdfLal9KJy0jUrP3fC4/no1KnO8+flhBNXrMgpKVFrNEIIsTRHxOh44AAAgO/3OYwAAIBQU/lSY0zEvZ2WP5fIWC+O5ovM0392PWL8F4/544Z7epoPHpTzmRQhRM7WrbrMTCGEUMeIZWs54wYAAJCJggMAgFC04xv/+LWkbsN+qYuYWC/e132SaK8VWsUMO45pLW7EJCYWfOc7ny1uxKWJr6zijBsAAEA+3jcAABCisnVX2sq2Smf6h9z68sSBRTO5LKtzcPD43r0y240so3FjeblaoxFKtVi+nvOJAgCA6eKtAwAAoStbd+XOgdz4qEGJTP+QO+6PF7WPZMi/2QmPp/ODD06Ul8v5WEpMYmJhbW3aN74RFh4uNIkizSgi43loAADAdPERFQAAQppWc9deadRXW/rvPSkRM+wVbftXZUd9JIS42Tt4wf7Jx503fvzTbrujRwih1yW++PXlz6UtzdI/Ffs74t3Dh4d7euT89IyXX/5afn5YeLgQnE8U802hUDAEBL3JyUmGgNBBwQEAQKjTau46ajZsOPy69epzEjFD2fhfFz799puveEuNB9kdPZ9/MVEtti8TTy7y8UPVUVEFu3fHJCYKwflEAQDALKDgAAAAImLRr1tMpnyzecqOY9ItBv7pr/fs93lTPS5R3imMSeJ5rQif4g/kaTk5qzZt+mxxY3GGWPw1zriBhTL5U/6+jeCk+Do7Sgg5vJkAAABCCKEM97SYTKYcyyO+Nz4ifvaKuL1f/q1Zbovanwnn+MNfV0dFbaqszNq8OSw8XCjVInWTSMig3QAAAI+P9xMAAOAzynDPoc0H9r385m99ddItrv2ZcDmme2s9LvHGNeF54K/jy5591lhT89nHUqKXiTSjUMcwdgAAMDvvZBgBAAB4UOVLjTER93Za/vyz/x74pxm0G149LvHhgPhGnFBHRb3wrW8tWbnys29wPlEAADDbKDgAAMDDdnzjH7+W1G3Yf1SM9U7rkylfZLktXvoD/X//dolq0SIhhFDHiJQCoVIzZAAAMLv4iAoAAHiEbN2VtrKtyhu7Hv+m/qdt6LN2Y3GGeGYj7QYAAJgLbHAAAIBHS/y9K+7RWbgdu6Pn5i/vJ3/jjznjBgAAmDtscAAAgEe7YJ+9mxqJo90AAABzioIDAAA82seds3dTtovMEwAAzCk+ogLgERSKbdPKT042cJtBcJuf3fLXZd/mT2fz1rhNf7vNyZ+KH/901v5V+fGPf8w/rQAAYE6xwQEAAB7N7pi9m7Lb3W43IwUAAHOHDQ4As+JPZWS2cZt+dpvbHvNRbxI3ZKSWcpsBepvHBv9FiD/gXzcAABAoKDgAADN0XyRzm0F8m78q/4NEtehxzc5votfrlUredQAAgDnEWw0AjzA5OclthuBtejX8dNJvb43bnI/bdA6IxiJx1SqEWK6ZtYLjxRdf5J9WAAAwpyg4AADAb9iaxNHiz/9racSs3fBzzz3HdAEAwJyi4AAAAL+1uPG5p2av4MjKymLGAABgTnEVFQAAQl7HWbEn7qF2Qwjx5CKRqJ6N21freu4+yZgBAMCcouAAACCEjY2KxiJRXzDV97cvm42fsuzvDSXd1Ud6mTcAAJg7FBwAAISqjrOiQicunpCIPLlIGJMe76cklYlFCUKIqoY+Og4AADB3KDgAAAg9Hvdnixv3+n1mC9flpKWmzvAHqXVC+0ef/1dVQ19R+Sdu9ySPAAAAmHUUHAAAhJieDrE3SXpx43M5NcfXv/n++R//WK/XT/sHqXUi5X8JxW+d0fzEuyP5pmt0HAAAYNZRcAAAEDI8bnFyl6jWy1ncSMzM3dJ6R5dXJITQarWXLl2qq6ubxs9KKhPPHBOq6C9+x2pz5puuDYyM84AAAIBZRMEBAEBo8C5unDfLyWaV1eWbW9TR2s+/olQqd+zYcePGDZ+rHHq9/ofNnSJu80O7Gw+y2px6YxcdBwAAmEVKRgAAQJDzuMWHbwrLTjnZGJ1+7d//syYh+ZHfTU5OvnLlys2bNy9cuPDxxx+bzf9Rl5hMpueeey4rKys5OVkIYX/a9c1v/7x/yD3VD+ofcuuNXe99/+mVOjUPEQAAeHwUHAAABLXBm+LwH4oeu5xsVlld6h+9Gqb08fYgOTk5OTm5qKjowYLj0KFDD2ZW6tR2S6re2OWz42hrXJ6dHskDBQAAHhMfUQEAIEh53OKDelG+VE67oY6N32Sxp23e4bPdkE8brbJbUvW+FjQMJd1n2z7l4QIAAI+JggMAgGDkHBDmfJkfS0kzmoqbb8foVs76b6GNVl069kxupkY6VrDbUX2klwcNAAA8DgoOAACCjq1J7IkTV60+g97Fjaw9h2ZxceMhSqWixZzis+Ooauij4wAAAI+DggMAgCDiHBBvrBFHi+Vkl60tnKPFjYcolYrWw0/v27ZYOlbV0Ldm+8/d7kkeRgAAMAMUHAAABIuOs/IXN/IONq+ubXrMxY3JB/gMV5Ym+Ow4rDZnvukaHQcAAJgBCg4AAALf2KhoLBL1BXKyy9YWGk87lhjWzf+vWVma0HxQJ52x2pwZr/xsYGScRxUAAEwLBQcAAAGu46yo0ImLJ+RkvYsbKnXEQv2y6wxPtDUul87YHS69sYuOAwAATAsFBwAAAcvj/mxx416/z2xiZu6W1jsLsrjxkOz0SLslNT5W6tMx/UNuvbGrw+HiQQYAADJRcAAAEJh6OsTeJJmLGzk1xwsOt6qjtX7yu6/UqWV2HO2X7/NQAwAAOSg4AAAINB63OLlLVOvlL27o8or87U5oo1V2S6pep5aOGUq6z7Z9ymMOAAB8ouAAACCgeBc3zpvlZLPK6vLNLf6zuPEQbbTq0rFncjM10rGC3Y7qI7088gAAQBoFBwAAAcLjFh/Uy1zciNHpC8/cSNu84zEvBDvXlEpFiznFZ8dR1dBHxwEAAKRRcAAAEAgGb4raDGHZKSebVVa38dglTUJyQNwzpVLRevjpfdsWS8eqGvrWbP+52z3JcwEAADwSBQcAAP7Nu7hRvlT02H1m1bHxmyx2/1/c+KLK0gSfHYfV5sw3XaPjAAAAj0TBAQCAH3MOCHO+zMWNNKOpuPl2jG5lgN7XytKEtsbl0hmrzZlUYB8YGeepAQAAHkLBAQCAv7I1iT1x4qrVZ9C7uJG151DALW48JDs90mfH4b18LB0HAAB4CAUHAAD+xzkg3lgjjhbLyS5bW7hQixuKB8zWbWanR944kxYfK9XUeDuO9sv3eaYAAIDPUXAAAOBnOs7KX9zIO9i8urYp0Bc3HpKcsMhuSfXZcRhKuuk4AADA5yg4AADwG2OjorFI1BfIyS5bW2g87VhiWBeUk9BGq+yWVJ+XjzWUdDedG+aJAwAABAUHAAD+ouOsqNCJiyd8Bj9f3FCpI4J4HtpoVYs5xWfHUVxxo/pIL08fAABAwQEAwELzuD9b3LjX7zObmJm7yWIP1sWNhyiVihZzSuHaaOlYVUNf9ZFeLh8LAECIo+AAAGBB9XSIvUlyFjeEEDk1xwsOt6qjtaEzHqVS0VT71L5ti6VjVQ19+aZrdBwAAIQyCg4AABaIxy1O7hLVepmLG1ta7+jyikJzVJWlCT47DqvNSccBAEAoo+AAAGAheBc3zpvlZLPK6kJtceOLKksT2hqXS2esNmdSgX1gZJznFwAAIYiCAwCA+eVxix9Vy1zciNHpC8/cSNu8g7EJIbLTI312HP1Dbr2xi44DAIAQRMEBAMA8GrwpajPEO1VysllldRuPXdIkJDO2z2WnR944kxYfq5TIeDuO9sv3GRcAACGFggMAgHnhcYsP6kX5UtFj95lVx8Z7FzfClEom95DkhEV2S6rPjsNQ0k3HAQBASKHgAABg7jkHRG2GsOyUk00zmoqbb7O4IUEbrbJbUnMzNdIxQ0l307lhxgUAQIig4AAAYI7ZmsSeOJmLG5ss9qw9h1jc8EkbrWoxp/jsOIorblQf6WVcAACEAgoOAADmjHNAvLFGHC2Wk/UubsToVjI2mZRKRYs5xWSMk45VNfRVH+nl8rEAAAQ9Cg4AAOaGd3HjqtVnUB0bn3ewmcWNGVAqFYf2JO3btlg6VtXQl2+6RscBAEBwo+AAAGC2jY2KxiKZixvL1hYaTzuWGNYxthmrLE2oK0uSzlhtznzTtVGXh3EBABCsKDgAAJhVHWdFhU5cPOEz6F3cWF3bpFJHBOh9nXzAwv4mOzbHtTUul85YbU7dhs6BkXGepAAABCUKDgAAZol3caO+QNzr95lNzMzdZLGzuDGLstMjfXYc/UNuvbGLjgMAgKBEwQEAwGzo6ZC5uCGEyKk5XnC4VR2tZWyzKzs98k6rPj5W6lQm/UPuuDX29sv3GRcAAEGGggMAgMfjcYuTu0S1XubixpbWO7q8IsY2R7TRKrslVbrjEEIYSrrpOAAACDIUHAAAPIaeDrE3SZw3y8lmldWxuDEPtNEqx+m03EyNdMxQ0l1/8g7jAgAgaFBwAAAwIx63+FG1zMWNGJ2+8MyNtM07GNv8iFCHt5hTfHYcO/ffrj7Sy7gAAAgOFBwAAEzf4E1RmyHeqZKTzSqr23jskiYhmbHNJ6VS0WJOMRnjpGNVDX27Dtx2uyeZGAAAAf/qzwgAAJgGj1t8+Kaw7JSTVcfGb/jBv1JtLNi7HKXi0J6k2CfCqxr6JGJmy52uT1wt5hSlUsHQAAAIXGxwAAAgm3NA1GbIbDfSjKbi5tu0GwuusjShrixJOmO1OfNN10ZdHsYFAEDgouAAAEAeW5PYEyd67D6D6tj4TRZ71p5DYUo2Jf3Cjs1xbY3LpTNWm1O3oXNgZJxxAQAQoCg4AADwxTkg3lgjjhbLyXoXN2J0KxmbX8lOj/TZcfQPufXGLjoOAAACFAUHAACSvIsbV60+g+rY+LyDzSxu+K3s9Mg7rfr4WKlHp3/IHbfG3n75PuMCACDgUHAAADCFsVHRWCRzcWPZ2kLjaccSw7qQmpDiAQHxC2ujVXZLqnTHIYQwlHTTcQAAEHAoOAAAeJSOs6JCJy6e8Bn0Lm6srm1SqSMYm//TRqtuN+tzMzXSMUNJd/3JO4wLAIAAQsEBAMBv8y5u1BeIe/0+s4mZuZss9lBb3Ah0SqWixZzis+PYuf 929 ZFexgUAQKCg4AAA4AE9HTIXN4QQOTXHCw63qqO1jC3geDuOfdsWS8eqGvqKyj9xuyeZGAAAAfD6zggAABBCCI9bnHpNnDfLySZm5ubUNlFtBPZ7IKWisjRBCFHV0CcRO/HuyMCIu8WcolQqGBoAAP6MDQ4AAITo6RB7k2S2G1lldSxuBI3K0oTjNUulM1abM990jcvHAgDg5yg4AAChzeMWP6oW1Xo5Z9yI0ekLz9xI27yDsQWToryYtsbl0hmrzak3dtFxAADgzyg4AAAhbPCmqM0Q71TJyWaV1W08dkmTkMzYgk92emRb43Lpy8f2D7n1xq6bvWOMCwAA/0TBAQAISR63+KBelC8VPXafWXVsvHdxI0zJuauCVnZ6pN2S6rPjWLq+s/3yfcYFAIAfouAAAIQe54CozRCWnXKyaUZTcfNtFjdCgTZa5bPjEEIYSrrpOAAA8EMUHACAEGNrEnviZC5ubLLYs/YcYnEjdGijVbeb9bmZGumYoaS7+kgv4wIAwK9QcAAAQoZzQLyxRhwtlpP1Lm7E6FYytlCjVCpazCk+O46qhj46DgAA/AoFBwAgNHgXN65afQbVsfHrG9tY3Ahl3o5j37bF0rGqhr6i8k/c7kkmBgCAX7yCMwIAQJAbGxVvlYqLJ+Rkl60tfL7iiEodwdhC/R2SUlFZmiCEqGrok4ideHdkYMTdYk5RKhUMDQCAhcUGBwAgqHWcFRU6Oe2GOjY+72Dz6tom2g18rrI04XjNUumM1ebMN10bGBlnXAAALCwKDgBAkBobFY1For5A3Ov3mU3MzDWediwxrGNseEhRXkxb43LpjNXm1Bu76DgAAFhYFBwAgGDkaJe5uCGEyKk5XnC4lcWNGZh8QBDfzez0SJ+Xj+0fcuuNXTd7x3hWAACwUCg4AADBxeMWJ3eJ/QaZixtbWu/o8ooYG6St1KnldBxL13e2X77PuAAAWBAUHACAINLTIfYmifNmOVnv4oY6WsvYIIc2WmW3pOp1aumYoaT7bNunjAsAgPlHwQEACArexY1qvZzFjRidvvDMDRY3MF3aaNWlY8/kZmqkYwW7HdVHehkXAADzjIIDABD4Bm+K2gyZixtZZXUbj13SJCQzNsyAUqloMaf47DiqGvroOAAAmGcUHACAQOZxiw/qRflS0WP3mfUubqRt3hGmVDI5zJhSqWg9/PS+bYulY1UNfWu2/9ztnmRiAADMDwoOAEDA8i5uWHbKyaYZTSxuYBZVlib47DisNme+6RodBwAA84OCAwAQmGxNMhc31LHxmyz2rD2HWNzA7KosTWg+qJPOWG3OjFd+NjAyzrgAAJhrFBwAgEDjHBBvrBFHi+Vk04ym4ubbMbqVjA1zYZ3hibbG5dIZu8OlN3bRcQAAMNcoOAAAAcXWJPbEiatWn0F1bPz6xjYWNzDXstMj7ZbU+Fipp1n/kFtv7OpwuBgXAABzh4IDABAgxkblL24sW1toPO2IT89mbJgHK3VqmR1H++X7jAsAgDlCwQEACAQdZ0WFTubiRt7B5tW1TSp1BGPDvNFGq+yWVL1OLR0zlHSfbfuUcQEAMBcoOAAA/m1sVDQWifoCca/fZzYxM9d42rHEsI6xzQ/FA5iGNlp16dgzuZka6VjBbkf1kV7GBQDArKPgAAD4MUe7qNCJiyfkZHNqjhccbmVxAwtIqVS0mFN8dhxVDX10HAAAzDoKDgCAX/K4xcldYr9B5uLGltY7urwixoYFp1QqWg8/vW/bYulYVUPfmu0/d7snmRgAALOFggMA4H96OsTeJHHeLCfrXdxQR2sZG/xHZWmCz47DanPmm67RcQAAMFsoOAAA/sS7uFGtl7O4EaPTF565weIG/FNlaULzQZ10xmpzZrzys4GRccYFAMDjo+AAAPiNwZuiNkPm4kZWWd3GY5c0CcmMDX5rneGJtsbl0hm7w6U3dtFxAADw+Cg4AAB+wOMWH9SL8qWix+4z613cSNu8I0ypZHLwc9npkTfOpMXHSj1X+4fcemNX++X7jAsAgMdBwQEAWGjexQ3LTjnZNKOJxQ0EluSERXZLqs+Ow1DSTccBAMDjoOAAACwoW5PMxQ11bPwmiz1rzyEWNxBwtNEquyXV5+VjDSXdTeeGGRcAADNDwQEAWCDOAfHGGnG0WE42zWgqbr4do1vJ2BCgtNGqFnOKz46juOJG9ZFexgUAwAxQcAAAFoKtSeyJE1etPoPq2Pj1jW0sbiAIKJWKFnNK4dpo6VhVQ1/1kV4uHwsAwHRRcAAA5tfYqPzFjWVrC42nHfHp2YwNwUGpVDTVPrVv22LpWFVDX77pGh0HAADTQsEBAJhHHWdFhU7m4kbewebVtU0qdQRjQ5CpLE3w2XFYbU46DgAApoWCAwAwL8ZGRWORqC8Q9/p9ZhMzc42nHUsM6xgbglVlaUJb43LpjNXmTCqwD4yMMy4AAOSg4AAAzD1Hu6jQiYsn5GRzao4XHG5lcQNBLzs90mfH0T/k1hu76DgAAJCDggMAMJc8bnFyl9hvkLm4saX1ji6viLEhRGSnR944kxYfK3UCXW/H0X75PuMCAEAaBQcAYM70dIi9SeK8WU7Wu7ihjtYytgAy+QCmMTPJCYvsllSfHYehpJuOAwAAaRQcAIA54F3cqNbLWdyI0elZ3EAo00ar7JbU3EyNdMxQ0t10bphxAQAwFQoOAMBsG7wpajNkLm5kldVtPHaJxQ2EOG20qsWc4rPjKK64UX2kl3EBAPBIFBwAgNnjcYsP6kX5UtFj95mN0ekLz9xI27wjTKlkcoBSqWgxpxSujZaOVTX0VR/p5fKxAAB8EQUHAGCWeBc3LDvlZDO27dt47JImIZmxAZ9TKhVNtU/t27ZYOlbV0JdvukbHAQDAQyg4AACzQfbihjo2fpPFnlFayeIG8EiVpQl1ZUnSGavNSccBAMBDKDgAAI/HOSDeWCNzcSPNaCpuvh2jW8nYAAk7Nse1NS6XzlhtzqQC+8DIOOMCAMCLggMA8BhsTWJPnLhq9Rn0Lm5k7TnE4gYgR3Z6pM+Oo3/IrTd20XEAAOBFwQEAmBHv4sbRYjnZZWsLjacdLG4A05KdHnmnVR8fK9UJ9g+549bY2y/fZ1wAAFBwAACmr+OsqNbLXNzIO9i8urZJpY5gbMB0aaNVdkuqdMchhDCUdNNxAABAwQEAmI6xUdFYJOoLxL1+n1nv4sYSwzrGBsyYNlrlOJ2Wm6mRjhlKuutP3mFcAIBQRsEBAJCt46yo0ImLJ+Rkc2qOs7gBzIoIdXiLOcVnx7Fz/+3qI70FBU4PAAAgAElEQVSMCwAQsig4AAAyeNzi5C6ZixuJmblbWu/o8ooYW9BTPIBpzCmlUtFiTjEZ46RjVQ19uw7c5vKxAIAQfblkBAAAH3o6xMFvyqk2hBA5NcepNoA5edOmVBzakxT7RHhVQ59EzGy50/WJq8WcolTSOgEAQgsbHACAqXkXN6r1ctqNGJ2exQ1grlWWJtSVJUlnrDZnvunaqMvDuAAAIYWCAwAwhcGbYm+SOG+Wk80qq9t47JI6WsvYgLm2Y3NcW+Ny6YzV5tRt6BwYGWdcAIDQQcEBAPgCj1t8UC/Kl8pc3Cg8cyNt844wJR97BOZJdnqkz46jf8itN3bRcQAAQgdvRgEAv23wpjj8h6LHLiebsW3f1/7kL6k2gPmXnR55p1WvN3b1D7mnyvQPuePW2Nsal2enRzKxqSi+zslKACBIsMEBAPht5UvltBvq2PhNFntGaSXtBrBQtNEquyU1PtbH/wcNJd3tl+8zLgBA0ONdKQBg2tKMplW7X6faABacNlrlOJ 224 bXrVptTImYo6a4rS9qxOY6JPWhykuvpAkBQYYMDADAN3sWNrD2HaDcAPxGhDm8xp+RmaqRjO/ffrj7Sy7gAAEGMggMAINeytYXG044Y3UpGAfgVpVLRYk7Zt22xdKyqoW/XgdtuN2sLAIAgfUFkBAAAn9Sx8S/81dElhnWMAvDTt3RKRWVpghCiqqFPIma23On6xNViTlEqObMmACDYsMEBAKFo3DUqP+xd3KDdAPxfZWnC8Zql0hmrzZlvusblYwEAwYeCAwBCzq22s5YNOpnhnJrjq2ubVOoI5gYEhKK8mLbG5dIZq82pN3bRcQAAggwFBwCEkAm3+8KBXed2F7iG+n2GEzNzt7Te0eUVMTcgsGSnR7Y1Lpe+fGz/kFtv7LrZO8a4AABBg4IDAELFsKPjeEFSp8UsJ5xTc7zgcKs6WsvcgECUnR5pt6T67DiWru9sv3yfcQEAggMFBwAEP+/iximjXs7iRoxOz+IGEAS00SqfHYcQwlDSTccBAAgOFBwAEOScvTflL25kldVtPHaJxQ3INPkApuGHtNGq28363EyNdMxQ0l19pJdxAQACHQUHAAStCbe782T9ifVLZS5uFJ65kbZ5R5iSK4gDwUOpVLSYU3x2HFUNfXQcAIBAR8EBAMHJ2Xvz7VcyLuzfKSecsW3fxmOXNAnJzA0IPt6OY9+2xdKxqoa+ovJP3G6WcQAAAfuSxwgAIPh0nqyXWW2oY+MLvv9ejG4lQwOC+Q2fUlFZmiCEqGrok4ideHdkYMTdYk5RKhUMDQAQcNjgAICg4hoZaN6+Rma7kWY0feu9/tgUvUKhUCg4ngGCXGVpwvGapdIZq82Zb7o2MDLOuAAAAYeCAwCCh+Nc01tr4npsVp9JdWz8Jos9a88hhgaElKK8mLbG5dIZq82pN3bRcQAAAg4FBwAEA+/ixvmKYjnhZWsLjacdfCwFCE3Z6ZFtjculLx/bP+TWG7tu9o4xLgBAAKHgAICAd6vt7CmjXubiRt7B5tW1TSp1BHMDQlZ2eqTdkuqz41i6vrP98n3GBQAIFBQcABDAxl2j75cXndtdIOdCsN7FjSWGdcwNgDZaZbek6nVq6ZihpJuOAwAQKCg4ACBQ3Wo7a9mgu/7uCTlhFjcAPEQbrbp07JncTI10zFDSXX2kl3EBAPwfBQcABJ4Jt/vCgV0yFzcSM3O3tN5hcQPAFymVihZzis+Oo6qhj44DAOD/KDgAIMAMOzqOFyR1Wsxywjk1xwsOt6qjtcwNwCMplYrWw0/v27ZYOlbV0Ldm+8/d7kkmBgDwWxQcABAwvIsbp4x6+Ysburwi5oa5o3gA0wholaUJPjsOq82Zb7pGxwEA8FsUHAAQGKa1uJFVVpdvbmFxA4B8laUJzQd10hmrzZnxys8GRsYZFwDAD1FwAIC/m3C7O0/Wy1zciNHpC8/cSNu8I0ypZHQApmWd4Ym2xuXSGbvDpTd20XEAAPwQBQcA+DVn7 823 X8m4sH+nnHBWWd3GY5c0CcnMDcDMZKdH2i2p8bFSDWn/kFtv7OpwuBgXAMCvUHAAgJ/yLm6cWL902GH3GVbHxm+y2FncAPD4VurUMjuO9sv3GRcAwH9QcACAP3KNDLSY8mUubqQZTcXNt2N0K5kbgFmhjVbZLal6nVo6ZijpPtv2KeMCAPgJCg4A8DuOc01vrYnrsVl9Jr2LG1l7DrG4AWB2aaNVl449k5upkY4V7HZUH+llXAAAf0DBAQB+xDUy0Lx9zfmKYjnhZWsLWdwAMHeUSkWLOcVnx1HV0EfHAQDwBxQcAOAvbrWdlb+4kXeweXVt0+MvboyPj0/+Bg8BgIcolYrWw0/v27ZYOlbV0Ldm+8/dbv4ZAQAsJAoOAFh4467R98uLzu0ukBNetrbQeNqxxLBulo5e+GwLAB8qSxN8dhxWmzPfdI2OAwCwgCg4AGCB3Wo7a9mgu/7uCTlh7+KGSh3B3ADMp8rShOaDOumM1ebMeOVnAyPjjAsAsCAoOABgwUy43d7FDddQv89wYmbultY7s7W4AQDTtc7wRFvjcumM3eHSG7voOAAAC4KCAwAWxrCj43hBkszFjZya4wWHW9XRWuYGYAFlp0faLanxsVIfbesfcuuNXR0OF+MCAMwzCg4AmG8TbveFA7tOGfXyFzd0eUXMDYA/WKlTy+w42i/fZ1wAgPlEwQEA88q7uNFpMcsJZ5XV5ZtbWNwA4Fe00Sq7JdXn5WMNJd1N54YZFwBg3lBwAMA8mXC7O0/Wy1zciNHpC8/cSNu8I4yrnADwP9poVYs5xWfHUVxxo/pIL+MCAMwPCg4AmA/O3ptvv5JxYf9OOeGssrqNxy5pEpKZG/zc5AOYRqhRKhUt5pTCtdHSsaqGvuojvVw+FgAwDyg4AGBueRc3TqxfOuyw+wyrY+M3WewsbgAICEqloqn2qX3bFkvHqhr68k3X6DgAAHONggMA5pBrZKDFlC9zcSPNaCpuvh2jW8ncAASQytIEnx2H1eak4wAAzDUKDgCYK45zTW+tieuxWX0mvYsbWXsOsbgBIBBVlia0NS6XzlhtzqQC+8DIOOMCAMwRCg4AmH2ukYHm7WvOVxTLCS9bW7iAixuKB/DAAZix7PRInx2H9/KxdBwAgDlCwQEAs+xW21n5ixt5B5tX1zaxuAEgCGSnR944kxYfK/UPmrfjaL98n3EBAGYdBQcAzJpx1+j75UXndhfICS9bW2g87VhiWMfcAASN5IRFdkuqz47DUNJNxwEAmHUUHAAwO261nbVs0F1/94ScsHdxQ6WOYG4Agow2WmW3pOZmaqRjhpLupnPDjAsAMIsoOADgcU243d7FDddQv89wYmbultY7LG4ACGLaaFWLOcVnx1FccaP6SC/jAgDMFgoOAHgsw46O4wVJMhc3cmqOFxxuVUdrmRuA4KZUKlrMKYVro6VjVQ191Ud6uXwsAGBWUHAAwAxNuN0XDuw6ZdTLX9zQ5RUxNwAhQqlUNNU+tW/bYulYVUNfvukaHQcA4PFRcADATHgXNzotZjnhrLK6fHMLixsAQlBlaYLPjsNqc9JxAAAeHwUHAEzPhNvdebJe5uJGjE5feOZG2uYdXAgWQUnxAKaBqVSWJrQ1LpfOWG3OpAL7wMg44wIAzBgFBwBMg7P35tuvZFzYv1NOOKusbuOxS5qEZOYGIMRlp0f67Dj6h9x6YxcdBwBgxig4AEAW7+LGifVLhx12n2F1bPwmi53FDQD4XHZ65J1WfXys1L+K3o6j/fJ9xgUAmAEKDgDwzTUy0GLKl7m4kWY0FTffjtGtZG4A8CBttMpuSfXZcRhKuuk4AAAzQMEBAD44zjW9tSaux2b1mfQubmTtOcTiBgA8kjZa5TidlpupkY4ZSrrrT95hXACAaaHgAIApuUYGmrevOV9RLCfM4gYAyBGhDm8xp/jsOHbuv119pJdxAQDko+AAgEeb1uJG3sFmFjcAQCalUtFiTjEZ46RjVQ19uw7c5vKxAAC5ry+MAAAeMu4a/bCm9Pq7J+SEl60tfL7iiEodwdwAYBrvQZWKQ3uSYp8Ir2rok4iZLXe6PnG1mFOUSi5FDADwgQ0OAPgtt9rOWjbo5LQb3sWN1bVNAd1ujI+PT/4Gjz6AeVZZmlBXliSdsdqc+aZroy4P4wIASKPgAIDfHOq7Rt8vLzq3u8A11O8znJiZu8liX2JYF+j3WsnHagAsqB2b49oal0tnrDanbkPnwMg44wIASKDgAAAhhBh2dMhc3BBC5NQcLzjcqo7WMjcAeHzZ6ZE+O47+Ibfe2EXHAQCQQMEBINRNuN0XDuw6ZdTLXNzY0npHl1fE3ABgFmWnR95p1cfHSu2U9Q+549bY2y/fZ1wAgEei4AAQ0oYdHccLkjotZjnhrLI6FjcAYI5oo1V2S6p0xyGEMJR003EAAB6JggNAiJpwuy8dqZa5uBGj0xeeuZG2eQdzA4C5o41WOU6n5WZqpGOGku76k3cYFwDgIRQcAEKRs/fm269kXGqokhPOKqvbeOySJiGZuQHAXItQh7eYU3x2HDv3364+0su4AAAPouAAEFom3O7Ok/Un1i8ddth9htWx8d7FjTAuNQIA80WpVLSYU0zGOOlYVUPfrgO33W4ucQ0A+M0rCCMAEDpcIwPNf5Yrp9oQQqQZTat2v061AUiYnOTYEnPzDlWpOLQnKfaJ8KqGPomY2XKn6xNXizlFqVQwNAAAGxwAQoXjXNNba+JkLm5sstiz9hyi3QCABVRZmnC8Zql0xmpz5puujbo8jAsAQMEBIPi5Rgaat685X1EsJ5xmNBU3347RrWRuALDgivJi2hqXS2esNqduQ+fAyDjjAoAQR8EBIMh5Fzd6bFafSXVsfN7BZhY3AMCvZKdHtjUul758bP+QW2/sutk7xrgAIJRRcAAIWuOu0ffLi2QubixbW2g87VhiWBdqU1I8gOcMAP+UnR5pt6T67DiWru9sv3yfcQFAyKLgABCcbrWdtWzQXX/3hM+kd3FjdW2TSh3B3ADAP2mjVT47DiGEoaSbjgMAQhYFB4Bg413cOLe7wDXU7zOcmJm7yWIPwcUNAAg42mjV7WZ9bqZGOmYo6a4+0su4ACAEUXAACCrDjg6ZixtCiJya4wWHW9XRWuYGAAFBqVS0mFN8dhxVDX10HAAQgig4AASJCbf7woFdp4x6mYsbW1rv6PKKmBsABBZvx7Fv22LpWFVDX1H5J273JBMDgBB6jWAEAILAsKOj+dvflFNtCCGyyurSNu9gaAAQqO9flYrK0gQhRFVDn0TsxLsjAyPuFnOKUslJlAEgJLDBASCwTbjdl45Uy1zciNHpC8/coN0AgCBQWZpwvGapdMZqc+abrg2MjDMuAAgFFBwAApiz9+bbr2RcaqiSE84qq9t47JImIZm5AUBwKMqLaWtcLp2x2px6YxcdBwCEAgoOAAFpwu3uPFl/Yv3SYYfdZ1gdG+9d3AhT8rk8YDYpHsA0sCCy0yPbGpdLXz62f8itN3bd7B1jXAAQ3Cg4AAQe18jA269kXNi/U044zWgqbr7N4gYABKvs9Ei7JdVnx7F0fWf75fuMCwCCGAUHgADjONf01po4mYsbmyz2rD2HWNwAgOCmjVb57DiEEIaSbjoOAAhiFBwAAoZrZKB5+5rzFcVywt7FjRjdSuYGAKFAG 626 3azPzdRIxwwl3dVHehkXAAQlCg4AgcG7uNFjs/pMqmPj8w42s7gBAKFGqVS0mFN8dhxVDX10HAAQlCg4APi7cdfo++VFMhc3lq0tNJ52LDGsY24AEIK8Hce+bYulY1UNfUXln7jdk0wMAILqVYARAPBnt9rO/uRvtrqG+n0m1bHxL/zVUaoNAAj1d7dKRWVpghCiqqFPInbi3ZGBEXeLOUWp5BpAABAk2OAA4Ke8ixvndhfIaTcSM3M3Wey0GwAAr8rShOaDOumM1ebMeOVnAyPjjAsAggMFBwB/NOzosGzQXX/3hJxwTs3xgsOt6mgtc5uB8fHxyd9gGgCCyTrDE22Ny6UzdodLb+yi4wCA4EDBAcC/TLjdFw7sOmXUy1zc2NJ6R5dXxNxmTMmpWAEEr+z0SJ+Xj+0fcuuNXR0OF+MCgEBHwQHAjww7Oo4XJHVazHLCLG4AAHxaqVPL7DjaL99nXAAQ0Cg4APiFCbf70pFqmYsbMTp94ZkbLG4AAOTQRqvsllS9Ti0d+/S+h1kBQECj4ACw8Jy9N99+JeNSQ5WccFZZ3cZjlzQJycwNACCTNlp16dgzuZmaqQL7ti1eZ3iCQQFAQKPgALCQJtzuzpP1J9YvHXbYfYa9ixtpm3eEcdoIAMA0KZWKFnPKIzuOfdsWe68sCwAIaBQcABaMd3Hjwv6dcsJpRhOLGwCAx6FUKloPP71v2+IHv5ibqfnLP1nMcAAE+Rtv15SnUtb87u8Gz7/zPNIAFoTjXNP5imI5SXVsfMH334vRrWRoAIDH513WqGroE0LkZmpazClKpYKxAAhuY273VN9apFIFzd2k4AAw31wjA+fLi3psVjnhNKNp1e7X+UwK4J8mJycZAgJRZWnC15+J2Po3N2k3ACCYcMwAYF5Na3Fjzd+dik/PZmgAgFm3zvBE37u/zxwAIJhQcACYJ+Ou0fde2yBzcWPZ2sLnK46o1BHMDQAAAIAcFBwA5sOttrM/+ZutrqF+n0l1bPwLf3V0iWEdQwMAAAAgHwUHgLk17hr9sKb0+rsn5IQTM3O/+fppFjfmk0LxHx8+53wKAAAACFwUHADmUP/l9ta/2CRncUMIkVNzXJdXxNAAAAAAzEBYoPyiiTExj/z6J7/8JY8i4Icm3O4LB3adKTHIaTcSM3O3tN6h3QAAAADmwlQHzlMdaAeogNngSIiO7hke5nkJBIRhR0fzt7/J4gYAAADg5wfawXR3+IgKgNk04XZ/dPC1TotZTjhGp1/79/+sSUhmbgAAAAAeU8AUHBq1+pFfv3HnTqZOxwMJ+ANn7813v/uHww67nHBWWV3qH70apqRmBQAAAObWjTt3pnWgHaAC5tBiaVzcow+oXC6erMCCm3C7u/7pzQv7d8oJs7gBAAAAzKepDpynOtAOUAH/t1Pnr3/NkxVY4P8bTmdxI81oWrX7dRY3AAAAAA6cZ1fAHGPEREY+8utXe3p4sgILyHGu6XxFsZykOja+4PvvxehWMjQgaCgUis//9+TkJAMBAMA/TXXgPNWBdoAKmILjSxERU33LMzERHhbGUxaYZ66RgfPlRT02q5wwixsAAADAgvBMTMzgQDsQBc5JRn/3d6f61sjo6JMaDc9aYD5Na3Fjzd+dik/PZmgAAADA/BsZHZ3BgXYgCpiCY5FKNdW3xsbHecoC82bcNfreaxtkLm4sW1v4fMURlTqCuQEAAAALQuKQWeJAOxAF0rp4YkxMz/DwF7/eMzycGBPDsxaYB7fazv7kb7a6hvp9JtWx8S/81dElhnUMDQAAAFhAjzyO9h5iB9k9DaRTVyRERz/y61Nd0RfALBp3jb5fXnRud4GcdiMxM9d42kG7AQAAACy4qQ6ZpzrEDlyBtMGx7Mtfvnj9+he/3jsywlMWmFP9l9tb/2KTnGpDCJFTc1yXV8TQAAAAAH8w1SHzsi9/OcjuaSAVHE9GRT3y61wpFpg7E273Rwdf67SY5YQTM3NzapvU0VrmBgAAAPiJqQ6ZpzrEDlyBVHAsnnp/xulyadRqnrjA7Bp2dDR/+5ssbgS38fFxJZfvBQAACFJOl2sGh9gBKqA2OKa+FuwvP/2UggOYRdNa3IjR6df+/T9rEpKZW0C+DNBuAAAABK9ffvrpDA6xA/WdbWD9ulNdSOX24KAuPp7nLjArYn9HvP1KxrDDLiecVVaX+kevhnGQDAAAAPif24ODUx1cB9+dDQusX3d5QsIjv379l7/kiQvMyr8Chapter...
Ngày tải lên: 08/03/2014, 22:45
Bài 8 ĐỘC QUYỀN BÁN (kinh tế vi mô 2)
... biệt giá cấp ba Q D 2 = AR 2 MR 2 $/Q D 1 = AR 1 MR 1 MR T MC Q 2 P 2 Q T Hãng SX: MC = MR T • q 1 +q 2 = Q T •MR 1 = MR 2 = MC Q 1 P 1 MC = MR 1 at Q 1 and P 1 Copyright © 20 09 Pearson Education, ... lượng $/đv D MR MC AC P 0 Q 0 P 1 Q 1 Khối 1 P 2 Q 2 P 3 Q 3 Khối 2 Khối 3 Tính kinh tế theo quy mô cho phép: •Tăng phúc lợi tiêu dùng •Lợi nhuận cao Copyright © 20 09 Pearson Education, Inc. Publishing ... hảo Copyright © 20 09 Pearson Education, Inc. Publishing as Prentice Hall • Microeconomics • Pindyck/Rubinfeld, 7e. D 1 MR 1 Đường cung: Nhà ĐQ không có đường cung MC $/đv MR 2 D 2 P 1 = P 2 Q 1 Q 2 Q Dịch...
Ngày tải lên: 08/03/2014, 22:46
Bài 9 CẠNH TRANH ĐỘC QUYỀN và ĐỘC QUYỀN NHÓM (kinh tế vi mô 2)
... hãng. Chapter 12 Slide 26 Chapter 12 Slide 28 20 2- 12 20 )21 2( 20 $ :1 Hãng 21 2 11 21 1 111 PPPP PPP QP Sản phẩm có sự khác biệt 04 12 2111 PPP Tối đa hòa lợi nhuận khi 21 413 PP ... cấu kết 12 2 11 30 QQQQ 21 1 1 1 23 0 QQ Q TR MR Vì hãng tối đa hóa lợi nhuận MR=MC (=0) 2 15 023 0 2 1 21 Q Q QQ Tương tự 2 15 1 2 Q Q 10 21 QQ 2 2 1515 2 2 Q Q Q=10+10 =20 Nội ... với hãng 2: Q 2 = 12 - 2P 2 + P 1 P 1 và P 2 là giá của hãng 1 và hãng 2 Q 1 và Q 2 là lượng bán tương ứng của từng hãng. Chapter 12 Slide 27 Sản phẩm có khác biệt Cạnh tranh giá – Mô hình...
Ngày tải lên: 08/03/2014, 23:54
Bài 10 THỊ TRƯỜNG YẾU TỐ SẢN XUẤT (kinh tế vi mô 2)
... 14 Slide 14 Tổng chi phí lương là 0w* x AL* Tô kinh tế Tô kinh tế là ABW* B Tô tức kinh tế Số công nhân Lương S L = AE D L = MRP L w* L* A 0 Tô kinh tế là số tiền vượt trội trả cho lao động so với ... số tiền lương trả cho thành vi n của nghiệp đoàn bằng cách lựa chọn điểm L2 và mức lương W2, vì MR trong trường hợp này bằng 0. Tô tức KT Cung đất đai S1 2 D L S 2 L C Nếu đường cung là co giãn ... ngơi Thu nhập ($/ngày) 0 24 0 8 24 480 20 B w = $20 Giả sử lương giờ tăng lên $20 /h Hiệu ứng thay thế Hiệu ứng thu nhập Sau tăng đơn giá lương, người lao động chọn 20 giờ nghỉ ngơi, 4 giờ lao động,...
Ngày tải lên: 08/03/2014, 23:54
Hệ thống câu hỏi ôn tập phần kinh tế vi mô 2
... ứng là: Q 1 = 48 - 2P 1 + P 2 và Q 2 = 36 - 2P 2 + P 1 , trong đó P 1 và P 2 tương ứng là giá mà các hãng 1 và 2 đặt, Q 1 và Q 2 là lượng sản phẩm 2 hãng bán được. a) Vi t phương trình ... 2 tấn/ngày) vào lòng hồ và số lượng thuyền (0; 1; 2) cho thuê mỗi ngày của doanh nghiệp phục vụ giải trí như sau: 23 % %45! %2 $%#6$%#78 $8 ! %2 $%#69/ 7 23 % %45 % :23 ... hàng hóa Z có 3 người tiêu dùng tương ứng với 3 hàm cầu cá nhân là: P = 25 0 - 2q 1 ; P = 300 - 5q 2 và P = 20 0 - 0,5q 3 . a) Vi t phương trình đường cầu thị trường cho loại hàng hóa Z. b) Hãy vẽ...
Ngày tải lên: 08/03/2014, 23:54
Một số bài tập thực hành và đáp án môn kinh tế vi mô 2
... trường là: P = 100 – (25 +25 ) = 50 Π1 = PQ1 - 25 Q1 = 50 *25 - 25 *25 = 625 2 = PQ2 - 25 Q2 = 50 *25 - 25 *25 = 625 => Chênh lệch giữa hai mức lợi nhuận của công ty Vietnam Airlines trong ... Airlines : 2 = (100 - Q1– Q2)Q2 -25 Q2 = - Q2 2 + 75Q2 – Q1Q2 Lấy đạo hàm của hàm lợi nhuận theo Q2 và đặt kết quả bằng 0 ta có được hàm phản ứng của công ty Pacific Airlines ∂ 2/ ∂Q2= - 2Q2 – Q1 ... (9): P2 = 10 + 0,5*30 = 25 Sản lượng bán được của công ty 1: Q1 = 20 – P1 +P2 = 20 – 30 + 25 = 15 Sản lượng bán được của công ty 2: Q2 = 20 – P2 +P1 = 20 – 25 + 30 = 25 => Lợi nhuận của công...
Ngày tải lên: 08/03/2014, 23:54