hướng dẫn giải các dạng toán lớp 4

Hướng dẫn giải bài tập về Lực từ tác dụng lên 2 dây dẫn song song môn Vật Lý 11 năm 2020

Hướng dẫn giải bài tập về Lực từ tác dụng lên 2 dây dẫn song song môn Vật Lý 11 năm 2020

... A Giải Chọn đáp án A Câu 12: Hai dây dẫn thẳng, song song, cách 10 cm có dịng điện A A chạy qua Biết hai dây có chiều dài 20 cm Lực từ tác dụng lên dây A F = 4. 10 -4 N B F = 4. 10-7 N C F = 4. 10-5 ... tác dụng lên m dây dòng điện I2 = 10 A đặt song song, cách I1 = 15 cm I2 ngược chiều I1 A 0,5.10 -4 N B 1.10 -4 N C 1,5.10 -4 N D 2.10 -4 N Giải - Chọn đáp án D - Hai dòng điện có chiều ngược nên ... I1 = 20 A, I2 = 15 A, I3 = 25 A Khoảng cách I1 I2 a = cm, I2 I3 b = cm Lực tác dụng lên m chiều dài I2 A 37.10 -4 N B 3,7.10-5 N C 25.10 -4 N D 12.10 -4 N Giải Chọn đáp án A Lực từ dòng I1 tác

Ngày tải lên: 11/04/2023, 19:36

10 2 0
Hướng dẫn giải bài tập lý thuyết đàn hồi và cơ học kết cấu potx

Hướng dẫn giải bài tập lý thuyết đàn hồi và cơ học kết cấu potx

... định các đại lượng giãn dài lò xo cùng các lực trong các lò xo s1 = 0,3328 (P/k); s2 = 0,3529 (P/k); s3 = 0,16 64 (P/k) (h) F1 = 0,3328P; F2 = 0,5294P; F3 = 0,3328P (i) Giải các bài tốn dạng ... δσ Minh họa cách dùng bốn cách phát biểu ngun lý bảo tồn cơng, cơng ảo... tắt Trong trạng thái cân bằng, cơng do ngoại lực gây ra phải bằng cơng biến dạng dạng (strain energy), dạng thế năng ... vậy 2θ = -45 °; θ = -22 ½ ° Ví dụ 9: Biết trước giá trị biến dạng điểm trong mặt phẳng 2D sau đây: εx = 0,002; εy = -0,001; γxy = 0,003 Xác định hướng chính và biến dạng chính Lời giải: 16

Ngày tải lên: 27/06/2014, 09:20

109 4,9K 68
HƯỚNG DẪN GIẢI NHANH MỘT SỐ BÀI TẬP DAO ĐỘNG TẮT DẦN CỦA CON LẮC LÒ XO VÀ CON LẮC ĐƠN, CHƯƠNG DAO ĐỘNG CƠ, MÔN VẬT LÍ LỚP 12

HƯỚNG DẪN GIẢI NHANH MỘT SỐ BÀI TẬP DAO ĐỘNG TẮT DẦN CỦA CON LẮC LÒ XO VÀ CON LẮC ĐƠN, CHƯƠNG DAO ĐỘNG CƠ, MÔN VẬT LÍ LỚP 12

... thường lúng túng việc tìm cách giải toán Vậy làm cách để giải tốt toán dao động tắt dần lắc lò xo lắc đơn vấn đề mà luôn trăn trở, bổ sung, đúc rút kinh nghiệm cho đứng lớp Xuất phát từ thực trạng ... gặp giải toàn dao động tắt dần lắc đơn lắc lị xo, cơng thức giáo viên hướng dẫn để học sinh tự chứng minh để tạo niềm tin vào công thức, từ em nhớ để vận dụng giải tập nhanh hiệu Hướng dẫn giải ... thiện kĩ giải nhanh toán dao động tắt dần nên mạnh dạn áp dụng đề tài : “ HƯỚNG DẪN GIẢI NHANH MỘT SỐ BÀI TẬP DAO ĐỘNG TẮT DẦN CỦA CON LẮC LÒ XO VÀ CON LẮC ĐƠN, CHƯƠNG DAO ĐỘNG CƠ, MƠN VẬT LÍ LỚP

Ngày tải lên: 18/04/2015, 08:56

19 4K 3
HƯỚNG dẫn GIẢI bài tập về CHU kỳ  của CON lắc đơn CHỊU ẢNH  HƯỞNG của các yếu tố bên NGOÀI

HƯỚNG dẫn GIẢI bài tập về CHU kỳ của CON lắc đơn CHỊU ẢNH HƯỞNG của các yếu tố bên NGOÀI

... khảo sát lớp 12A1 -31- TI SKKN Nguyn Quc Tin giỏi Số học sinh Hc sinh t tỡm Khá Trung bình Yếu SL % SL % SL % SL % 20 11 44 24 12 32 13 52 16 0 tũi gii (25) ADPP (25) + Kết khảo sát lớp 12A7 ... độ cao Cho bán kính trái đất R = 640 0km Đ/s: 200C Bài 4. 3: Con lắc toán học dài 1m 20 0C dao động nhỏ nơi g = (SI) a) Tính chu kì dao động b) Tăng nhiệt độ lên 40 0C, chu kì lắc tăng hay giảm bao ... 50g, lấy g = 10m/s2 Đ/s: a) T = 17,28s; b) 10-4N Bài 14. 3: Một lắc đồng hồ chạy 20 0C nơi có gia tốc trọng trờng 10m/s2 Biết dây treo có hệ số nở dài = 4. 105 ( K ) , vật nặng tích điện q = 10-6C

Ngày tải lên: 25/10/2017, 22:38

35 195 0
Hướng dẫn giải dạng bài tập Lực hướng tâm và Chuyển động li tâm môn Vật Lý 10 năm 2020

Hướng dẫn giải dạng bài tập Lực hướng tâm và Chuyển động li tâm môn Vật Lý 10 năm 2020

... quay 120 vòng Độ lớn lực hướng tâm gây chuyển động tròn vật (5)C 4, 5 N D 46 ,4 N Giải Chọn A - Tốc độ góc vật: - Độ lớn lực hướng tâm gây chuyển động tròn vật là: Bài 9: Một tơ có khối lượng ... khoảng cách từ bề mặt Trái Đất đến vệ tinh Biết bán kính Trái Đất 640 0 km Giải Tại độ cao h, lực hấp dẫn đóng vai trị lực hướng tâm: Fhd = Fht Vì ở độ cao h, vệ tinh có trọng lượng 920 N ... hướng tâm giữ cho vật chuyển động tròn: ht F = + P T - Khi ở điểm thấp (Fht hướng thẳng đứng lên) với chiều dương tâm quay (hướng lên) Fht = - P + T => T = Fht + P = mω2r + mg = 0 ,4( 82.0,5

Ngày tải lên: 18/04/2021, 20:50

10 8 0
Hướng dẫn giải bài tập Điện từ trường - Định hướng tuần 1 - 2 - 3 - GV. Trần Thiên Đức

Hướng dẫn giải bài tập Điện từ trường - Định hướng tuần 1 - 2 - 3 - GV. Trần Thiên Đức

... Thiên Đức – ductt111.wordpress.com V2011 HƯỚNG DẪN GIẢI BÀI TẬP ĐỊNH HƯỚNG TUẦN 1-2-3 DẠNG TOÁN: BÀI TOÁN ĐIỆN TÍCH ĐIỂM Nhận xét: - Đặc điểm dễ nhận dạng loại toán xuất điện tích điểm đề  cần nắm ... đến vị trí B: A = q(VA – VB) o Hướng điện trường gây điện tích điểm: +: hướng ra, -: hướng - Một số dạng tập điển hình: o Xác định đại lượng bản: F, E, V, q, A o Bài toán kết hợp động lực học: dây ... định khoảng cách từ điện tích q o Xác định độ dài dây dẫn l o Xác định khoảng cách từ điện tích tới dây a o … Bài 1- 24: Tính cơng cần thiết để dịch chuyển điện tích q = từ điểm M cách cầu tích

Ngày tải lên: 29/04/2021, 15:54

21 4 0
Hướng dẫn giải quyết tình huống học phần luật lao động

Hướng dẫn giải quyết tình huống học phần luật lao động

... bị kiến thức l luận th c ti n th ng qua cách tiếp cận tình uốn sách hướng dẫn ? ?Hướng dẫn giải tình học phần Luật Lao động” đư c x y d ng để làm r định hướng chung nghiên cứu tình huống, đ c trưng ... cần giải quyết; kỹ n ng lập luận giải tình huống; kỹ n ng đặt câu hỏi làm sáng tỏ vấn đề liên quan đến giải tình huống… Người học cần trang bị kỹ n ng cách thấu đáo từ có cách giải tình cách ... pháp luật để giải tình Việc định hướng tra cứu v n ản pháp luật giải tình giữ vai trị quan trọng để giải tình cách rõ ràng pháp luật đ ng thời chìa khóa để xác định vấn đề hướng cần giải Tuy nhiên

Ngày tải lên: 24/02/2023, 13:33

20 6 0
HƯỚNG DẪN GIẢI BÀI TҰP ĐỊNH HƯỚNG TUẦN 1 - 2 CÁC DẠNG TOÁN KHE YOUNG CƠ BẢN

HƯỚNG DẪN GIẢI BÀI TҰP ĐỊNH HƯỚNG TUẦN 1 - 2 CÁC DẠNG TOÁN KHE YOUNG CƠ BẢN

... GV: Trần Thiên Đức - http://ductt111.wordpress.com V2011 HƯỚNG DẪN GIẢI BÀI T P ĐỊNH HƯỚNG TUẦN - CÁC DẠNG TOÁN KHE YOUNG CƠ BẢN DẠNG 1: NGUỒN S DỊCH CHUYỂN Hình 1.1 Hệ khe Young – nguồn S ... vân tối liên tiếp 4. 00mm 4. 38mm, bán kính cong thấu kính 6.4m Tìm số thứ tự vân tối bước sóng ánh sáng tới Tóm tắt: rk = 4. 00mm rk + = 4. 38mm R = 6.4m Xác định k  Nhận xét: Bài toán liên quan tới ... vân tròn Newton Từ đề ta thấy phương hướng giải xác định bán kính vân tối thứ thứ 25 sau áp dụng r25 – r4 = 9mm để xác định bước sóng  - Vị trí vân tối thứ 4: - Vị trí vân tối thứ 25: - Ta có:

Ngày tải lên: 27/03/2023, 13:34

15 2 0
HƯỚNG DẪN GIẢI BÀI TẬP ĐỊNH HƯỚNG TUẦN 1-2-3

HƯỚNG DẪN GIẢI BÀI TẬP ĐỊNH HƯỚNG TUẦN 1-2-3

... ductt111.wordpress.com V2011 HƯỚNG DẪN GIẢI BÀI TẬP ĐỊNH HƯỚNG TUẦN 1-2-3 DẠNG TOÁN: BÀI TOÁN ĐIỆN TÍCH ĐIỂM 1. Nhận xét: - Đặc điểm rất dễ nhận dạng của loại bài toán này là sự xuất hiện của các điện tích ... vậy ta thấy các bài toán đều đi qua bài toán trung gian điện trường  bài toán xác điện điện trường gây bởi vật thể đóng vai trò rất quan trọng 2 Hướng giải: ... của khoảng cách giữa hai ... q 3 = q 4 = q 5 = q 6 = q - TH2: |q 1 | = |q 2 | = |q 3 | = |q 4 | = |q 5 | = |q 6 | (trong đó có 3 điện tích dương) Giải: - Nhận xét: Với hệ bố trí như bài toán, ta dễ thấy là có 4 cách bố

Ngày tải lên: 06/02/2014, 09:55

21 1,6K 24
Huong dan giai bai tap Giai tich 2 - Chuong 2

Huong dan giai bai tap Giai tich 2 - Chuong 2

... z = 2x2 + 3y2 + 4xy với x = cost, y = sint Ta có Lời giải Vậy =4 +4 , =6 +4 , = − sin , = cos = − (4 + ) sin + (4 + ) cos = − (4 cos + sin ) sin + (4 cos + sin ) cos = sin cos + 4( cos − sin ) = ... = − sin sin + cos cos ≈ f(30o, 45 o) + 2fx (30o, = 45 o)*1o = sin 30 cos 45 + sin 45 cos 30 + 2(cos 30 cos 45 − sin 45 sin 30 ) ∗ = √ + √ √ +2 √ √ − √ Với √2 ≈ 1 .41 42, √3 ≈ 1.7321, 2.5 Đạo hàm của hàm hợp ... Tính đạo hàm theo hướng u f điểm (1, 2) Lời giải 1+ ℎ + 2 + √3 ℎ − − 2(2 ) = ℎ (1,2) = + 4? ??3 Vậy Ví dụ + 4? ??3 + ℎ + ℎ → + 4? ??3 Cho ( , , ) = Lời giải , = ⟨1, −1,1⟩ Tính đạo hàm theo hướng u f điểm

Ngày tải lên: 26/09/2016, 20:21

13 16 1
Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao  Phạm Minh Tuấn  File word có lời giải chi tiết

Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao Phạm Minh Tuấn File word có lời giải chi tiết

... = y  Cách 2:  z − − 4i = z − 2i ⇔ y = − x  z = x +y ≥ 2 = Hướng dẫn giải số tập số phức mức độ vận dụng cao  z = x + y = x + (4 − x )2 = 2( x − 2) + ≥ 2 x + y = x = ⇔ ⇒ w = 2 − 4i ⇒ w ... − ÷ = ⇔ 52 x − ( 40 + 12 P ) x + ( P − P + 52 ) =    Để PT (*) có nghiệm thì: (*) ∆ = ( 40 + 12 P ) − 4. 52 ( P − P + 52 ) ≥ ⇔ 14 − 13 ≤ P ≤ 14 + 13  Vậy M = 14 + 13 , m = 14 − 13 ⇒ M + m = ... = 309 P − 4x − 2 P − 4x − 2   z − − 4i = ⇔ ( x − ) + ( y − ) = ⇔ ( x − ) +  − ÷ − = f ( x)    f '( x) = 8( x − 3) − 8( P − x − 11) = ⇔ x = 0, P − 1, ⇒ y = 0,1P + 1, Hướng dẫn giải số tập

Ngày tải lên: 24/10/2017, 07:52

10 783 17
Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao   phạm minh tuấn   file word có lời giải chi tiết

Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao phạm minh tuấn file word có lời giải chi tiết

... − ÷ = ⇔ 52 x − ( 40 + 12 P ) x + ( P − P + 52 ) =    Để PT (*) có nghiệm thì: (*) ∆ = ( 40 + 12 P ) − 4. 52 ( P − P + 52 ) ≥ ⇔ 14 − 13 ≤ P ≤ 14 + 13  Vậy M = 14 + 13 , m = 14 − 13 ⇒ M + m = ... by − c ) + ( ay + bx − d ) = 4( a + b ) ( x + y ) + 4( c + d ) k − 4( c + d ) k ? ?4 z = Suy z = x + y ≥ 2z 4( a + b ) ≤ 2 2 2 2 2  ( ax − by − c ) 2   2 2 2 2  42 − m =  =  ADCT ta có: z1 ... tài liệu file word Hướng dẫn giải số tập số phức mức độ vận dụng cao  P = 33 2  Thay vào f ( x) ta được: ( 0, P − 1, − 3) + (0,1P + 1,7 − 4) − = ⇔   P = 13  Cách 2:  z − − 4i = ⇔ ( x − 3)

Ngày tải lên: 02/05/2018, 14:23

22 320 0
Hướng dẫn giải bài toán cực trị số phức   lương đức trọng   file word có lời giải chi tiết image marked

Hướng dẫn giải bài toán cực trị số phức lương đức trọng file word có lời giải chi tiết image marked

... nên z   z  = m 1296 + 36 340 121 = z  =M • MA + MB  49 49 49 Vậy M + m = 60 49 Đáp án C 13 http://dethithpt.com – Website chuyên đề thi – tài liệu file word GIẢI BÀI TẬP 21 Gọi điểm M biểu ... án A GIẢI BÀI TẬP 13 Áp dụng cơng thức trung tuyến ta có 2 z +1 + z −1 = z + 1+ 2 =4 Theo bất đẳng thức Bunhiacopxki 2 T  ( z + + z − )(12 + 32 ) = 40  T  10 Đáp án B GIẢI BÀI TẬP 14 Áp dụng ... + 8 LỜI GIẢI Gọi z = a + bi (a ≥ 0) z = a − bi Khi 9a2 + b = a2 + (b − 1)2  2b = − 8a2  b = Ta có z −1 = − 4a2 lớn z = a2 + b nhỏ z  3 7 1  z = a +  − 4a2  = 16a4 − 3a2 + =  4a2 − 

Ngày tải lên: 14/06/2018, 15:26

14 628 7
Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao   phạm minh tuấn   file word có lời giải chi tiết image marked

Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao phạm minh tuấn file word có lời giải chi tiết image marked

... giải số tập số phức mức độ vận dụng cao A w = 3 14 C w = 137 B w = 1258 D w = 309 ➢ Cách 1: ❖ P = 4x + y +  y = P − 4x − 2 2  P − 4x −  ❖ z − − 4i =  ( x − 3) + ( y − ) =  ( x − 3) +  −  ... file word Hướng dẫn giải số tập số phức mức độ vận dụng cao Chú ý: Với x, y số thực ta có: x + y  ( x + y)2 Dấu “=” xảy x = y ➢ Cách 2: ❖ z − − 4i = z − 2i  y = − x ❖ z = x2 + y = x + (4 − x)2 ... +    ( ) ( ) (*) ❖ Để PT (*) có nghiệm thì: (  = 40 + 12 P ) ( ) − 4. 52 P − P + 52   14 − 13  P  14 + 13 ❖ Vậy M = 14 + 13 , m = 14 − 13  M + m = 28 Bài 20: Cho số phức z  * thoả mãn

Ngày tải lên: 14/06/2018, 15:27

22 294 2
Hướng dẫn giải một số bài toán nâng cao về ứng dụng của tích phân   vũ hồng quý   file word có lời giải chi tiết image marked

Hướng dẫn giải một số bài toán nâng cao về ứng dụng của tích phân vũ hồng quý file word có lời giải chi tiết image marked

... + 44  D V = 62 + 20 52 Hướng dẫn giải Trước đến với lời giải toán giải Bài toán sau: Bài toán Một hình xuyến dạng phao có kích thước hình vẽ Tính thể tích hình theo R r C V = 2 r 2R Hướng ... 196200 ϵ Hướng dẫn giải Cách 1: Dùng ứng dụng tích phân Hình elip lớn có độ dài trục lớn 146 m, độ dài trục nhỏ 108m a = 73 x2 y2 x2   PT (E1 ) : + =  y =  54 − 73 54 73 b = 54 Hình elip ... thẳng AB A 620  C 279 Hướng dẫn giải Cách Dựng hệ trục toạ độ hình vẽ Ta có: R S = 32  R2 = 64? ??  R =  r = = 2  (C) : y = 64 − (x − 8)   (C') : y = 16 − (x − 4) BAC = 300  BAC = 300

Ngày tải lên: 14/06/2018, 15:27

10 545 13
Chuyên đề đại số (Hướng dẫn giải các dạng bài tập từ các đề thi quốc gia toán học. )

Chuyên đề đại số (Hướng dẫn giải các dạng bài tập từ các đề thi quốc gia toán học. )

...        2 3 0x 4 2x 5 2y 5 4x y 2 Phương trình (2) trở thành      24 25 6x 4x 2 3 4x 7 (*) 4 Xét hàm số      42 25 f(x) 4x 6x 2 3 4x 4 treân 3 0; 4        2 4 f'(x) 4x(4x ...      2 5 1 3 u u 1 u v 4 2 2 Hướng dẫn giải CDBT từ các ĐTQG Toán học – 123 Đặt    2 t x 4 2  t 2 = x 2 + 4  x 2 = t 2 – 4 (1)  t 2 – 4 +     2 5 mt 3 + 2 ...       t4 t 3 (loại)  Với t = 4:    x 4 x 4 4  2x +  2 2 x 16 16 vaø x  4     2 x 16 8 x vaø x  4                    2 2 4 x 8 4 x 8 x5 x5 x...

Ngày tải lên: 02/06/2014, 20:01

27 1,1K 0
Chuyên đề hình học không gian (Hướng dẫn giải các dạng bài tập từ các đề thi quốc gia toán học. )

Chuyên đề hình học không gian (Hướng dẫn giải các dạng bài tập từ các đề thi quốc gia toán học. )

... src="data:image/png;base 64, iVBORw0KGgoAAAANSUhEUgAAAucAAARACAIAAADCrGrzAAAACXBIWXMAABYlAAAWJQFJUiTwAAAgAElEQVR42uzdfXBT153/8a9bkXSQJ5tNK3KZjCcmpd3SjWVSmmWC3TJZZBpMEsKEOpVMM8skzEIH7Kbe7e6SGbv2NO7Db7xZbJ5mKGWWIqlxYVNnwExAbJbUosMktHDFJtMZWqvLtihSNsuyvumwvl3//jjlRmv8IOvxXun9+stIsnx1ZXw/+p7vOUcEAADACaomJiY4CwAAwP4+xCkAAACkFgAAAFILAAAgtQAAAJBaAAAASC0AAIDUAgAAQGoBAAAgtQAAAFILAAAAqQUAAIDUAgAASC0AAACkFgAAAFILAAAgtQAAAJBaAAAAqQUAAIDUAgAAQGoBAACkFgAAAFILAAAAqQUAAJBaAAAASC0AAACkFgAAQGoBAAAgtQAAAJBaAAAAqQUAAIDUAgAASC0AAACkFgAAAFILAAAgtQAAAJBaAAAASC0AAIDUAgAAQGoBAACYhotTAJS9qqqqTB42MTHBuQJg679m/J0CAACOwAgRAAAgtQAAAJBaAAAAqQUAAFQi0zRjsZidj5A5RACAqWU4+wxlZmRkpKGhwaa/k8whAgAQWZDOttmAESIAwGSGYUy65WMf+9iZM2cmKoyu6yLS1tY2Pj5exi9zfHzc5/M54jeT1AIAmOz9999XX/z93//9Jz/5SRF59913V65cWVdXF41GK+QkmKa5evVqEXnrrbdcLlcZv8w1a9ZEIhERCQaDpBYAgMN4PB71xde+9rWf/exn3d3d6p+XLl1qbGysr6+vhOzS0dGRSCREJBQKVUJk6e7uDgQCpBYAgINt3ry5s7NzZGTEijK6rpd9donFYv39/SISDAatF17ekaWzs9P+x0w3LgBgqstDWjeurut1dXWpVMrr9T7yyCM3btwIh8PqLq/Xu2fPHttOOcn6cr5s2TJd130+36lTp8r1LW5qaro1sqj3nW5cAIDzqCbNjRs3iojH47ly5cr+/ftDodDo6Kjf75cyrbvs27dP9eGW8dhQT0+Ps6osfzABAMAt1DVidHRUfREMBm99jJVdrLrLyMiI01 /42 NiYpmkiMjAwUK5vrtWo1N3dPeX7btsjZ4QIADAFa6Sgp6enq6tL07TLly+73e5JD4tGo1evXv2nf/qnchozMgyjr69vx44dZTl1SL2h01VZGCECADhYR0eHpmmJRKKvr2/SXfF4vLGx8Ytf/OKKFSvKaczI7XZ3dnZWYGRxAKqgAIDpRojU19YyHqOjo5MGU6zVydRSbGU5ZlQJA0NOGSEitQAAZr96eb1eEfH5fJMeNj4+3tbWph7s8/mSyeREmfa7VEJkIbUAAMohtVhtucePH7/1wVYxRtM0qx7jrOyi67qKXJUcWUgtAIBySC0TExMqgmiaNuWmPCMjI2rqjYiMjY2lxx37Z5dkMjnlEFilRRZSCwCgTFLL2NiYunG6KcHJZNLr9U5ZjLF5dlHdOV6vt/x2SZxTZCG1AADKJLVMpI0EZTeYYs/sYr0oXdcrPLLYP7Uw8xkAkKmWlhY1DNTe3p7Ft9fW1tptXd1UKtXa2qrmQNXV1THJmZnPAIAyqbVMTEyMjIyouzIsk3R3d0/5SJvUXdTY0HTNOhVVZXFErYXUAgCY29VLpY1MukAGBgZmboUpbXYp17EhK7LcOlPd6amFESIAwNzs3LlTXekHBwdnfuSmTZtUMWP79u2BQMA0TRuOGZXZ2JA1MOTz+U6cOFFuv3x8ngAAzPUzt/VpPn2S85TGx8fTP/rP0MZbkrrL6OhoOY0NpZ/q7F6XzbMBuycCAKYw8y56pmnW1NQkEom2tjZVeplZKBRSTa+app08eXKG2kY8Ht+xY0c57cVYNNZJVlWW7PZRsvnuiaQWAEA2V6/h4eG1a9eKyOjoaG1t7axPGIvFVq9enUgkvF7vxYsXZ34w2WWuotFoY2NjjpFF2PMZAFCWmpubVc/KunXrMnl8XV2drus+ny8Sicz6YBvOka6EyOKAME2tBQCQ3WfueDy+aNEiEQkGg4FAoEBHkt+6y/Dw8KuvvtrX11c2l/b8RhZGiAAA5ZlaRKS9vb2/v1/TtCtXrhQ0B+QluxiGsXjx4szbcSotsggjRACAMtbb26tpWiKR6O3tzeLbTdNcuHBhJuM+eRkz2rx5cyKR0DQtu6Mt+8jiAMzuAwDkMgPWWqstiw2T29ra1PdOtwxdHudIHz9+XD1+yv0dHcdapDjrSc5OnPlMagEA5HT1Gh8f93q9ktVKrOPj46qlV0T8fv+crr5zyi7j4+NqByW/309kIbUAACo0tUxMTOi6rh6fxbpw6cvQeb3eue4mnWF2UUUdTdNmXRavkiMLqQUAUP6pZeLm5kRZb0NoDd9ompbFrkAzZxcrVJXB2FBBI8sE+xABACrB/v37RSSRSOzbty+Lb29ubtZ1XTX2fu9735vrt8/cq3vffff5/X6fz9fc3Ez7raMx8xkAMNXlYe4zYHft2rV9+3YRGRsbc7vdWfzQVCq1d+/eHTt25HI9nm6OtGmajr7MFyeysF4LAKAiUou1OZHf7w+FQqU9/jLbE6BoVRZSCwCgIlJL+sVV1/UZtkick1xqJOWRXayzqmna5cuXs6tjlUdqoa8FAJA3DQ0Naibzxo0bTdPM/Qnj8fi8efOy237IMIwy2M8oPbLoul7QyGJ/pBYAQD6ptlxd1wcHB3N/NrU1Y2NjY09Pz1zjTnV1tRqocm52mRRZPB5Phf92kVoAAPlUW1ur1l/p6OgwDCPHZzt//rwq3nR1dQUCgQzrN6Zpqrhz8ODB9ANzVnaJx+NElslYkwAAkN91O6yFaNva2vJyMHNdhm5gYEA9froHZ7cnQDElk0l1DjVNm+vKe2W8XgupBQCQ/6tXLpsTTSl9GbqZE8bo6Kh65Kx7G9k2u5QqskywyhwAoAIFAgG1OZEaqcldc3Pz6OioWoYuk7Ehr9e7ZcuWWQezbDhmlEqlvF6v2puagaFJSC0AgIIYGhpSUWB4eDgvT1hbW6vrejAYnGHq8r59+9T6/UNDQxnOl7ZVdiGyzIz1WgAAU10e8rFuR3t7e39/v6ZpV65cKcK6tIZhVFdXi8jAwMC2bduyeIbSru9ih8jCei0AgArV29srIolEQn1RuIu9+sLtdieTye7u7lnHhqZTwroLVZaMQhW1FgBA4T5zh0Kh1tZWEUkmk4W4EqvNj0ZGRvJeESlm3cU+kYVaCwCgcrW0tKi23Pb29rw/uWmaL7zwgmS1DN2silZ3ocoyh1BFrQUAUNDP3NYCr4WoiJimuWbNmkgkIiKf//znT58+XYgGmsLVXewWWai1AAAqWkNDgypXbNiwIS+bE6VzuVx///d/v3XrVhF5/fXXly1bZrW55FGB6i5UWeYcqqi1AAAK/Zk7lUotWLBARILBYCAQyONxWs9s0TTt5MmT+dpx+lb5qrvYM7JQawEAVDqPx6NW2W9tbc19c6J0kzLQ/PnzVXAp3GvJS92FKgupBQBgX1u2bFFhYvPmzfl6zlAopDpaLO+///6JEyeKEAJyyS5WZBGRI0eOEFlILQAAe3G5XAcOHBCRcDgci8Vyf8JUKqXmVLe1taXf/tvf/rZoLyqL7JIeWQrRnkxqAQAgD5qbm30+n4hs3Lgx92dTU6k1Tevr61O3qPjy4osvpj/MNM14PG6T7EJkyRX7mgIAirb3r7UhczAYzMsW0LquWzeqHYhEZGxsTN0yPj6uctLx48eLc95m2Ed6fHzcarixyebS7PkMAMBMZYnu7m4R6ejoyKUt980331TFlfS5QnV1dZqm+Xw+a/LzjRs3ksmkiKxduzbvy9DNqe7y+uuvr1mzhipLjpj5DACY6vJQsBmwhmEsXrw4kUh0d3d3dnZm/TyxWOy+++5zu92TnnzSLenL0Pl8vhMnThRhH0dl0hxpq8pi58hi85nPpBYAQLGvXtbmRKOjo7W1tUV4OT09PV1dXSJS/JnGKrtcunQpFovZv8pCagEAkFomq6+v13Xd5/OdOnWqOK/I2lig0MvQOTQQOOIg6WsBAJTA4cOHRSQSiQwPDxfnJzY0NCSTSU3T7r///iVLlvAWODJMU2sBnMs0zXnz5s36MP6b5+sDaEHZ7W0qwmfuQCAQDoc1Tbty5UomvSbRaPTXv/71lBsCTHm0pmne+rSqBXhS70vZnNKyP0hqLYCDuVyuzKcyIsdIUZwZpxVl//79IpJIJPbt25dJRt+wYUNra2smU4FisVh9ff3TTz99611ut7skkQX5CVX8RQMAlOozt9WWm0wmZ+6QbW9v7+/v1zTt8uXLt8aOSUdrtbCMjY3NmlHUQr1FaHOh1pI7ai0AgJJpaWlRC6+phW5nCBb9/f0icuDAgUwqJQ0NDepph4aGZn5kKpVavXq11+stWnsNSC0AAEdyuVxHjhwRkXA4PN3ePaZprl69WkR8Pl9zc3OGz7x161YR+c53vjPrIxcsWCA3l6EzTZM3xc4YIQIATHV5KOJIgWrL9Xq958+fv7V/Vo0NyYyjSLcebTweX7RokWQw9mSa5tNPP63WgivoMnSMEOWOWgsAoMR27twpIrquDw4OTrrLGhsKBoNzWhqutrbW6/WKyN69e2d+pMvlCoVCap+BSCRSU1NjbQgA24Uqai0AgJJ/5rbWrp3UP5tKpdRU55kXo5vyaFWrr6ZpV69ezeQYrB5eyayN1+antCwPktQCACj91cs0zZqamkQi0dbWpkov6W7dXSgThmFUV1d7vd5IJJJhnSaVSnm93q1bt+ayQRKphdQCACjzq9fw8PDatWslr5sTxePxuT5VdgmJ1EJqAQBU1tVLbU7k9XovXrzIKeUgb0U3LgDALtTyKrquh0Ih+xxVKBRSK9GB1AIAwB/U1ta2tbWJyJe//OULFy7Y4ZBisVhra6vX67VVkCK1AABQej09PS6X63//938feeQROxyPpmk+n09E1BZILENHagEA4A9+8IMfqGTwzjvvxOPxDL+rqqpqhn25Y7FYU1PTrl27sjgej8dz4sQJv98vIl1dXWvWrFG7RqMk6MYFAEydA6ToXZnWgrb33HPPb37zG5/PN/MyLRke7a5du7Zv3575wi0zPImIaJqm6/qclrwr4Skts4MktQAAbHH1Mk1z2bJlag7RP/7jPz7wwAMiMjIy0tDQkOPRplIptdmQruu57O1sLUOXXQAiteSOESIAgC0MDg7qui4iQ0NDS5cuVYMyGzZsyL2VxOPxqN6U733ve7k8T0NDQzKZ1DRN7fiIEoQqai0AgJJ/5lbr2IrIwMDAtm3bprwll6O1lrAbHx8v0OaIdjulZXmQpBYAgC2uXrFYbOPGjenbPlutJLPuCjTr0ZqmOW/ePMl4yInUYs/DY4QIAGALdXV1Fy9eTC+EbNmyRdM0Edm8eXOOT+5yudRKMN/4xjfye9imaQYCAZahI7UAACqay+VSHSThcDj3WPDss8+KyKVLl/K75sq+ffvC4TDL0JFaAACVrqGhQTXSbty4cYa0MTExMeugRl1d3cjIyNWrV/Pb1/LUU09Zy9C1t7ezDF1B0dcCAJjq8lCU/oZM9mS2FnEJBoOBQMCG58o0zY6Ojv7+fhHx+Xw//vGPp+zCoa8ld9RaAAClkUqlFi1a1NTUNPNqs7W1td3d3SLS0dFhz3VpXS7Xzp07BwYGRCQSiSxevDjzVX1BagEAOEB7e7uIXLp06fbbb5/5kTt27NA0LZFI7Nixw7YvZ9u2bSMjI+o4c28fxpQYIQIATHV5KPBIgbWASobr1YZCodbWVhEZHR2ddVCphFKplM/nO3v27K2DRIwQkVoAAM67ehmGsXjx4kQi4ff7M596U19fr9b7v3jxYi4/PRqNDg4OtrS0FHnhFlJL7hghAgAU2+bNmxOJhKZp+/fvz/y7hoaGRETX9eHh4VuvtTPs+TzJ4OBgf3//7t27eSMch9QCACiq4eHhcDgsIgcOHJh5xdtJamtr1UpxzzzzTC4TjFtaWkQkHA4Xp7c3lUrV19dHo1HeelILAMBhDh8+LCJ+v7+5uXmu39vb2ysiiURCfZGd5cuXqyV3z5w5U4TX297eruu62iwaOaKvBQAw1eWhkP0NoVBo3bp1cyq0pH+vastNJpMejye7o+3p6enq6sq9RSYThmE88cQTkUhE/bOE2zeW/H3PHbUWAECxBQKB7CKLiLS0tHi9Xrk5cTo7Tz/9tIjoup5KpQr9Yt1u94kTJ9TYloisWbOmCD+0XJFaAABO4nK59uzZIyLhcDjrZpHa2loVffbu3VucY965c6f6OhKJeL1elqEjtQAAKkJDQ4Pf7xeRDRs2ZN2WqxaCK05qSaeWoTt27BjvYxboawEATHV5yGt/g9qxOZPV5DKUSqUWLFggNzcnyuJoDcM4c+bM6tWri9Zlog4ymUx+85vftEov5f2+k1oAAA67epmmWVNTk0gk8rv94a5du7Zv3y4iY2NjWXfJEAicdZCMEAEACqujoyORSIhIU1NTHp92y5YtagJzGWz6k8vyMxWF1AIAKKBYLNbf3y8iwWDQmqicFy6X68CBAyISDofVCJRDRaPRmpoalqHLBCNEAICpLg/5GCmwxoZ8Pt+pU6cKcZxNTU1qVk4RVl4p0ClduHChqkUNDAxs27atDN73wqHWAgAolN7eXnU9znyLxLlSOxnpup71j4jH4z09PSVcQ+Xy5cs+n09Etm/f3t7ezmgRqQUAUGzxeLyrq0sKMDaUrra2tru7W0Q6Ojqy21fooYce6urqeumll0p1otQydOpV9Pf3swwdqQUAUAKapvl8vjzOG5pSR0eHiCQSib6+viy+/fnnn5ebNZtScblcnZ2dwWBQbi5D5+hOncKhrwUAMNXlIU99LTdu3CjCtGR1tCIyOjpaW1s7p++1ln7RdT2PK8pkd0pjsdjq1asTicTIyEhDQ4ND3/fCodYCAChgCaHIK6lkMQva4/GotpKXX3655Gesrq5O1/Xjx4+XJLI4IExTawEAOO4z95RHqxw/fry5uXlO3z48PLx27Vop8IbMrDKXO2otAIAyoTYneuaZZ+Y6DWflypXqi3PnztnwdZmmmV2jcfkhtQAA8iYejzc1NZVqQ2PVUZtIJPbt2zenb3S73W1tbSKye/duG57V3t7e6upqlqETRogAAFNfHrIaKaivr9d1vfhrvllHGwqFWltbRSSZTM5punUsFovFYuvWrStcI052p9QwjMWLFxdtGTp2TwQAVERqsRJDFhN58nW01mq8fr+/cEvbFTkQGIbxxBNPRCIREfH7/YcOHarY5htGiAAAeZBKpVRkGRgYKHJkUVdZdaF1uVxHjhwRkXA4XDZDKunL0IXD4Upeho5aCwAgD5+51X5AmqZduXKlcJWADAUCgXA47PV6z58/X/KDyfqU3sqa66Rp2k9/+tNCpENqLQCAMhcKhdT4xcmTJ+2QEnbu3Ckiuq4PDg6W03lubm7WdV3TNBEp3CYJtg7T1FoAALl85jYMo7q6WkTa2tpUXLCDnp4etQvS2NjYnBpsU6nUqVOnCrELQb7KGGp4qECphW5cAEA5pxYRCYVCHR0ddhgbslhtuXPKUlYCK8SC+qwylztGiAAAuQoEAlevXrVPZBERl8t14MABEenv7898/Ri3262WqnPW0FIqlaqQ/lxqLQAApxYGZj3aLNaPiUajjY2NMvehpVKdUtM016xZE4lE8lIfotYCAEBpDA0NiYiu65mv3bJ8+XLV7nrmzBlHvMYbN25cunRJRBobG3t6esr7DSW1AACyYfMhCdM0Y7HYoUOHPvaxj4lIR0dHhpsTuVyurVu3isjf/d3fOeKNcLvdV65cUdtWd3V1BQKBuW7DRGoBAJQzwzC8Xq8NL5CpVCoUCgUCgXnz5nm93q6urnfffVdEEolEb29vhk+yfv16EdF13SnNIi6XK30ZumXLlpVrmwt9LQCAqS4PM/Y3qGXcNE27fPly4TbuyTxCqYk/mqap/XosPp9v06ZNqVTqq1/9qsxlqwHVEJPffX+K0DKSvgxddm8NM58BAGWVWqxL4/Hjx5ubm0t1hLFY7MyZM0NDQ2qBO4vX633yySdXrVq1fPlyNa3JNM1ly5bpuu7z+U6dOpXh5f/NN9/cunVrHpdFKU4giMfjDz300P3335/hKyW1AADKNrVYWxCXZHvCVCr1xhtvvPrqq/39/bfee/z48QcffHDKnBGLxbxerxRmIRa7BQLDMG6//fbsJqKTWgAA5ZNaij82ZJrm22+//fLLLx89elTX9fS7vF7v5s2bV65cqRLJzFc068hLtRoeq8yRWgAAxbt6WWuZFGFsSK2sf/DgwUkDQJqmtbS0tLS0LF26dE6xyWp/yW+3iiMCQTQaveeeezLp6SG1AADKJLWoHtXCjQ0ZhnHhwoXBwcHBwcEp+2pXrFiRy0bHu3bt2r59uxRgBTk7p5ZUKrVgwQLJbHSM1AIAKJPUYppmb29vR0dHfi/5mffV5sjanCjz4KWCVF5aYUqYWrxer0qB3d3dnZ2dpBYAQPmnlvxeSqfrq/X7/Rs3bpyurzZH1iCXrut1dXUZVinyUpspYSCwVv0XEZ/Pd+LEielSIKkFAEBq+cO1c9a+2lmTRO6ampoikYjX6z1//vysJZyFCxcmEom8tMKUPBD09PR0dXWpsx2JRKYMhaQWAEBFp5a899XmKB6PL1q0SESCwWAgEJj5waoVZk77L9o2tUgGy9CRWgAADk4t8XhcRObaA1vovtocr7Wq6pDJ/G1rkCiTESX7pxa5uQxdX1/flImN1AIAcGpqGR8fV+2rGU51LlpfbY7XWqstt62tbefOnTM/WM2cmrWP1SmpRWXK6bIaqQUA4NTU0t3drTohksnkdL2xpeqrzfFaGwqFWltbJYPNidSoSu7L07HKHKkFAFDAq5dya/+HTfpqc7zWqiLKrD0r1vJ0Oe4GYOdAsGvXrkcffbS2tpbUAgBwcGpJ33HQbn21OQYCqy131vGv9vb2j370ozlupmjbQJC+Hab6gtQCAHBkavnXf/3X//zP/yxaX22RA0F7e3t/f39xNieybWpJpVI+ny+9ZkZqAQA4hlWE+JM/+ZNf/OIX6XcVuq+2yIHAGv3JvdnWualF/u8ydCIyPj5unzeX1AIAmIk1ZGBRfbWTbpzho3l6W0wRHjkpEBT5p2f4yFsfb9vjzGRqVUl8iP+cAIBJmpubk8mkiNxxxx3f/va3x8fHQ6HQDJ0fhmFkXtsoxCMnJiYy+RBe2uPMXMmP88knn7TnbyapBQAwhfnz54vI9evX//Zv/7ampiYUCpmmOTGNWztwnfXIkZER9c+RkZGZHzk+Pp5MJrP76VPWP+xzlqyT4PP5VqxYQWoBADiG2+0eGxvr7u4WkUQi0draamWX8nuxDQ0Nfr9fRDZs2DDDC4zFYvPmzfN6veV3BqxNJWfeW7Hk6GsBAMzEMIy+vj611pyIaJrW19fX0tJi2wtbdqyV+2fYnCjHhVts 241 rRRZN03RdL/SSgLmg1gIAmInb7e7s7Cz7uovH4xkYGBCR1tbW6VpA3G63z+cTkcHBwbJ54Q6KLEKtBQCQufKuu1ibE/n9/lAoNPM1Pou5wTastcRiMTXg5YjIItRaAACZK++6i8vlOnDggIiEw+FYLDblY5YvX66+OHnypNNfbyqVWr16tYMiC6kFAEB2+UBzc7MaA9q4ceN0yUa96hdffNHpkcXr9SYSCQdFFmGECACQi/IbM7LWBZ6uLdcaVZlhH+ypr7i2GSFyaGQRai0AgFyUX92ltrZWvZaOjo4p23Lr6uq8Xq/f7y/E+nJEllmSH7UWAEBelE3dxTCMxYsXJxKJ/G5OZIdai6MjC6kFAEB2mUIoFGptbRWR0dHRfO1oXfLU4vTIQmoBAJBdplZfX6/rus/nO3XqVBmkljKILKQWAADZZWpW1+3x48dn2DnSEamlPCILqQUAQHaZViAQCIfDmqZduXJluqM1DOPWjQltlVrKJrIIc4gAAIXm3HlG+/fvVwe8b9++W++NxWILFy584okn7PwSyimyCLUWAEAxOa7uYrXl3ro6i7W6/9jYWCblluLXWsossgi1FgBAMTmu7tLS0qJpmoi0t7dPuquhoUHddfDgQRseuRVZROTkyZNlEFlILQAAsstMXC7XkSNHRCQcDkej0Un3bt26VW4OJNk2soyMjNTV1ZXHbw4jRACAUnLEmJFqy/V6vefPn08/sFQqtWDBAslsWZeijRBNiiwNDQ1l89tCrQUAUEqOqLvs3LlTRHRdHxwcTL/d4/Go2dGHDh2yyaGaphkIBMoysgi1FgCAfdi57tLT06MObFLv7fDw8Nq1a2eeHf2HK27hay2maa5ZsyYSiZRlZBFqLQAA+7Bz3WXHjh2q93bHjh3pt69cuVJE7r///hs3bpT2CMs+sgi1FgCAPdmw7qLKKnJLF0sqlcpkhk5Bay2VEFlILQAAssscqM2JvF7vxYsX53zFLVhqqZDIIowQAQDszG5jRkNDQyKi63ooFLLJKaqcyCLUWgAATmGTukt7e3t/f38m7beTr7gFqLVUVGQRai0AAKewSd2lt7dX07REItHb21vaE1JpkYXUAgAgu8z5APr6+kSkq6srHo9btw8PD9fX1/f09BBZSC0AANglu7S0tKjF5TZv3mzd+Ktf/UrX9b179xJZCoe+FgCAs5Wk3yUWi6ngYoUGwzCqq6tFRNf1Kff9yVdfS8VGFqHWAgBwupLUXerq6vx+v4hs2LBB/RS32+3z+UTke9/7XuFebHpkCQaDFRVZhFoLAKCcFLPuYhVXBgYGtm3bJiLRaLSxsVFExsfHb/2Judda0iNLd3d3Z2dnpb2/1FoAAOWjmHUXt9s9MDAgItu3bzcMQ0SWL1+u7jp58mTeXxqRhdQCACC7ZG/Lli1qcyLVlutyudra2kTkxRdfzPuLevrppys8spBaAABkl+y5XLZDyY4AACAASURBVK4jR46ISDgcjsViIvLss8+KSDKZzG886unpCYfDFR5ZhL4WAEAlKGi/S1NTUyQS8Xq958+fd7lc8Xg8fW/FD6 642 fa19PT0qCOv8MhCagEAkF1yzS7xeHzRokUiEgwGA4HAtFfcrFILkSUdI0QAgEpRoDGj2tpa9YQdHR2qLTdfiCyTkx+1FgBABcpv3cU0zZqamkQi0dbWtnPnzqmvuHOstRBZSC0AABQku4RCodbWVhEZHR3Nva+FyDIlRogAAJUrj2NGgUBArfG/bt06EYlGo01NTdFoNIujIrKQWgAAKGx2GRoaEhFd14eHhwcHByORyO7du4ksecQIEQAAH8hxzKi9vb2/v1/TtJdeemnlypUiMjY25na7JbMRIiLLzKi1AADwgRzrLr29veq7/uVf/kUtmzs0NJThxCIiy6yotQAAMLXs6i5WW+7Xv/717373u3fffffvf//7t956a8GCBTJ9rYXIQmoBAKDY2cU0zWXLlum6/vjjj7/yyivqxnvuuec3v/nNdKnFiiw+n+/EiROF2KGa1AIAANllioQRjUYbGxunfJ6RkZGGhgYiS3boawEAYHZz6ndpaGioq6uz/vmpT33K7/errxsbG+vr64eHh9V37dq1i8iSOWotAADMjaq77N27N5FIyFR1F6t8IiJdXV3f+MY35OYcIoumaX/5l3+pMhCRhdQCAEABmaY5ODjY0dExKbv09vaqyNLc3Dw8PCw3Jz+r1DI2NpY+0kRkIbUAAFCa7FJdXT02NiYi3d3dO3bsUJsT+f3+UCiUvl7L6dOnfT6fiNx///0///nPiSwZoq8FAIDsuVyuQCBw5cqVYDCoaZqKLPPnz1+8eLGIHDhwQETC4XAsFrO+JRqNqsjy8MMPv/HGG0QWUgsAACXILocOHaqurn7//fdVr+61a9dWrVolIhs3brQii5pe5PP5Tp48+ZGPfISzlzlGiAAAyKdJY0YejyeVSk16DL0spBYAAGyaXYgspBYAAByQXb72ta/97ne/u379OpGF1AIAgN2zy7//+78fOnToJz/5CZGF1AIAgDPiC5GF1AIAAMofM58BAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AACASuTiFMxJNBr99a9/PevDVqxYUVtby+kSkVAolMnDOGMAivlX+t57721oaOB0OU7VxMQEZ2EO56uqKpOHBYPBQCDA6UqlUgsWLOCMASia+vp6XddnfZjf78/wMxVshRGiOYjH4yKybdu2WR/Z2tqaYb4pb2+88UaGj2xtbTUMgzMGIBeGYei6/sILL8z6yHA4zF9pUkuZO3v2rIh4PJ6JzHDGXn311VWrVg0MDGRyutxuN2cMQC4uXLggIu+//z5/pUktkGPHjn3xi19cvHgxpyJDg4ODf/Znf7Zy5UpOBYAiOH36tNfrve222zgVpBZIOBz+9Kc/vWLFCk5FJlKpVCKREJElS5ZwNgAUwdGjRx955JFVq1ZxKkgtlU41tVy/fp2pLhlSTS233Xaby8VUNQAFp5paPB7P0qVLORuklkqnmlruvPNOTkWGVFPLxz72MU4FgCJQTS0f+tCHaJIjtYCmljmjqQVAMdHUQmrBB2hqmROaWgAUmWpqeeCBBzgVpJZKR1PLXNHUAqCYaGohteADNLXMFU0tAIqJphZSCz5w8OBBmlrmhKYWAMVEUwupBX9gmmYkEqGpJXM0tQAosqNHj65atYqmFlIL5O233xaaWuaCphYAxaSaWu 644 w6aWkgtkDNnzghNLXNx+PBhmloAFI1qajFNk6YWUksFRfWenp5AIHDrXUNDQ1u3bqWp5dYzFggEdu3adetd4XCYphYA+WWaZigUampqMk1z0l00tZBaKksoFFq8eHFXV1c4HB4eHp70/yQSidx33300taSfk56enurq6nA4vH37djUt3GL9k6YWAHn8K11TU9Pa2hqJRPbs2TPpXtXUwvZDpBa7qMpYds9/+fLloaGh+vp6Efnyl79sGIZ1l2pqSaVSNLVM8sorr9TU1IjI2rVr0z/6qFnildbUUjUX/PLYn2EYvKFF/js8s/fee+9HP/rRk08+KSLt7e3pH5ZUU8vdd99NUwupxS4mMpbd83d2do6Pj7/55puapr333nvPPvusddeZM2c0TWOsNJ3L5ero6Kirqzt//ryIvPXWW/v27bPuPXbsWAU2tUzMBb9C9ud2u3lDi/x3eGbbtm27fv36kSNHfD6fiDz22GPWhyXV1PK73/2OP9SklgrS0NDgcrlOnjwpIj/84Q+tcaKhoaH169fT1HLr3/Ta2lqPxxMMBkUkfZyIphYAhdDc3CwioVBIRC5dumR9WDp9+rTP5/vQh7ickVoqT11dXVtbm4j8xV/8hWEYVlNLU1MTJ2dKgUBAffR5/PHHTdOkqQVAQd36Yeno0aOf+9znaGohtVSovr4+TdNSqdTmzZtVU4tpmh6PhzMzHfXRJxaL7du3rzKbWgCU6sNSKpXSdf3222+nqYXUUqFcLtdPf/pTEQmHwxs3btQ0rbq6mtOS4Uefjo4OVmoBULQPS2q5CppaSC0Vrba2dmBgQER0XV+/fv19993HOcnwo08ikaCpBUDRPixFIhGfz8cnJVJLpduyZcv9998vIvfdd9+DDz7ICcnwo49CUwuAInxYUr0sn/vc5/ikRGqpdC6X65//+Z//+q//+tq1azS1ZPjRR9f1J5988q677qKpBUARhMPhb3/728lkkk9KpBaIx+P57ne/y/ZDmaurq/vhD3+4YMECTgWA4vyV/pu/+Zv58+fzSalyVLHmFQAAcARqLQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAAKgELk4BgAq0a9eus2fPzvqwFStWbNu2jdMF2AS1FgCV6IUXXrh48eLExASnAnCQKv7TAqg0qVRqwYIFzz///AsvvJDJ4/k7CdgEI0QAKs4bb7whIrfddhtxBHAWRogAVJxXX331S1/60l133cWpAEgtAGBr/f39S5cuXblyJacCILUAgH3F43ERuXHjxpIlSzgbAKkFAOzLmvDsctHYB5BaAMDGjh07RlMLQGoBAAcIh8M0tQCkFgCwO5paAFILADgDTS0AqQUAnIGmFoDUAgDOQFMLQGoBAAegqQUgtQCA7RiGceuNNLUApBYAsJF4PB4IBBYvXmya5qS7aGoBSC0AYBft7e0PPfTQa6+9lkgknnvuuUn30tQCkFoAwC5aWlq++93v+nw+Edm1a1csFrPuoqkFKAMM7gIoHw0NDZ/85Ce//OUv//73vw+Hw6tWrfrtb3+rulhoagHKALUWAGXF4/GIyP79+zVNS6VSHR0d6naaWgBSCwDYkdvtPnDggIj09/ercSKaWgBSCwDYVHNzs9/vF5GmpiYVXGhqAUgtAGBT+/fvv/vuu9955x2v16tuoakFILUAgB253e7vf//76muaWgBSCwDYmjVORFMLQGoBALs7dOjQT37yk7feeoumFsDpGOIFUO5/5lyuxsZGwzBoagGcrmpiYoKzAAAA7I8RIgAAQGoBAAAgtQAAgEpDb9q0TNOcN2+es465JF1KVVVVpXqNRf7RjnjjCv17m8dDNQyjurqa/1kA5nDF4X+jfa7HpBZSi/3fEQcdKqkFILUAAACUBn0tAACA1AJUsKampqoMBAKB0h6naZpVmQmFQrytAEqLESKgIFFg3rx569evf/nllzN5fAn/G8ZiMWs/5FmNjo7W1tby/gIoFWotQP69/fbbIvKJT3xiIjMlPNQzZ85omtbd3Z3JcRJZAJBagHKjooDb7bb/oQ4NDT322GOf/exnedcAkFqASuSUKGCaZiQSueeeex588EHeNQCkFqDiOCgKqJGs999/3+Px8MYBILUAFcdBUcBBI1kAQGoBKjoK0NQCgNQCVDSaWgCA1AI4AE0tAEBqAZyBphYAILUAzkBTCwCQWgBnoKkFAEgtgAPQ1AIApBbAGc6dOyc0tQAAqQWwD8MwYrHYrbefPn3ablEgHo/H4/Fbb6epBQCpBShzpmmGQqHq6mqv15tKpSbde/ToUftEAcMwenp6Fi1atG7dOtM0J70KmloAkFqAMldTU3Pu3LmPf/zjIrJhw4ZJKUHXdZtEgVQqVV1dfeedd4qIrut79uxJv9dBI1kAQGoBsnT58uWPfvSj3/72t0Xk9ddfD4VC1l0XLlywTxTweDzvvPPOtWvX/uEf/kFE2tvb08eJbDiSBQCkFiDP3G53Z2fnhg0bBgYGRKS1tdUaJ7JbFFiwYEFnZ2d7e7vP5xORxx57zBonstVIFgCQWoDC2rJli9frFRG/32/zKKAKQpcuXdq3b5/YbCQLAEgtQMG5XK6hoSEROX36dCgUsnMU8Hg8wWBQRLZv3x6Px201kgUApBagGGpra61xooMHD9o5CgQCAVUTevzxxwcHB2lqAeBQVRMTE5wFIDumaX7mM59Ra7domrZ169bOzk57HqphGPfdd18ymRSRzZs3P/HEE83NzbyDAJyFWguQPZfL9corr6ivbd7f6na7VUFIRGhqAUBqASqRNU60cOFCm0eB5ubmL33pS0JTCwBSC1Cxtm3bNjY29uabb9o/CoTD4ZGRkf/4j//gXQPgRPS1APmRTCYXLFjAoQIAqQUAAFQ6RogAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAACAzLnS/1FVVcUZAQAANjQxMeG69SbOCwAAsBVVWGGECAAAOAOpBQAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAACC1AAAAkFoAAABy4eIUAEUQj8dnfUxtbS0nCgBmUDUxMfHBP6r+zz8B5IVpmvPmzZv1YfzvA4Bp80pV1cTEBCNEQMG9/fbbmqZl8n+ScwUAMyC1AAV35syZlpaWgYGBidlwrgCA1AKU0tDQ0NKlS1euXMmpAABSC2BfpmlGIpEbN24sWbKEswEApBbAvlRTi2maLhdT9gCA1ALYmGpq4TwAAKkFsDuaWgCA1AI4AE0tAEBqAZyBphYAILUAzkBTCwCQWgBnoKkFAEgtgAMYhkFTCwCQWgB7icViPT09k268cOGCpmnJZJKmFgDIC/6YAjlJpVLt7e2vvfZaIpF44IEHHnvsMeuu06dPb9iw4a677uIsAUBeUGsBcjJ//vyvfvWrKqxs3LjRMAzrrqNHjy5ZsoSmFgAgtQC24Ha7//RP/3TPnj3BYPD69euBQEDdbhiGruvXr1+nqQUASC2AjYKLy+UKBAI+n++VV14ZHh6Wm00t//M//0NTCwCQWgDbCYVCItLa2moYBk0tAEBqAezL4/EEg8Fr165t2rSJphYAyDtq10A+BQKB73//+z/60Y9EhKYWAMgvai1AnoXDYRG56667aGoBAFILYGsej0fX9YcffvjOO+/kbABAHlVNTEx88I+q//NPAFlLJpO/+93v7r33Xk4FAOQhr1RVTUxMkFoAAIAzUgsjRAAAwBlILQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAPnnmvTvqqoqTgoAALChqomJCc4CAACwP0aIAAAAqQUAAIDUAgAASC0AAACkFgAAAFILAAAgtQAAAJBaAAAASC0AAIDUAgAAQGoBAAAgtQAAAFILAAAAqQUAAIDUAgAASC0AAACkFgAAQGoBAAAgtQAAAJBaAAAAqQUAAIDUAgAAQGoBAACkFgAAAFILAAAAqQUAAJBaAAAASC0AAACkFgAAQGoBAAAgtQAAAFILAAAAqQUAAIDUAgAAyp+LUwAAKAnTNOfNm8d5KLnx8XGXyxl5gFoLAKA07r//fk6CHTz66KOmaZJaAACYWjQa/cUvfqG+1jQtmUxOoFhGRka8Xq/1Xvz0pz91yq8NqQUAUAJf+cpXrK8TiYTX602lUpyWIoTF+vr6xsZGXdetG/fu3csIEQAAUwuFQuqq2dDQICLV1dUquBiGwckpTl7x+/3PP/+8iGia1tLS4pRXQWoBABSVaZodHR0i8txzz61YsUJEPvKRj4hIIpF44oknnNJg4SDxeDwQCKTnldHR0f3797/wwgsi0tfX55RCC6kFAFBsg4ODiURCROrq6v7f//t/IvLuu+8eO3ZMRCKRyJo1awgu+c0rixYtCofDVl4JhUK1tbWbN28WEa/X66BCC6kFAFBUVqGlu7v79ttvF5E777xTREZHR0dGRgguBcorXq9X13WVV9S96vY9e/Y4qNBCagEAFJVVaFHZRUQ+/vGPi8jZs2cbGhrSgwvnKjuGYfT09KTnlZGRkYsXL9bV1VmP2bFjh7pL9RWRWgAAmOKC2traKiIDAwNut1vdeO+99+q6fujQIRFpaGjo7u5WwaWnp4czlkVeqa6u7urqSs8rk6JJeqHFca+RtXEBAEXS19cnIpqmbdmyxbrx9ttvTy8DdHZ2ikhXV5e69Kp/Yta80tfXp86YOsN9fX2BQGDKBzu30EJqAQAU78qqLquzTlohuGTONM3BwcGOjg417qbySktLy3RnOBqNqkLL4cOHnfh6GSECABSDVWjJZNJKZ2enGirq6uoKhUKcvSnzSigUqqmpaW1tTSQSmqYFg8ErV64EAoEZQqFa3M/v96fXtxykamJigvceAFBQqVRqwYIFIhIMBq2Ri2g0unv37hUrVmzbtm3Kq/KaNWsikYiIjIyMOHE4o3B5Jb2+IiLd3d07duyYdTZQNBptbGwUkdHRUTWZiNQCAMBkgUAgHA57vd7z589PeXE1TfPcuXNyc7VcgssMyeMrX/mKtR5/d3d3R0eH1do8s/r6el3X/X6/c8tXpBYAQGHF4/FFixbNnDxCoVBra6umaVevXp2UZgguuecVERkeHl67dq04udBCagEAFJxVaLl48eJ0j7GGkJLJpMfjmS64OPqKm6+84vf7d+7cOekszcw0zZqamkQi0dbWtnPnTueeCrpxAQAFlOHqIB6Px+v1isipU6cm3eVyuUKhkKZpIvLQQw9V1NbQU24hFAqF5hRZJG1xv97eXkefEFILAKCArP1uZh3cefLJJ0Xk4MGDU2YaXdc1TVNbQ1dCcJlhC6G5PlX6LgqZjyjZEyNEAIBCmXnSimEYQ0NDIqJmFcViMVVuGRsbm/LimkqlvF6vmuWr6/pc6w0Oyis7duxQYUUFvsOHD+cyUVn1DM1wYkktAADMMmnF6tK1rkRVVVUyY9et1f6iadqVK1ectfPfrCYtcev1evfs2ZNjA7JhGIsXL04kEt3d3WWwXh8jRACAgohGo6obI/Neira2NhEZHByc7gEej0ftsJhIJMppa+gMtxDKQl9fn6pOqYX8SS0AAEzBWoY181aMlpaWtra2mRfPnbQ1tNODy6S8opa4zUtekbnsouAUjBABAPIvk9VBbh0hypzVMePz+U6cOOHES/JctxDKQk9PT1dXVzmNplFrAQDk/3r8zDPPiEh3d3eBlldpaGg4fvy4iEQiETVBxlnnJ4sthOaq/AotpBYAQP5Zq4MUNE80NzerHRb7+/t7enqcmFdUsMt7XlFUI0uG21U6xgQAAPkzPj6uVoTr7u6e+ZFjY2PqSpRMJrP+cSq4ZPLjSm5kZERN7bYOeGxsrEA/a3R0VP2UkZGRcvrtcvGZAABQkkKL2+32+/0zlCUyKT+o2bxdXV1qNMSek3tz3EIo60JLJov7UWsBAFSosbGxDAstM9ckNE3z+XyZf4uaMi0ix48ft3N9xe/351JYqvBCy8TEBH0tAIC8ycvqIHfccUcikYhEIoZhZP5zfT6fiKxduzYajdrhVORrCyEKLemY+QwAyA/DMKqrq0UkGAyqRfqzY5rmvHnzZMZFcqf8Lmtr6Dl9YyHySvqS/H6/v7e3t2hbVVsbI5T2JBQItRYAQH709fVJPiatuFyuWRfJnfK7Tpw4oSoujY2NJam4TNry0Ov16rqe3ZaHWdu4caOKSuUXWYRaCwAgL/JVaFHUInWapl29enVO32iaZk1NjWoHTiaTRdthsRBbCGVh5u0qywC1FgBAHmzevFnmXmgJhUKhUOjW/pWVK1eKSCKRiMViczoMl8ul67rqCPZ6valUqgh5pUBbCGUhi10UnIVaCwAgV9ba/HPtpVCbPE9ZGGhqaopEIgMDA9u2bZvr8aRSKa/Xq/qCdV0vUMVlUn1FLcmfe50pa2VfaBFqLSiyhQsXVpWpEv6pAkquEJNW1q1bJyJnz57N4ns9Ho+quCQSiUJUXNQSt4sXL07f8lAtcVuqt8A0zQ0bNpR3oUWE9VpQ3IUc5Ga/Hv+hgLKRy+og6htHR0dvvWt8fDzHpWOtA/P5fOPj43l5sePj48FgUI1AWXklX0+ei2AwqA6pcOvtsl4LKsuvfvUrTdNuu+22Mv4fxbsMCi354nK5clw9tra2dmRkREQikciaNWtM08y9vlKcLYSyODa1EnF3d3dBl9xlhAgVJBaLPfzww++99x6nAigb0WhUzfI9fPhw1k/y3//93wU6vIaGhrwEl2g0umzZsvS8MjY21tnZaZO9lIuzXSWpBZXl2LFjn//85z/72c9yKoCyYU1aqaury+Lb1T5Ec50oVMzgEo1G6+vrrSVurbxin5JG5RRaSC0oqtdee23+/Pmf/vSnORVAeYhGo+pa3tvba+fjbGhoUG0fkUgk80OdlFfUFkK2yitKb2+vmi1V9oUWEWHPZxSJYRiJROLdd98t5+Z2oMLkvjrIihUrROTee++d4U/H0NDQe++9l8X853SBQODy5csZbg1d2iX55/qnVb2ivr6+si+0iDDlAcWiZiEODAxwKoDyoIZdZJoZQPly/PhxEdE0LS/P1t3drY55ui2pR0dH1aCVlVcK+ury9Yo0TbPDPCbmEKF80IoLlBNrdZC2traCFiGyXiR3Sp2dneoy39XV1dPTM6m+UvIthHIptNikL7jQSC0oElpxgXJiTVopdEeL2+1WOxifOXMmL0/Y2dmpdljs6upSOyyqJfnT84pakj+7/uJiUnPOc9+uktQCTEYrLlA2ijxpRe1wtH///nw9YfrW0M8++6xNthCaq3g83t/fLyIHDhyokEILqQVFQisuUE6KvDrIo48+KiK6rudrYX6Xy3XixIlVq1apS77cXOLWKXlFsRb3a25urpzfPVILisFaFZdTAThdfgst0Wg0FArF4/EZHlNbW6tW0H/jjTfy9SpcLtef//mfq6+///3vl3YLoSzE43E1nrVnz56K+vUjtaAYVCsu5wEoA/ldHWT37t2tra2zbpG4detWyW353UkMw/jOd74jInffffemTZscN8JSoF0U7I/1WlAMqhXX/q1tAGa92JdkdZD169ffddddaj5RXvT19V2/ft26/DtLxRZaSC0oktdee+2RRx755Cc/yakAHE3t2V78SSt1dXV5/NhjZS8Refzxxx33Lqxbt05E/H5/pRVahBEiFOfDmWrF9Xg8nA3A0f+X8 746 yKc+9SkROXfuXPGzl4pfjpsi4JRdFEgtcIBQKLRw4cJJm5OpVlzVTAfAuQqxOsjixYtFJF+Tg+aUvUTEicuc5L6LAqkFEMMwAoFAR0dHIpF48cUX0+9iVVygDJTN6iDpjSyOSy0VXmghtSCfvv71rz/99NMi8s1vfjO93KJacR 944 AFOEeD0i33JVwcxDCOXwoyVvZSlS5c66C0wTbPCCy2kFuSN2+2+5557/uqv/qq7u/v69es/+MEPrLvUqri04gLOVbhJK/fee6/f71c7P89qeHi4urpaLWubS/a6++67RcTn8zlrk+TBwUFVaNm5c2fl/i6ybWkhlMGZHxsby+5VWN84NjZm/fP555/ntwJwLrUNstfrLfnW8el/XuZqdHRUffvHP/5xEXHWCfj1owAAIABJREFUFvTj4+OqO3C63aorBLWWkmVB+9dOsnsVbrdbban6rW99S0QuXLhAKy7gaLFYzCarg9TV1ak/JtntpKgKLZ/+9Kd/+ctfishTTz3lrEJLMXdRsC1SC/JP/ad64YUXDMP4+c9/zqq4gKNt3LhRbLM6iOqfzWKRXCt7bdq0SUQ0TXPQWgxF3q6S1ILK4na7g8GgiHzrW986e/bs8uXLacUFHMpuk1ZUagmHw5NWWMg8e/3sZz+Tm1sEOMW+ffsotChV9h+qgBOZpllTU6P+m+3evfuLX/wiS8wBTlRfX6/rut/vD4VCNvnbMm/ePBEZGRnJvPYTjUYbGxtF5PLly2qFmDl9e2kZhlFdXS0iwWDQWVs8FgK1FhSEy+WyVp/87W9/S2QBnKgIhZZ4PB4KhaLRaOZ/W9QcotOnT2f+U6wJw++//766Zfny5U55F0q1iwKpBZWlpaVF07Q77riDVlzAiUzT3LBhgxR4dZCzZ8+2trbu3r0782957rnn5vRXJT17vfzyyyLi8/mcslBeIXZRcPZHYk4BCvW75XLpun706FHrww0AB7Emrezfv7/QP2tOC8etXr366tWrmWev9JXZjh49Kjcbch2BQssk9LWgsP7rv/7rl7/85Wc+8xlOBeAgVmtad3d3Z2dn4X5QPB5ftGiRiBToYhQKhVpbW0UkmUyKyIIFC9TXjhi2tk4OHS0WRohQWH/0R39EZAEcpzxWB0mfMOzxeE6dOiWOmvNs7aJAZCG1AABmv9g7enWQSdnr4MGD4pw5z4XbRYHUAgAoH2p1EE3TyqbQ4na7TdOMRCIisn79ekccv1VoccoMbVILAKDYDMPYvn27iPT19dm50BKPx9vb23t6embOXnKz0HLu3Dl1+5IlS+z/LlBomQ5ziAAAHyjypBW32622Zpyr3/zmN/39/SKyY8eOW6cEW9krGAyq7KXWd/H7/Y6YP7x582YR8fl8FFomYQ4RAOCDi71TlmG1FsnVdb2urm7SvT09PV1dXZqmXblyRcWUhQsXJhKJ48ePNzc32/xdsFbyHR0dLdxKOQ7FCBEA4A8ctDqItUiuWjhuUvaatDJbKpVSo0UPPvig/d+F9AVm+J0ktQAAphCPx521DKtaLG7v3r2zZi8159nr9dp/zrPdtqsktQAA7Mhxq4M0NTWJSCKRSF9aN5VK3Zq91JznJ5980v4vikILqQUAMAsnTlrxeDxer1dEXnrpJevG9vb2SdnLMAynzHkOhUIUWkgtAIBZlGp1EMMwQqFQKBTK7ttV+WRoaGiG7HXhwgX1hc3nPKcvMEOhZTrMfAaASlfaQovaJ6ipqSmLppOtW7euWrVq6dKlM2SvwcFBEWlra7N5s0557KJAagEAFNa6deukRKuDWAvZGYaRRWrxeDzWd02XvVRq+cIXvmDnt6BsdlEoNEaIAKCiWZNW9u/f7+gXolZmm1RoicfjqoCxcuVKOx88hRZSCwBgduUxaSUajaqWW6vHRTl27JiKMnYuYBiGoYbJBgYGKLSQWgAA017sy2PSynTZS4UYVYaxLWuBmS1btvA7OTNW9AeACmWa5rJly3Rd9/v9Wc/iycN1qKpKclu9frol8K0NCqZc9d8mHLSLgh1QawGACjU4OKgKLTt37nT0C1EX+zvvvHNS7rHmPNs2soijdlGwA+YQAUAlSp+0Utp17tWez1n3cwwPD//bv/2biFy7di2VSqW/FmvOs23fhSlX8sUMGCECgEoUCoVUB+jY2JhzO0BN06ypqUkkEnffffc777wzaZBFjT3ZeZ/nQCAQDoe9Xu/58+dJLZlghAgAKk7ZrA5iTRh+9tln5eZ+Q0osFlNf2HbOc/oCM0QWUgsAYJaLvaNXB0nPXk899ZSIRCIRwzDUvWfOnBERn89n21hWql0USC0AAMewVgcJBoPlUWjp6Oiw+m2tDly1aJ5a9teGnLhdJakFAFBs5TFpxTCMSYNcqutWdeAahqGmRz366KP2PP4pV/LFrBhIA4AKYhiG3SatRKPRX//61ytWrJjTei19fX2JRELTNDXOIiJf+MIX3nrrrU984hNyc3hI0zR7Lvg73Uq+ILUAAP7PxV5sVmjZvXt3OBwOBoOZJ4wps1dzc7M1V+jVV18VEdsWk8pjFwVSCwAniUaju3fvnvkxO3fuLO1aIEhXNquDzJq9+vv7bZtaymYXBVILACcZHBycmJhobm7+8Ic/PN1j5s+fz4myj/b2dhHxer1O72iZOXtZc56XLl1qw+On0EJqAVCa1PL1r3/96aefnvlhjl7ErJyUzeogqpFlhkLLyy+/LHad8zw8PEyhhdQCoNhSqVQikfjwhz/M+trOutg7fdJKPB5Xoz9HjhyZLnsdPXpUbDnn2TTNZ555RkS6u7sptGSHmc8AsvHGG2/4fL4PfYi/IY652JfH6iCzZq/XX39dFTPUunO2Uh6L+5FaADjP4cOHV61a9cADD3AqHKE8VgfJJHtdunRJffHHf/zHtjr4stlFgdQCwHnC4fAdd9xhz25HTGLz1UFWrFjh9/vvvffeWR+ZySDXT37yE/XFuXPnbPUyKbSQWgCU7COv+uzIR0ZHsPmklW3btoVCoVmLQLFYbNZCi2maP/zhD62UYJ/XeOtKviC1ACiSs2fP0tTiFGWzOsjGjRtV9poh37z99tvW17ZKLbeu5AtSC4AiOXbsGE0tTlEeq4NkmL3UnOeHH35YRBKJhLVwS2nZcBcFUguACkJTi1OEQqHyKLRkmL3UnOdnn33W5/PJzd2ISq48tqsktQBwJJpanCJ90kolFFpSqZR6WFNTk1qsxQ7dxxRaSC0ASommFqdwyqSVeDweCoWi0eh02SvDQsupU6dERNM0j8ezadOmZDKpbiktNeecQgupBUBp0NTiCA5aHeTs2bOtra3T7cQ5ODioKij79++f+XkOHjwoIlu3bhURt9tth207rQVmZljJF6QWAHkQjUbr6+uHh4cn3U5TiyOUx+ogmWcv0zTVmjTr16+3z/GXxy4KtkL0AzCFpqYmj8ej6/pTTz2VSCSsCwZNLY5gGEZra6uIDAwMOPqdyjx7WWvKLVmyxCYHXza7KNgKtRYAU/jxj3/8qU996rnnnhsbGwsEAtbtNLU4gjVpZcuWLc59FXMa5Dp9+rSI+P1++wzEUGgpBGotAKbgdrs7OztN0zx9+vQrr7wyPDzc3NwsNLU4QdlMWtm3b1/mg1x79+6VmyvRpZ+KM2fOXLt2LT15F0c0GlWFlsOHD/M7mUd8YAIw/ccal0v1CrS2thqGITS1OEF5rA5iGMb27dtFJBgMzlpoSaVSKt88+OCD6befOXNm7dq1JensseY91dXV8TtJagFQJB6PJxgMXrt2bdOmTTS1OOJiXx6Fljllr5deeklEvF7vpHlDK1euFJFEIqF+dYumbHZRILUAcJ5A4P+3d/+xUdeH48dfZWe2SeOMsXi6McqGmS7r+SMSEmDqxjHHj61ZdCZX/WdxS5RJieE//ii7JmN/sURKpgkxJlvabh3GMCkOKRE3SmJ0ibSG+QeRY2za9RJ/bL1shvfs 94/ X10s/BUp/XMvd+Xj8Va/H9foG6ZPX+/Wjbd26db///e9bW1tNaqlycXeQTCZTQwMty5Yty+Vyq1evnnV7xd3k7r///kmPL168OJPJhBAOHjy4kN9RfZyiUJ0axsfHXQVgasViccmSJSGEX/ziF9/85jfNLqxOhUJh+fLlIYTjx4/X9O9RZ2fnzp070+n0uXPnLlstpVKpsbExhDA0NHTh7Zi9e/du3bo1k8mcPHlyYd784ODg2rVrQwhnzpxRLRXn30zA5cX7RCGExsZGk1qqVn0sWikWizMaaHnjjTfiBxdd87x58+YYNHFi1nxLkuSBBx4IIbS3t0sW1QJcMW1tbWNjY3/6059MaqlOdbM7yLZt22J7TXPhT19fX6yEiyZOc3NzOp0OC3WSYnmDGTNaVAtwhS1evHjv3r2uQ3Wqj4GWWbRXrJb77rvvUk+Ie/wvwArkGjpFoXbZrwWYgTi7hWpTN7uDzLS9CoVCHNuIy4UuKu7xv27duvl+8/VxioJqAWB+1fTuIKVSKS4CWr169UwHWuLioEwmM8XYRktLywJcFgMtqgWAy6v13UGKxWI8NSmbzYYZ3uSKuRPXe19Zu3btGhkZSafTBlrmlZXPALXttttuGxoayuVyPT09tfj+ywu2o+kvGJ56zfNCKr+T7u7uhT894FPFbFyAGnbo0KF62oZ1RjuzlZcFXfH7YvVxioJqAWAeJUnyyCOPhDraHWRG7XX48OH4vU//chWLxYq/57o5RUG1ADCP6mx3kJlugb9nz54w5ZrniQYHB6+66qo4daay4ronAy2qBYCpRg7qY9FKnFE70/YaHh6OH0yx5nmia665JszDJrmFQiHG0zPPPGOgRbUAcHH1sTtIkiQ///nP48czGmiJk1qy2ew0i62lpWU+NsktbzCzceNGfyZVCwAXUSqV6mOgpa+vL 841 +eEPfzijX7hv374QQmtr6/R/SbyDU8GN+OrmFIUaYuUzQO2Z0anIVStJkqVLl46MjOTz+Y6OjhlFW1xpPKNzlcunMZ8/f74iF62tra23t3chD5RGtQDUmLrZHaSnpyfuLzc2NjajEaNDhw5t2rQpnU6/++67M4qkq666KlRof5fh4eFMJhNCOH78eE2f/VRb3CECqDH1sTvIXG5yxTXPM/32U6lUXEP0/PPPz/39P/zwwyGEXC4nWVQLAJf8YV8fu4Ps3r07boEfJ7ROX5IkcdnOLKLtiSeeCCG89dZbc3zztX6KQu1yhwiglmzbtm3Pnj21PqNlLje5yrdmZnpfKRZPCGHu163WT1GoXRaXA9SM8u4g+/fvr/WBljDhJlf82d/a2jqdCon3d6a/5vn//MyrxEUz0KJaALi88u4gNT2X4sKbXHFO7pkzZ6YTIs8991yY4ZrnCkqS5IEHHggz38mXinCHCKA2lM9GrvVFK3HB8MSbXA0NDWF6y5iLxeKSJUtCCKOjo01NTQv/5me97omKMBsXoDbUx0BLeWe22d3keu2110II6XT6iiRL3ZyiULvcIQKoAcPDw/WxDesc2yvubPvYY4/N5T0Ui8Wnnnrquuuue/zxx2f0C+vjFIWa5g4RQA2oj0Url7rJNc07ROVt4uZ4j2x2m+TOeidfKsgdIoBqVzeLVuY40PLXv /41 frBq1aq5vI3bb7990gtOx9NPPx03mDHQoloAuKQtW7aE2l+0MvebXOU1z3NcwLx48eKZbpJbKpW2bt0aQti9e7cZLaoFgIurm4GWKbbAz+fzuVzuH//4x9Sv8NRTT4UQfvSjH839zcQXiS84HfVxikIdMK8FoHqV51LU+oyW8lSSGZ3SPFFl1zzP6NXq5rjKOmCsBaB6lRet7Nu3r6a/kbnf5Dpy5Eio3JrnpqameCzA7373u8s+2UCLagHgMupmd5CK3OR69tlnw5zXPE90//33hxAOHDgw9dMKhUJ9HFdZH9whAqhS9bENa0VucpXXPA8NDbW0tFTkjRUKhVOnTq1cuXLqwZu4k28mkzl58qQ/k6oFgKl+2Nf67iAVaa/Z7bBSkbKpj1MU6obBLoBqtGvXrjrYHWSaN7kGBwfPnj27evXqS816OXr0aAghl8st8D2a+jhFoZ4YawGoOnWzaGWaAy3xLswU3+yNN 944 MjLS39+/cePGBXvzBlqqkNm4AFWnPhatVGo2cbFYjAupVq5cuZDvv7W1NYSQzWYli2oB4OJKpVJ9LFqJW+CHOZ81GBcnZzKZeTrnuVgsDg8PT3qwvO6p1tecqxYA5lGcS1HrAy3lLfC7u7vnuAAqLk6OC5UrrqenZ8mSJXHf3onq4xQF1QLAPCoUCnv27AkhPPPMMzU90FKpm1ylUmlgYCCE8IMf/GA+3uf69etDCENDQ8Visfxg3ZyioFoAmEflRSsLOe204mZ6kyve+jl9+vSFn3rjjTfiB7feeut8vNWmpqZ0Oh0+2Xs3hJAkiYEW1QLAZRQKhTmeilwlZjrQsmrVqhDCW2+9deGn+vr6Qgjt7e3zN/IU99uNe+/GrxgHWp588kl/JlULABdXH7uDzGIL/GXLluVyudWrV1+qWu677775e8Px3tPAwECpVJq47mmeJv8yF/ZrAaiWH/b1sTtIBbfAL1+TeT3ToHxcwPHjx8+ePVsHpyjUMWMthBBCwzS4SgsjSZKGOXMZa1HcHSSXy9X6QEsFb3IdPHgwhJDJZOY1IFKpVHt7ewjht7/9bX0cV1nH7OhPCCEYcqui/ydTKb8dn0J1s2ilsje54prnn/zkJ/P9tu+7775jx469++67Fdlghnn8N7a/HwGuuEwmMzw8PJdTkatBZW9ylY81qOA5z9P5crV+ioJqAWAeFYvFZcuW/ec//7noZyf9LV3+4VqFz1y/fv3AwEA2mz1y5EhFXnPS8xfgO0qn0+fOnavpnXLqm3ktAFfYkSNHLpUsF5r+fIsFfubg4GDcDi5ugV+prx5nnMzfd1TeDyZ66aWXJItqAeCSHnzwwXXr1sWP77rrrvgv/vFPxMeTJClv3jp+CRcdV1iwZ164M9v0X7O7uzv+2gufNmnNcwW/o0Kh0NbWtnbt2vifuVzuzJkzC3ArCtUCUMNSqdQf//jHTCYTQnj99dffeeedODN30hjAkiVLbrzxxm3btg0ODpZKpar6Fio+m7h8nOE999xT8Xcbe2X58uVxuVPslZ6eHjvhqhYAphUuAwMDcWv5O++888InHD58OIQwMjKyZ8+etWvXNjY23nbbbZ2dnRceVnxFVHwL/FdeeSWEkM1mK7sCeVKvZDIZvaJaAJixpqamoaGhdDo9MjKSyWQmHuYXQnjyySdHR0f7+/vL8zyGhoZ27tz5/PPPX/F33tPTU/Fl23FyTNzDpiJKpVJnZ+fEXjl+/PjJkyf1Sm2xhgigihSLxUwmMzIykk6nh4aGLrWpfKFQOHHixMGDB3/6059OWmO8d+/e6667bvXq1Qvz8zhJkqVLl46MjOTz+Y6Ojtm9yPDwcLxBFn8kldf1nDlzZu7fRalU2r17dzxkIPbKr371q5reyk+1AFAtyrueZLPZF198caZLWiZujpzL5R5++OGVK1fO35E6PT09c98Cv/wtxx9Jhw4d2rRpUzqdfvfddyvYK+l0evfu3fZiqWnuEAFUl+bm5uPHj4cQBgYGNmzYkCTJjH5O5/P5OG4RQujt7d20aVOcxjvpllNFTDxrsIITUOIknmmeF32pN9bT07NixYqYLOl0uru7+9y5c5Kl1hlrAahGg4ODcVHu7EZcSqXSG2+80dfX19fXF3epP3/+/MQXSZLko48+mmNqzGigJa57uujTisXitm3b4gtOPMtwFvdxkiTp6+vbvn17/K7j+MqDDz5oF5Y6MQ5AVYojLjFczp8/P+vXGR0dPX78+KQH4/zZbDbb1dU1NDQ0i9cfGxuLi566urou++T45X7961+Pjo5O55mxhGb6lrq7u+NbivL5/FyuG1VItQBUr66urvIP4Hl65bJsNtvd3X3ZqijL5/NxMOOyZVDum1tuuSV+rVwu193dfdFaii+bzWZnWnjl+2Lxcs0ielAtAMxJ/Ck+H+EyNDTU1dWVzWYntsukDWqnCJH4/O7u7ss+OZfLxWeeOXOmvb19Yl6EEDKZTD6f7+/vj8EUPzudl9UrqgWAT1G4ROfPnx8aGorTeC/Mhf7+/v7+/kkpMP2Blrhb/6Sxk7GxsdhMMWgmTpSJH0xnyGdoaGhir+RyuekPFFGjzMYFqAGdnZ1xOUxXV9fjjz++kF/6tttui3NNMpnM/fffv27duptvvvmGG26IIyJTr8opFotLlixJp9OnT5+eYrpuoVA4derU66+/fvPNN7e1tV12zXOhUNixY0fcLy72yq5du+wX92lg5TNADejo6Ii3crZu3To4OLiQX/ree++Ns1Librxr166NydLU1DT14uQkSeJ73r9//9QrjJqamj 744 IMVK1a88MILIYTHHntsil5xhNCnmuEmgJpw/vz58hyUC9cEzbczZ850d3dPvKFz8ODB6dzYam9vn86LT/zBdNHvbnR0dOJXj1vy+1PhDhEAVSpJkg0bNgwMDITZbmcyd21tbb29vV/+8pfPnj078fF4MyiXy23evHn9+vXxNKVMJvOXv/zlsnullPfGjSZtLWNLfspUC0CthktFjumZkXJeXNhMcRv+8n9ef/31n//85/P5/ObNmy97nkAsnvhxNps9cuSIXkG1ANSDaZ6wOB/iQEsmkzl58uSkT8XdeI8ePfrcc8+Vd4qLqXHhky/y0+iT45PiDN8kSZ5++umtW7fGB21xi2oBEC4zUD6ZeWhoqKWlZeq399prrx0+fLivr++xxx6bdBZ0oVD497//feutt05MkHK1vPPOOy+//LIt+VEtAMJl9uIS6FwuV95VZTqSJJkUHOvXr493uLLZbGtr6+bNm5ubm2O13HTTTR9//LFeQbUA1GG4xOkg05z0Ohfl0xznPpmmXC1TyOfz27dvr+A50tQH+7UA1KqmpqZ4wuLQ0NCGDRuSJJm/r7Vly5YQQi6Xm/v83yNHjsTdeLu6uibt7h8+2ZK/o6NDsqBaAOrKmjVrYrgMDAzMX7gMDg7GCba7du2qyAumUqmWlpY77rhj4oPt7e16ham5QwRQ88q3b7LZ7IsvvljZW0VJkixdunRkZGSmM1qmUCgUWltby0uNbMnPNBlrAah5a9asiYcUDgwMVGo4pKyvry9Oj923b19FeiVuyR+TxZb8zMhnfvazn7kKALWupaVl0aJFx44dO3bs2KJFi+65556KvGySJN/97nfHxsby+fz69evn2Ctbtmz58Y9//Oabb4YQstns0aNHH3nkkWuvvdZvH9PkDhFA/SgfDZ3P5yftkjI7PT09Dz30UAhhbGxs1tNNSqXSjh079uzZE//TFrfMmjtEAPWjo6Mjnlm4c+fOvXv3zvHVkiTZvn17bKDZJUupVOrs7GxsbIzJEo88PHnypGRhdoy1ANSb8oYoczxhce/evVu3bk2n06dPn55ptUw6QiidTu/fv1+soFoA+D8qcjR0qVRqbGwMnxwMNKOv3tfXF+8rBVvcUlHuEAHUm1Qq9eKLL2az2RDC2rVrBwcHZ/Eiu3fvjs3x4IMPTr9Xenp6li5dGpMlnU53d3efO3eura1NslARxloA6tPEEZfLnnc4yUwHWuL4SvnIwxBCV1fXo48+KlaoLGMtAPUplUr19PSk0+kQwne+851isTj9XzujgZbBwcE4vhKTJW7J//jjj0sWKs5YC0A9m8XR0IVCYfny5WEaAy2Dg4Nbtmwpb3HryENUCwALGi5tbW29vb2ZTObkyZPT7JVcLrdv3z69gmoBoJLhcu7cuSnu3ZQHWi61+KhQKOzYsaO3t7fcK44QYsGY1wJQ/5qamvbv3x9CGBkZmfpo6B07doQQMpnMhclSPkIoJosjhFh4xloAPi0uezT0pQZaJo2vZDKZAwcOiBUWnrEWgE+LNWvWHD9+PIQwMDBw0RGX1tbW2DTlZIlb8pfHV8pb8ksWVAsA8x4u/f39MVziGUNlg4ODcXbtvn37woQjhOKu/I4QQrUAsNA2btwYT1jcs2dPZ2dn+fEtW7aEEHK5XFNT08ReiVvc6hWqgS2AAD51Ojo6Qgg7d+6MXdLR0VEeaFm1atWKFSvifnGOEKLamI0L8CnV2dkZqyWfz+/fv394ePhzn/vcf//7X72CagGg6sQN5SY9mM/nd+zYoVdQLQBUkXjC4v/+979isfjmm2/akh/VAkBVh0sI4f3337/66qv1CqoFAKACrHwGAFQLAIBqAQBUCwCAagEAUC0AgGoBAFAtAACqBQBQLQAAqgUAQLUAAKoFAEC1AACEkHIJqkSpVDpw4IDrMH+WLVu2Zs0a1wFAtTBXr7zyyvbt27/1rW+5FPNk9erVqgWgpjWMj4+7CtWgs7Pz 448 /zufzLsW88gceoHYZa6kWf/7zn9va2s6cOdPc3OxqAMCFzMatFgMDA//617++9KUvuRQAoFqqV6FQCCF85jOfSaWMfgGAaqlip06dymaz7733nksBAKqlqh0+fHjVqlUrVqxwKQBAtVS1Y8eO3XTTTatXr3YpAEC1VK8kSYaGhs6fP28qLgColqr297//PYTw4YcfmooLAKqlqp04cSKbzboOAKBaqt2rr75qKi4AqJYaYCouAKiWGhCn4i5atMhUXABQLVUtTsVNksRUXABQLVXtxIkTuVzOdQAA1VJFBgcH43lDE7366qt33XXXV77yFdcHAFTLlZckybZt29auXbtp06ZJn+rr67v66qu//vWvu0oAoFquvF27dq1ateqLX/ziqVOnjh49Wn68VCqNjIx88MEHzc3NrhIAqJYrr6Oj4/Tp03/4wx9CCA899FD58bfffjuE0NjY6BIBgGqponC58 847 c7ncP//5z2effTY+ODw8nMvl3nvvPdcHAC6rYXx83FVYMIVCYfny5Y2Nje+//34qlWpra8tkMplMZuPGjS4OAEzNWMuCam5ubm9vHxsb+81vfhNCePnll6+99lpTcQFAtVSjXbt2hRDa29sLhYKpuACgWqrX4sWL8/n82NjY9773vWAqLgColmq2ffv2G2 644 c033 ... src="data:image/png;base 64, iVBORw0KGgoAAAANSUhEUgAAAucAAARACAIAAADCrGrzAAAACXBIWXMAABYlAAAWJQFJUiTwAAAgAElEQVR42uzdfXBT153/8a9bkXSQJ5tNK3KZjCcmpd3SjWVSmmWC3TJZZBpMEsKEOpVMM8skzEIH7Kbe7e6SGbv2NO7Db7xZbJ5mKGWWIqlxYVNnwExAbJbUosMktHDFJtMZWqvLtihSNsuyvumwvl3//jjlRmv8IOvxXun9+stIsnx1ZXw/+p7vOUcEAADACaomJiY4CwAAwP4+xCkAAACkFgAAAFILAAAgtQAAAJBaAAAASC0AAIDUAgAAQGoBAAAgtQAAAFILAAAAqQUAAIDUAgAASC0AAACkFgAAAFILAAAgtQAAAJBaAAAAqQUAAIDUAgAAQGoBAACkFgAAAFILAAAAqQUAAJBaAAAASC0AAACkFgAAQGoBAAAgtQAAAJBaAAAAqQUAAIDUAgAASC0AAACkFgAAAFILAAAgtQAAAJBaAAAASC0AAIDUAgAAQGoBAACYhotTAJS9qqqqTB42MTHBuQJg679m/J0CAACOwAgRAAAgtQAAAJBaAAAAqQUAAFQi0zRjsZidj5A5RACAqWU4+wxlZmRkpKGhwaa/k8whAgAQWZDOttmAESIAwGSGYUy65WMf+9iZM2cmKoyu6yLS1tY2Pj5exi9zfHzc5/M54jeT1AIAmOz9999XX/z93//9Jz/5SRF59913V65cWVdXF41GK+QkmKa5evVqEXnrrbdcLlcZv8w1a9ZEIhERCQaDpBYAgMN4PB71xde+9rWf/exn3d3d6p+XLl1qbGysr6+vhOzS0dGRSCREJBQKVUJk6e7uDgQCpBYAgINt3ry5s7NzZGTEijK6rpd9donFYv39/SISDAatF17ekaWzs9P+x0w3LgBgqstDWjeurut1dXWpVMrr9T7yyCM3btwIh8PqLq/Xu2fPHttOOcn6cr5s2TJd130+36lTp8r1LW5qaro1sqj3nW5cAIDzqCbNjRs3iojH47ly5cr+/ftDodDo6Kjf75cyrbvs27dP9eGW8dhQT0+Ps6osfzABAMAt1DVidHRUfREMBm99jJVdrLrLyMiI01 /42 NiYpmkiMjAwUK5vrtWo1N3dPeX7btsjZ4QIADAFa6Sgp6enq6tL07TLly+73e5JD4tGo1evXv2nf/qnchozMgyjr69vx44dZTl1SL2h01VZGCECADhYR0eHpmmJRKKvr2/SXfF4vLGx8Ytf/OKKFSvKaczI7XZ3dnZWYGRxAKqgAIDpRojU19YyHqOjo5MGU6zVydRSbGU5ZlQJA0NOGSEitQAAZr96eb1eEfH5fJMeNj4+3tbWph7s8/mSyeREmfa7VEJkIbUAAMohtVhtucePH7/1wVYxRtM0qx7jrOyi67qKXJUcWUgtAIBySC0TExMqgmiaNuWmPCMjI2rqjYiMjY2lxx37Z5dkMjnlEFilRRZSCwCgTFLL2NiYunG6KcHJZNLr9U5ZjLF5dlHdOV6vt/x2SZxTZCG1AADKJLVMpI0EZTeYYs/sYr0oXdcrPLLYP7Uw8xkAkKmWlhY1DNTe3p7Ft9fW1tptXd1UKtXa2qrmQNXV1THJmZnPAIAyqbVMTEyMjIyouzIsk3R3d0/5SJvUXdTY0HTNOhVVZXFErYXUAgCY29VLpY1MukAGBgZmboUpbXYp17EhK7LcOlPd6amFESIAwNzs3LlTXekHBwdnfuSmTZtUMWP79u2BQMA0TRuOGZXZ2JA1MOTz+U6cOFFuv3x8ngAAzPUzt/VpPn2S85TGx8fTP/rP0MZbkrrL6OhoOY0NpZ/q7F6XzbMBuycCAKYw8y56pmnW1NQkEom2tjZVeplZKBRSTa+app08eXKG2kY8Ht+xY0c57cVYNNZJVlWW7PZRsvnuiaQWAEA2V6/h4eG1a9eKyOjoaG1t7axPGIvFVq9enUgkvF7vxYsXZ34w2WWuotFoY2NjjpFF2PMZAFCWmpubVc/KunXrMnl8XV2drus+ny8Sicz6YBvOka6EyOKAME2tBQCQ3WfueDy+aNEiEQkGg4FAoEBHkt+6y/Dw8KuvvtrX11c2l/b8RhZGiAAA5ZlaRKS9vb2/v1/TtCtXrhQ0B+QluxiGsXjx4szbcSotsggjRACAMtbb26tpWiKR6O3tzeLbTdNcuHBhJuM+eRkz2rx5cyKR0DQtu6Mt+8jiAMzuAwDkMgPWWqstiw2T29ra1PdOtwxdHudIHz9+XD1+yv0dHcdapDjrSc5OnPlMagEA5HT1Gh8f93q9ktVKrOPj46qlV0T8fv+crr5zyi7j4+NqByW/309kIbUAACo0tUxMTOi6rh6fxbpw6cvQeb3eue4mnWF2UUUdTdNmXRavkiMLqQUAUP6pZeLm5kRZb0NoDd9ompbFrkAzZxcrVJXB2FBBI8sE+xABACrB/v37RSSRSOzbty+Lb29ubtZ1XTX2fu9735vrt8/cq3vffff5/X6fz9fc3Ez7raMx8xkAMNXlYe4zYHft2rV9+3YRGRsbc7vdWfzQVCq1d+/eHTt25HI9nm6OtGmajr7MFyeysF4LAKAiUou1OZHf7w+FQqU9/jLbE6BoVRZSCwCgIlJL+sVV1/UZtkick1xqJOWRXayzqmna5cuXs6tjlUdqoa8FAJA3DQ0Naibzxo0bTdPM/Qnj8fi8efOy237IMIwy2M8oPbLoul7QyGJ/pBYAQD6ptlxd1wcHB3N/NrU1Y2NjY09Pz1zjTnV1tRqocm52mRRZPB5Phf92kVoAAPlUW1ur1l/p6OgwDCPHZzt//rwq3nR1dQUCgQzrN6Zpqrhz8ODB9ANzVnaJx+NElslYkwAAkN91O6yFaNva2vJyMHNdhm5gYEA9froHZ7cnQDElk0l1DjVNm+vKe2W8XgupBQCQ/6tXLpsTTSl9GbqZE8bo6Kh65Kx7G9k2u5QqskywyhwAoAIFAgG1OZEaqcldc3Pz6OioWoYuk7Ehr9e7ZcuWWQezbDhmlEqlvF6v2puagaFJSC0AgIIYGhpSUWB4eDgvT1hbW6vrejAYnGHq8r59+9T6/UNDQxnOl7ZVdiGyzIz1WgAAU10e8rFuR3t7e39/v6ZpV65cKcK6tIZhVFdXi8jAwMC2bduyeIbSru9ih8jCei0AgArV29srIolEQn1RuIu9+sLtdieTye7u7lnHhqZTwroLVZaMQhW1FgBA4T5zh0Kh1tZWEUkmk4W4EqvNj0ZGRvJeESlm3cU+kYVaCwCgcrW0tKi23Pb29rw/uWmaL7zwgmS1DN2silZ3ocoyh1BFrQUAUNDP3NYCr4WoiJimuWbNmkgkIiKf//znT58+XYgGmsLVXewWWai1AAAqWkNDgypXbNiwIS+bE6VzuVx///d/v3XrVhF5/fXXly1bZrW55FGB6i5UWeYcqqi1AAAK/Zk7lUotWLBARILBYCAQyONxWs9s0TTt5MmT+dpx+lb5qrvYM7JQawEAVDqPx6NW2W9tbc19c6J0kzLQ/PnzVXAp3GvJS92FKgupBQBgX1u2bFFhYvPmzfl6zlAopDpaLO+///6JEyeKEAJyyS5WZBGRI0eOEFlILQAAe3G5XAcOHBCRcDgci8Vyf8JUKqXmVLe1taXf/tvf/rZoLyqL7JIeWQrRnkxqAQAgD5qbm30+n4hs3Lgx92dTU6k1Tevr61O3qPjy4osvpj/MNM14PG6T7EJkyRX7mgIAirb3r7UhczAYzMsW0LquWzeqHYhEZGxsTN0yPj6uctLx48eLc95m2Ed6fHzcarixyebS7PkMAMBMZYnu7m4R6ejoyKUt980331TFlfS5QnV1dZqm+Xw+a/LzjRs3ksmkiKxduzbvy9DNqe7y+uuvr1mzhipLjpj5DACY6vJQsBmwhmEsXrw4kUh0d3d3dnZm/TyxWOy+++5zu92TnnzSLenL0Pl8vhMnThRhH0dl0hxpq8pi58hi85nPpBYAQLGvXtbmRKOjo7W1tUV4OT09PV1dXSJS/JnGKrtcunQpFovZv8pCagEAkFomq6+v13Xd5/OdOnWqOK/I2lig0MvQOTQQOOIg6WsBAJTA4cOHRSQSiQwPDxfnJzY0NCSTSU3T7r///iVLlvAWODJMU2sBnMs0zXnz5s36MP6b5+sDaEHZ7W0qwmfuQCAQDoc1Tbty5UomvSbRaPTXv/71lBsCTHm0pmne+rSqBXhS70vZnNKyP0hqLYCDuVyuzKcyIsdIUZwZpxVl//79IpJIJPbt25dJRt+wYUNra2smU4FisVh9ff3TTz99611ut7skkQX5CVX8RQMAlOozt9WWm0wmZ+6QbW9v7+/v1zTt8uXLt8aOSUdrtbCMjY3NmlHUQr1FaHOh1pI7ai0AgJJpaWlRC6+phW5nCBb9/f0icuDAgUwqJQ0NDepph4aGZn5kKpVavXq11+stWnsNSC0AAEdyuVxHjhwRkXA4PN3ePaZprl69WkR8Pl9zc3OGz7x161YR+c53vjPrIxcsWCA3l6EzTZM3xc4YIQIATHV5KOJIgWrL9Xq958+fv7V/Vo0NyYyjSLcebTweX7RokWQw9mSa5tNPP63WgivoMnSMEOWOWgsAoMR27twpIrquDw4OTrrLGhsKBoNzWhqutrbW6/WKyN69e2d+pMvlCoVCap+BSCRSU1NjbQgA24Uqai0AgJJ/5rbWrp3UP5tKpdRU55kXo5vyaFWrr6ZpV69ezeQYrB5eyayN1+antCwPktQCACj91cs0zZqamkQi0dbWpkov6W7dXSgThmFUV1d7vd5IJJJhnSaVSnm93q1bt+ayQRKphdQCACjzq9fw8PDatWslr5sTxePxuT5VdgmJ1EJqAQBU1tVLbU7k9XovXrzIKeUgb0U3LgDALtTyKrquh0Ih+xxVKBRSK9GB1AIAwB/U1ta2tbWJyJe//OULFy7Y4ZBisVhra6vX67VVkCK1AABQej09PS6X63//938feeQROxyPpmk+n09E1BZILENHagEA4A9+8IMfqGTwzjvvxOPxDL+rqqpqhn25Y7FYU1PTrl27sjgej8dz4sQJv98vIl1dXWvWrFG7RqMk6MYFAEydA6ToXZnWgrb33HPPb37zG5/PN/MyLRke7a5du7Zv3575wi0zPImIaJqm6/qclrwr4Skts4MktQAAbHH1Mk1z2bJlag7RP/7jPz7wwAMiMjIy0tDQkOPRplIptdmQruu57O1sLUOXXQAiteSOESIAgC0MDg7qui4iQ0NDS5cuVYMyGzZsyL2VxOPxqN6U733ve7k8T0NDQzKZ1DRN7fiIEoQqai0AgJJ/5lbr2IrIwMDAtm3bprwll6O1lrAbHx8v0OaIdjulZXmQpBYAgC2uXrFYbOPGjenbPlutJLPuCjTr0ZqmOW/ePMl4yInUYs/DY4QIAGALdXV1Fy9eTC+EbNmyRdM0Edm8eXOOT+5yudRKMN/4xjfye9imaQYCAZahI7UAACqay+VSHSThcDj3WPDss8+KyKVLl/K75sq+ffvC4TDL0JFaAACVrqGhQTXSbty4cYa0MTExMeugRl1d3cjIyNWrV/Pb1/LUU09Zy9C1t7ezDF1B0dcCAJjq8lCU/oZM9mS2FnEJBoOBQMCG58o0zY6Ojv7+fhHx+Xw//vGPp+zCoa8ld9RaAAClkUqlFi1a1NTUNPNqs7W1td3d3SLS0dFhz3VpXS7Xzp07BwYGRCQSiSxevDjzVX1BagEAOEB7e7uIXLp06fbbb5/5kTt27NA0LZFI7Nixw7YvZ9u2bSMjI+o4c28fxpQYIQIATHV5KPBIgbWASobr1YZCodbWVhEZHR2ddVCphFKplM/nO3v27K2DRIwQkVoAAM67ehmGsXjx4kQi4ff7M596U19fr9b7v3jxYi4/PRqNDg4OtrS0FHnhFlJL7hghAgAU2+bNmxOJhKZp+/fvz/y7hoaGRETX9eHh4VuvtTPs+TzJ4OBgf3//7t27eSMch9QCACiq4eHhcDgsIgcOHJh5xdtJamtr1UpxzzzzTC4TjFtaWkQkHA4Xp7c3lUrV19dHo1HeelILAMBhDh8+LCJ+v7+5uXmu39vb2ysiiURCfZGd5cuXqyV3z5w5U4TX297eruu62iwaOaKvBQAw1eWhkP0NoVBo3bp1cyq0pH+vastNJpMejye7o+3p6enq6sq9RSYThmE88cQTkUhE/bOE2zeW/H3PHbUWAECxBQKB7CKLiLS0tHi9Xrk5cTo7Tz/9tIjoup5KpQr9Yt1u94kTJ9TYloisWbOmCD+0XJFaAABO4nK59uzZIyLhcDjrZpHa2loVffbu3VucY965c6f6OhKJeL1elqEjtQAAKkJDQ4Pf7xeRDRs2ZN2WqxaCK05qSaeWoTt27BjvYxboawEATHV5yGt/g9qxOZPV5DKUSqUWLFggNzcnyuJoDcM4c+bM6tWri9Zlog4ymUx+85vftEov5f2+k1oAAA67epmmWVNTk0gk8rv94a5du7Zv3y4iY2NjWXfJEAicdZCMEAEACqujoyORSIhIU1NTHp92y5YtagJzGWz6k8vyMxWF1AIAKKBYLNbf3y8iwWDQmqicFy6X68CBAyISDofVCJRDRaPRmpoalqHLBCNEAICpLg/5GCmwxoZ8Pt+pU6cKcZxNTU1qVk4RVl4p0ClduHChqkUNDAxs27atDN73wqHWAgAolN7eXnU9znyLxLlSOxnpup71j4jH4z09PSVcQ+Xy5cs+n09Etm/f3t7ezmgRqQUAUGzxeLyrq0sKMDaUrra2tru7W0Q6Ojqy21fooYce6urqeumll0p1otQydOpV9Pf3swwdqQUAUAKapvl8vjzOG5pSR0eHiCQSib6+viy+/fnnn5ebNZtScblcnZ2dwWBQbi5D5+hOncKhrwUAMNXlIU99LTdu3CjCtGR1tCIyOjpaW1s7p++1ln7RdT2PK8pkd0pjsdjq1asTicTIyEhDQ4ND3/fCodYCAChgCaHIK6lkMQva4/GotpKXX3655Gesrq5O1/Xjx4+XJLI4IExTawEAOO4z95RHqxw/fry5uXlO3z48PLx27Vop8IbMrDKXO2otAIAyoTYneuaZZ+Y6DWflypXqi3PnztnwdZmmmV2jcfkhtQAA8iYejzc1NZVqQ2PVUZtIJPbt2zenb3S73W1tbSKye/duG57V3t7e6upqlqETRogAAFNfHrIaKaivr9d1vfhrvllHGwqFWltbRSSZTM5punUsFovFYuvWrStcI052p9QwjMWLFxdtGTp2TwQAVERqsRJDFhN58nW01mq8fr+/cEvbFTkQGIbxxBNPRCIREfH7/YcOHarY5htGiAAAeZBKpVRkGRgYKHJkUVdZdaF1uVxHjhwRkXA4XDZDKunL0IXD4Upeho5aCwAgD5+51X5AmqZduXKlcJWADAUCgXA47PV6z58/X/KDyfqU3sqa66Rp2k9/+tNCpENqLQCAMhcKhdT4xcmTJ+2QEnbu3Ckiuq4PDg6W03lubm7WdV3TNBEp3CYJtg7T1FoAALl85jYMo7q6WkTa2tpUXLCDnp4etQvS2NjYnBpsU6nUqVOnCrELQb7KGGp4qECphW5cAEA5pxYRCYVCHR0ddhgbslhtuXPKUlYCK8SC+qwylztGiAAAuQoEAlevXrVPZBERl8t14MABEenv7898/Ri3262WqnPW0FIqlaqQ/lxqLQAApxYGZj3aLNaPiUajjY2NMvehpVKdUtM016xZE4lE8lIfotYCAEBpDA0NiYiu65mv3bJ8+XLV7nrmzBlHvMYbN25cunRJRBobG3t6esr7DSW1AACyYfMhCdM0Y7HYoUOHPvaxj4lIR0dHhpsTuVyurVu3isjf/d3fOeKNcLvdV65cUdtWd3V1BQKBuW7DRGoBAJQzwzC8Xq8NL5CpVCoUCgUCgXnz5nm93q6urnfffVdEEolEb29vhk+yfv16EdF13SnNIi6XK30ZumXLlpVrmwt9LQCAqS4PM/Y3qGXcNE27fPly4TbuyTxCqYk/mqap/XosPp9v06ZNqVTqq1/9qsxlqwHVEJPffX+K0DKSvgxddm8NM58BAGWVWqxL4/Hjx5ubm0t1hLFY7MyZM0NDQ2qBO4vX633yySdXrVq1fPlyNa3JNM1ly5bpuu7z+U6dOpXh5f/NN9/cunVrHpdFKU4giMfjDz300P3335/hKyW1AADKNrVYWxCXZHvCVCr1xhtvvPrqq/39/bfee/z48QcffHDKnBGLxbxerxRmIRa7BQLDMG6//fbsJqKTWgAA5ZNaij82ZJrm22+//fLLLx89elTX9fS7vF7v5s2bV65cqRLJzFc068hLtRoeq8yRWgAAxbt6WWuZFGFsSK2sf/DgwUkDQJqmtbS0tLS0LF26dE6xyWp/yW+3iiMCQTQaveeeezLp6SG1AADKJLWoHtXCjQ0ZhnHhwoXBwcHBwcEp+2pXrFiRy0bHu3bt2r59uxRgBTk7p5ZUKrVgwQLJbHSM1AIAKJPUYppmb29vR0dHfi/5mffV5sjanCjz4KWCVF5aYUqYWrxer0qB3d3dnZ2dpBYAQPmnlvxeSqfrq/X7/Rs3bpyurzZH1iCXrut1dXUZVinyUpspYSCwVv0XEZ/Pd+LEielSIKkFAEBq+cO1c9a+2lmTRO6ampoikYjX6z1//vysJZyFCxcmEom8tMKUPBD09PR0dXWpsx2JRKYMhaQWAEBFp5a899XmKB6PL1q0SESCwWAgEJj5waoVZk77L9o2tUgGy9CRWgAADk4t8XhcRObaA1vovtocr7Wq6pDJ/G1rkCiTESX7pxa5uQxdX1/flImN1AIAcGpqGR8fV+2rGU51LlpfbY7XWqstt62tbefOnTM/WM2cmrWP1SmpRWXK6bIaqQUA4NTU0t3drTohksnkdL2xpeqrzfFaGwqFWltbJYPNidSoSu7L07HKHKkFAFDAq5dya/+HTfpqc7zWqiLKrD0r1vJ0Oe4GYOdAsGvXrkcffbS2tpbUAgBwcGpJ33HQbn21OQYCqy131vGv9vb2j370ozlupmjbQJC+Hab6gtQCAHBkavnXf/3X//zP/yxaX22RA0F7e3t/f39xNieybWpJpVI+ny+9ZkZqAQA4hlWE+JM/+ZNf/OIX6XcVuq+2yIHAGv3JvdnWualF/u8ydCIyPj5unzeX1AIAmIk1ZGBRfbWTbpzho3l6W0wRHjkpEBT5p2f4yFsfb9vjzGRqVUl8iP+cAIBJmpubk8mkiNxxxx3f/va3x8fHQ6HQDJ0fhmFkXtsoxCMnJiYy+RBe2uPMXMmP88knn7TnbyapBQAwhfnz54vI9evX//Zv/7ampiYUCpmmOTGNWztwnfXIkZER9c+RkZGZHzk+Pp5MJrP76VPWP+xzlqyT4PP5VqxYQWoBADiG2+0eGxvr7u4WkUQi0draamWX8nuxDQ0Nfr9fRDZs2DDDC4zFYvPmzfN6veV3BqxNJWfeW7Hk6GsBAMzEMIy+vj611pyIaJrW19fX0tJi2wtbdqyV+2fYnCjHhVts 241 rRRZN03RdL/SSgLmg1gIAmInb7e7s7Cz7uovH4xkYGBCR1tbW6VpA3G63z+cTkcHBwbJ54Q6KLEKtBQCQufKuu1ibE/n9/lAoNPM1Pou5wTastcRiMTXg5YjIItRaAACZK++6i8vlOnDggIiEw+FYLDblY5YvX66+OHnypNNfbyqVWr16tYMiC6kFAEB2+UBzc7MaA9q4ceN0yUa96hdffNHpkcXr9SYSCQdFFmGECACQi/IbM7LWBZ6uLdcaVZlhH+ypr7i2GSFyaGQRai0AgFyUX92ltrZWvZaOjo4p23Lr6uq8Xq/f7y/E+nJEllmSH7UWAEBelE3dxTCMxYsXJxKJ/G5OZIdai6MjC6kFAEB2mUIoFGptbRWR0dHRfO1oXfLU4vTIQmoBAJBdplZfX6/rus/nO3XqVBmkljKILKQWAADZZWpW1+3x48dn2DnSEamlPCILqQUAQHaZViAQCIfDmqZduXJluqM1DOPWjQltlVrKJrIIc4gAAIXm3HlG+/fvVwe8b9++W++NxWILFy584okn7PwSyimyCLUWAEAxOa7uYrXl3ro6i7W6/9jYWCblluLXWsossgi1FgBAMTmu7tLS0qJpmoi0t7dPuquhoUHddfDgQRseuRVZROTkyZNlEFlILQAAsstMXC7XkSNHRCQcDkej0Un3bt26VW4OJNk2soyMjNTV1ZXHbw4jRACAUnLEmJFqy/V6vefPn08/sFQqtWDBAslsWZeijRBNiiwNDQ1l89tCrQUAUEqOqLvs3LlTRHRdHxwcTL/d4/Go2dGHDh2yyaGaphkIBMoysgi1FgCAfdi57tLT06MObFLv7fDw8Nq1a2eeHf2HK27hay2maa5ZsyYSiZRlZBFqLQAA+7Bz3WXHjh2q93bHjh3pt69cuVJE7r///hs3bpT2CMs+sgi1FgCAPdmw7qLKKnJLF0sqlcpkhk5Bay2VEFlILQAAssscqM2JvF7vxYsX53zFLVhqqZDIIowQAQDszG5jRkNDQyKi63ooFLLJKaqcyCLUWgAATmGTukt7e3t/f38m7beTr7gFqLVUVGQRai0AAKewSd2lt7dX07REItHb21vaE1JpkYXUAgAgu8z5APr6+kSkq6srHo9btw8PD9fX1/f09BBZSC0AANglu7S0tKjF5TZv3mzd+Ktf/UrX9b179xJZCoe+FgCAs5Wk3yUWi6ngYoUGwzCqq6tFRNf1Kff9yVdfS8VGFqHWAgBwupLUXerq6vx+v4hs2LBB/RS32+3z+UTke9/7XuFebHpkCQaDFRVZhFoLAKCcFLPuYhVXBgYGtm3bJiLRaLSxsVFExsfHb/2Judda0iNLd3d3Z2dnpb2/1FoAAOWjmHUXt9s9MDAgItu3bzcMQ0SWL1+u7jp58mTeXxqRhdQCACC7ZG/Lli1qcyLVlutyudra2kTkxRdfzPuLevrppys8spBaAABkl+y5XLZDyY4AACAASURBVK4jR46ISDgcjsViIvLss8+KSDKZzG886unpCYfDFR5ZhL4WAEAlKGi/S1NTUyQS8Xq958+fd7lc8Xg8fW/FD6 642 fa19PT0qCOv8MhCagEAkF1yzS7xeHzRokUiEgwGA4HAtFfcrFILkSUdI0QAgEpRoDGj2tpa9YQdHR2qLTdfiCyTkx+1FgBABcpv3cU0zZqamkQi0dbWtnPnzqmvuHOstRBZSC0AABQku4RCodbWVhEZHR3Nva+FyDIlRogAAJUrj2NGgUBArfG/bt06EYlGo01NTdFoNIujIrKQWgAAKGx2GRoaEhFd14eHhwcHByORyO7du4ksecQIEQAAH8hxzKi9vb2/v1/TtJdeemnlypUiMjY25na7JbMRIiLLzKi1AADwgRzrLr29veq7/uVf/kUtmzs0NJThxCIiy6yotQAAMLXs6i5WW+7Xv/717373u3fffffvf//7t956a8GCBTJ9rYXIQmoBAKDY2cU0zWXLlum6/vjjj7/yyivqxnvuuec3v/nNdKnFiiw+n+/EiROF2KGa1AIAANllioQRjUYbGxunfJ6RkZGGhgYiS3boawEAYHZz6ndpaGioq6uz/vmpT33K7/errxsbG+vr64eHh9V37dq1i8iSOWotAADMjaq77N27N5FIyFR1F6t8IiJdXV3f+MY35OYcIoumaX/5l3+pMhCRhdQCAEABmaY5ODjY0dExKbv09vaqyNLc3Dw8PCw3Jz+r1DI2NpY+0kRkIbUAAFCa7FJdXT02NiYi3d3dO3bsUJsT+f3+UCiUvl7L6dOnfT6fiNx///0///nPiSwZoq8FAIDsuVyuQCBw5cqVYDCoaZqKLPPnz1+8eLGIHDhwQETC4XAsFrO+JRqNqsjy8MMPv/HGG0QWUgsAACXILocOHaqurn7//fdVr+61a9dWrVolIhs3brQii5pe5PP5Tp48+ZGPfISzlzlGiAAAyKdJY0YejyeVSk16DL0spBYAAGyaXYgspBYAAByQXb72ta/97ne/u379OpGF1AIAgN2zy7//+78fOnToJz/5CZGF1AIAgDPiC5GF1AIAAMofM58BAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AACASuTiFMxJNBr99a9/PevDVqxYUVtby+kSkVAolMnDOGMAivlX+t57721oaOB0OU7VxMQEZ2EO56uqKpOHBYPBQCDA6UqlUgsWLOCMASia+vp6XddnfZjf78/wMxVshRGiOYjH4yKybdu2WR/Z2tqaYb4pb2+88UaGj2xtbTUMgzMGIBeGYei6/sILL8z6yHA4zF9pUkuZO3v2rIh4PJ6JzHDGXn311VWrVg0MDGRyutxuN2cMQC4uXLggIu+//z5/pUktkGPHjn3xi19cvHgxpyJDg4ODf/Znf7Zy5UpOBYAiOH36tNfrve222zgVpBZIOBz+9Kc/vWLFCk5FJlKpVCKREJElS5ZwNgAUwdGjRx955JFVq1ZxKkgtlU41tVy/fp2pLhlSTS233Xaby8VUNQAFp5paPB7P0qVLORuklkqnmlruvPNOTkWGVFPLxz72MU4FgCJQTS0f+tCHaJIjtYCmljmjqQVAMdHUQmrBB2hqmROaWgAUmWpqeeCBBzgVpJZKR1PLXNHUAqCYaGohteADNLXMFU0tAIqJphZSCz5w8OBBmlrmhKYWAMVEUwupBX9gmmYkEqGpJXM0tQAosqNHj65atYqmFlIL5O233xaaWuaCphYAxaSaWu 644 w6aWkgtkDNnzghNLXNx+PBhmloAFI1qajFNk6YWUksFRfWenp5AIHDrXUNDQ1u3bqWp5dYzFggEdu3adetd4XCYphYA+WWaZigUampqMk1z0l00tZBaKksoFFq8eHFXV1c4HB4eHp70/yQSidx33300taSfk56enurq6nA4vH37djUt3GL9k6YWAHn8K11TU9Pa2hqJRPbs2TPpXtXUwvZDpBa7qMpYds9/+fLloaGh+vp6Efnyl79sGIZ1l2pqSaVSNLVM8sorr9TU1IjI2rVr0z/6qFnildbUUjUX/PLYn2EYvKFF/js8s/fee+9HP/rRk08+KSLt7e3pH5ZUU8vdd99NUwupxS4mMpbd83d2do6Pj7/55puapr333nvPPvusddeZM2c0TWOsNJ3L5ero6Kirqzt//ryIvPXWW/v27bPuPXbsWAU2tUzMBb9C9ud2u3lDi/x3eGbbtm27fv36kSNHfD6fiDz22GPWhyXV1PK73/2OP9SklgrS0NDgcrlOnjwpIj/84Q+tcaKhoaH169fT1HLr3/Ta2lqPxxMMBkUkfZyIphYAhdDc3CwioVBIRC5dumR9WDp9+rTP5/vQh7ickVoqT11dXVtbm4j8xV/8hWEYVlNLU1MTJ2dKgUBAffR5/PHHTdOkqQVAQd36Yeno0aOf+9znaGohtVSovr4+TdNSqdTmzZtVU4tpmh6PhzMzHfXRJxaL7du3rzKbWgCU6sNSKpXSdf3222+nqYXUUqFcLtdPf/pTEQmHwxs3btQ0rbq6mtOS4Uefjo4OVmoBULQPS2q5CppaSC0Vrba2dmBgQER0XV+/fv19993HOcnwo08ikaCpBUDRPixFIhGfz8cnJVJLpduyZcv9998vIvfdd9+DDz7ICcnwo49CUwuAInxYUr0sn/vc5/ikRGqpdC6X65//+Z//+q//+tq1azS1ZPjRR9f1J5988q677qKpBUARhMPhb3/728lkkk9KpBaIx+P57ne/y/ZDmaurq/vhD3+4YMECTgWA4vyV/pu/+Zv58+fzSalyVLHmFQAAcARqLQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAAKgELk4BgAq0a9eus2fPzvqwFStWbNu2jdMF2AS1FgCV6IUXXrh48eLExASnAnCQKv7TAqg0qVRqwYIFzz///AsvvJDJ4/k7CdgEI0QAKs4bb7whIrfddhtxBHAWRogAVJxXX331S1/60l133cWpAEgtAGBr/f39S5cuXblyJacCILUAgH3F43ERuXHjxpIlSzgbAKkFAOzLmvDsctHYB5BaAMDGjh07RlMLQGoBAAcIh8M0tQCkFgCwO5paAFILADgDTS0AqQUAnIGmFoDUAgDOQFMLQGoBAAegqQUgtQCA7RiGceuNNLUApBYAsJF4PB4IBBYvXmya5qS7aGoBSC0AYBft7e0PPfTQa6+9lkgknnvuuUn30tQCkFoAwC5aWlq++93v+nw+Edm1a1csFrPuoqkFKAMM7gIoHw0NDZ/85Ce//OUv//73vw+Hw6tWrfrtb3+rulhoagHKALUWAGXF4/GIyP79+zVNS6VSHR0d6naaWgBSCwDYkdvtPnDggIj09/ercSKaWgBSCwDYVHNzs9/vF5GmpiYVXGhqAUgtAGBT+/fvv/vuu9955x2v16tuoakFILUAgB253e7vf//76muaWgBSCwDYmjVORFMLQGoBALs7dOjQT37yk7feeoumFsDpGOIFUO5/5lyuxsZGwzBoagGcrmpiYoKzAAAA7I8RIgAAQGoBAAAgtQAAgEpDb9q0TNOcN2+es465JF1KVVVVpXqNRf7RjnjjCv17m8dDNQyjurqa/1kA5nDF4X+jfa7HpBZSi/3fEQcdKqkFILUAAACUBn0tAACA1AJUsKampqoMBAKB0h6naZpVmQmFQrytAEqLESKgIFFg3rx569evf/nllzN5fAn/G8ZiMWs/5FmNjo7W1tby/gIoFWotQP69/fbbIvKJT3xiIjMlPNQzZ85omtbd3Z3JcRJZAJBagHKjooDb7bb/oQ4NDT322GOf/exnedcAkFqASuSUKGCaZiQSueeeex588EHeNQCkFqDiOCgKqJGs999/3+Px8MYBILUAFcdBUcBBI1kAQGoBKjoK0NQCgNQCVDSaWgCA1AI4AE0tAEBqAZyBphYAILUAzkBTCwCQWgBnoKkFAEgtgAPQ1AIApBbAGc6dOyc0tQAAqQWwD8MwYrHYrbefPn3ablEgHo/H4/Fbb6epBQCpBShzpmmGQqHq6mqv15tKpSbde/ToUftEAcMwenp6Fi1atG7dOtM0J70KmloAkFqAMldTU3Pu3LmPf/zjIrJhw4ZJKUHXdZtEgVQqVV1dfeedd4qIrut79uxJv9dBI1kAQGoBsnT58uWPfvSj3/72t0Xk9ddfD4VC1l0XLlywTxTweDzvvPPOtWvX/uEf/kFE2tvb08eJbDiSBQCkFiDP3G53Z2fnhg0bBgYGRKS1tdUaJ7JbFFiwYEFnZ2d7e7vP5xORxx57zBonstVIFgCQWoDC2rJli9frFRG/32/zKKAKQpcuXdq3b5/YbCQLAEgtQMG5XK6hoSEROX36dCgUsnMU8Hg8wWBQRLZv3x6Px201kgUApBagGGpra61xooMHD9o5CgQCAVUTevzxxwcHB2lqAeBQVRMTE5wFIDumaX7mM59Ra7domrZ169bOzk57HqphGPfdd18ymRSRzZs3P/HEE83NzbyDAJyFWguQPZfL9corr6ivbd7f6na7VUFIRGhqAUBqASqRNU60cOFCm0eB5ubmL33pS0JTCwBSC1Cxtm3bNjY29uabb9o/CoTD4ZGRkf/4j//gXQPgRPS1APmRTCYXLFjAoQIAqQUAAFQ6RogAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAACAzLnS/1FVVcUZAQAANjQxMeG69SbOCwAAsBVVWGGECAAAOAOpBQAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAACC1AAAAkFoAAABy4eIUAEUQj8dnfUxtbS0nCgBmUDUxMfHBP6r+zz8B5IVpmvPmzZv1YfzvA4Bp80pV1cTEBCNEQMG9/fbbmqZl8n+ScwUAMyC1AAV35syZlpaWgYGBidlwrgCA1AKU0tDQ0NKlS1euXMmpAABSC2BfpmlGIpEbN24sWbKEswEApBbAvlRTi2maLhdT9gCA1ALYmGpq4TwAAKkFsDuaWgCA1AI4AE0tAEBqAZyBphYAILUAzkBTCwCQWgBnoKkFAEgtgAMYhkFTCwCQWgB7icViPT09k268cOGCpmnJZJKmFgDIC/6YAjlJpVLt7e2vvfZaIpF44IEHHnvsMeuu06dPb9iw4a677uIsAUBeUGsBcjJ//vyvfvWrKqxs3LjRMAzrrqNHjy5ZsoSmFgAgtQC24Ha7//RP/3TPnj3BYPD69euBQEDdbhiGruvXr1+nqQUASC2AjYKLy+UKBAI+n++VV14ZHh6Wm00t//M//0NTCwCQWgDbCYVCItLa2moYBk0tAEBqAezL4/EEg8Fr165t2rSJphYAyDtq10A+BQKB73//+z/60Y9EhKYWAMgvai1AnoXDYRG56667aGoBAFILYGsej0fX9YcffvjOO+/kbABAHlVNTEx88I+q//NPAFlLJpO/+93v7r33Xk4FAOQhr1RVTUxMkFoAAIAzUgsjRAAAwBlILQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAPnnmvTvqqoqTgoAALChqomJCc4CAACwP0aIAAAAqQUAAIDUAgAASC0AAACkFgAAAFILAAAgtQAAAJBaAAAASC0AAIDUAgAAQGoBAAAgtQAAAFILAAAAqQUAAIDUAgAASC0AAACkFgAAQGoBAAAgtQAAAJBaAAAAqQUAAIDUAgAAQGoBAACkFgAAAFILAAAAqQUAAJBaAAAASC0AAACkFgAAQGoBAAAgtQAAAFILAAAAqQUAAIDUAgAAyp+LUwAAKAnTNOfNm8d5KLnx8XGXyxl5gFoLAKA07r//fk6CHTz66KOmaZJaAACYWjQa/cUvfqG+1jQtmUxOoFhGRka8Xq/1Xvz0pz91yq8NqQUAUAJf+cpXrK8TiYTX602lUpyWIoTF+vr6xsZGXdetG/fu3csIEQAAUwuFQuqq2dDQICLV1dUquBiGwckpTl7x+/3PP/+8iGia1tLS4pRXQWoBABSVaZodHR0i8txzz61YsUJEPvKRj4hIIpF44oknnNJg4SDxeDwQCKTnldHR0f3797/wwgsi0tfX55RCC6kFAFBsg4ODiURCROrq6v7f//t/IvLuu+8eO3ZMRCKRyJo1awgu+c0rixYtCofDVl4JhUK1tbWbN28WEa/X66BCC6kFAFBUVqGlu7v79ttvF5E777xTREZHR0dGRgguBcorXq9X13WVV9S96vY9e/Y4qNBCagEAFJVVaFHZRUQ+/vGPi8jZs2cbGhrSgwvnKjuGYfT09KTnlZGRkYsXL9bV1VmP2bFjh7pL9RWRWgAAmOKC2traKiIDAwNut1vdeO+99+q6fujQIRFpaGjo7u5WwaWnp4czlkVeqa6u7urqSs8rk6JJeqHFca+RtXEBAEXS19cnIpqmbdmyxbrx9ttvTy8DdHZ2ikhXV5e69Kp/Yta80tfXp86YOsN9fX2BQGDKBzu30EJqAQAU78qqLquzTlohuGTONM3BwcGOjg417qbySktLy3RnOBqNqkLL4cOHnfh6GSECABSDVWjJZNJKZ2enGirq6uoKhUKcvSnzSigUqqmpaW1tTSQSmqYFg8ErV64EAoEZQqFa3M/v96fXtxykamJigvceAFBQqVRqwYIFIhIMBq2Ri2g0unv37hUrVmzbtm3Kq/KaNWsikYiIjIyMOHE4o3B5Jb2+IiLd3d07duyYdTZQNBptbGwUkdHRUTWZiNQCAMBkgUAgHA57vd7z589PeXE1TfPcuXNyc7VcgssMyeMrX/mKtR5/d3d3R0eH1do8s/r6el3X/X6/c8tXpBYAQGHF4/FFixbNnDxCoVBra6umaVevXp2UZgguuecVERkeHl67dq04udBCagEAFJxVaLl48eJ0j7GGkJLJpMfjmS64OPqKm6+84vf7d+7cOekszcw0zZqamkQi0dbWtnPnTueeCrpxAQAFlOHqIB6Px+v1isipU6cm3eVyuUKhkKZpIvLQQw9V1NbQU24hFAqF5hRZJG1xv97eXkefEFILAKCArP1uZh3cefLJJ0Xk4MGDU2YaXdc1TVNbQ1dCcJlhC6G5PlX6LgqZjyjZEyNEAIBCmXnSimEYQ0NDIqJmFcViMVVuGRsbm/LimkqlvF6vmuWr6/pc6w0Oyis7duxQYUUFvsOHD+cyUVn1DM1wYkktAADMMmnF6tK1rkRVVVUyY9et1f6iadqVK1ectfPfrCYtcev1evfs2ZNjA7JhGIsXL04kEt3d3WWwXh8jRACAgohGo6obI/Neira2NhEZHByc7gEej0ftsJhIJMppa+gMtxDKQl9fn6pOqYX8SS0AAEzBWoY181aMlpaWtra2mRfPnbQ1tNODy6S8opa4zUtekbnsouAUjBABAPIvk9VBbh0hypzVMePz+U6cOOHES/JctxDKQk9PT1dXVzmNplFrAQDk/3r8zDPPiEh3d3eBlldpaGg4fvy4iEQiETVBxlnnJ4sthOaq/AotpBYAQP5Zq4MUNE80NzerHRb7+/t7enqcmFdUsMt7XlFUI0uG21U6xgQAAPkzPj6uVoTr7u6e+ZFjY2PqSpRMJrP+cSq4ZPLjSm5kZERN7bYOeGxsrEA/a3R0VP2UkZGRcvrtcvGZAABQkkKL2+32+/0zlCUyKT+o2bxdXV1qNMSek3tz3EIo60JLJov7UWsBAFSosbGxDAstM9ckNE3z+XyZf4uaMi0ix48ft3N9xe/351JYqvBCy8TEBH0tAIC8ycvqIHfccUcikYhEIoZhZP5zfT6fiKxduzYajdrhVORrCyEKLemY+QwAyA/DMKqrq0UkGAyqRfqzY5rmvHnzZMZFcqf8Lmtr6Dl9YyHySvqS/H6/v7e3t2hbVVsbI5T2JBQItRYAQH709fVJPiatuFyuWRfJnfK7Tpw4oSoujY2NJam4TNry0Ov16rqe3ZaHWdu4caOKSuUXWYRaCwAgL/JVaFHUInWapl29enVO32iaZk1NjWoHTiaTRdthsRBbCGVh5u0qywC1FgBAHmzevFnmXmgJhUKhUOjW/pWVK1eKSCKRiMViczoMl8ul67rqCPZ6valUqgh5pUBbCGUhi10UnIVaCwAgV9ba/HPtpVCbPE9ZGGhqaopEIgMDA9u2bZvr8aRSKa/Xq/qCdV0vUMVlUn1FLcmfe50pa2VfaBFqLSiyhQsXVpWpEv6pAkquEJNW1q1bJyJnz57N4ns9Ho+quCQSiUJUXNQSt4sXL07f8lAtcVuqt8A0zQ0bNpR3oUWE9VpQ3IUc5Ga/Hv+hgLKRy+og6htHR0dvvWt8fDzHpWOtA/P5fOPj43l5sePj48FgUI1AWXklX0+ei2AwqA6pcOvtsl4LKsuvfvUrTdNuu+22Mv4fxbsMCi354nK5clw9tra2dmRkREQikciaNWtM08y9vlKcLYSyODa1EnF3d3dBl9xlhAgVJBaLPfzww++99x6nAigb0WhUzfI9fPhw1k/y3//93wU6vIaGhrwEl2g0umzZsvS8MjY21tnZaZO9lIuzXSWpBZXl2LFjn//85z/72c9yKoCyYU1aqaury+Lb1T5Ec50oVMzgEo1G6+vrrSVurbxin5JG5RRaSC0oqtdee23+/Pmf/vSnORVAeYhGo+pa3tvba+fjbGhoUG0fkUgk80OdlFfUFkK2yitKb2+vmi1V9oUWEWHPZxSJYRiJROLdd98t5+Z2oMLkvjrIihUrROTee++d4U/H0NDQe++9l8X853SBQODy5csZbg1d2iX55/qnVb2ivr6+si+0iDDlAcWiZiEODAxwKoDyoIZdZJoZQPly/PhxEdE0LS/P1t3drY55ui2pR0dH1aCVlVcK+ury9Yo0TbPDPCbmEKF80IoLlBNrdZC2traCFiGyXiR3Sp2dneoy39XV1dPTM6m+UvIthHIptNikL7jQSC0oElpxgXJiTVopdEeL2+1WOxifOXMmL0/Y2dmpdljs6upSOyyqJfnT84pakj+7/uJiUnPOc9+uktQCTEYrLlA2ijxpRe1wtH///nw9YfrW0M8++6xNthCaq3g83t/fLyIHDhyokEILqQVFQisuUE6KvDrIo48+KiK6rudrYX6Xy3XixIlVq1apS77cXOLWKXlFsRb3a25urpzfPVILisFaFZdTAThdfgst0Wg0FArF4/EZHlNbW6tW0H/jjTfy9SpcLtef//mfq6+///3vl3YLoSzE43E1nrVnz56K+vUjtaAYVCsu5wEoA/ldHWT37t2tra2zbpG4detWyW353UkMw/jOd74jInffffemTZscN8JSoF0U7I/1WlAMqhXX/q1tAGa92JdkdZD169ffddddaj5RXvT19V2/ft26/DtLxRZaSC0oktdee+2RRx755Cc/yakAHE3t2V78SSt1dXV5/NhjZS8Refzxxx33Lqxbt05E/H5/pRVahBEiFOfDmWrF9Xg8nA3A0f+X8 746 yKc+9SkROXfuXPGzl4pfjpsi4JRdFEgtcIBQKLRw4cJJm5OpVlzVTAfAuQqxOsjixYtFJF+Tg+aUvUTEicuc5L6LAqkFEMMwAoFAR0dHIpF48cUX0+9iVVygDJTN6iDpjSyOSy0VXmghtSCfvv71rz/99NMi8s1vfjO93KJacR 944 AFOEeD0i33JVwcxDCOXwoyVvZSlS5c66C0wTbPCCy2kFuSN2+2+5557/uqv/qq7u/v69es/+MEPrLvUqri04gLOVbhJK/fee6/f71c7P89qeHi4urpaLWubS/a6++67RcTn8zlrk+TBwUFVaNm5c2fl/i6ybWkhlMGZHxsby+5VWN84NjZm/fP555/ntwJwLrUNstfrLfnW8el/XuZqdHRUffvHP/5xEXHWCfj1owAAIABJREFUFvTj4+OqO3C63aorBLWWkmVB+9dOsnsVbrdbban6rW99S0QuXLhAKy7gaLFYzCarg9TV1ak/JtntpKgKLZ/+9Kd/+ctfishTTz3lrEJLMXdRsC1SC/JP/ad64YUXDMP4+c9/zqq4gKNt3LhRbLM6iOqfzWKRXCt7bdq0SUQ0TXPQWgxF3q6S1ILK4na7g8GgiHzrW986e/bs8uXLacUFHMpuk1ZUagmHw5NWWMg8e/3sZz+Tm1sEOMW+ffsotChV9h+qgBOZpllTU6P+m+3evfuLX/wiS8wBTlRfX6/rut/vD4VCNvnbMm/ePBEZGRnJvPYTjUYbGxtF5PLly2qFmDl9e2kZhlFdXS0iwWDQWVs8FgK1FhSEy+WyVp/87W9/S2QBnKgIhZZ4PB4KhaLRaOZ/W9QcotOnT2f+U6wJw++//766Zfny5U55F0q1iwKpBZWlpaVF07Q77riDVlzAiUzT3LBhgxR4dZCzZ8+2trbu3r0782957rnn5vRXJT17vfzyyyLi8/mcslBeIXZRcPZHYk4BCvW75XLpun706FHrww0AB7Emrezfv7/QP2tOC8etXr366tWrmWev9JXZjh49Kjcbch2BQssk9LWgsP7rv/7rl7/85Wc+8xlOBeAgVmtad3d3Z2dn4X5QPB5ftGiRiBToYhQKhVpbW0UkmUyKyIIFC9TXjhi2tk4OHS0WRohQWH/0R39EZAEcpzxWB0mfMOzxeE6dOiWOmvNs7aJAZCG1AABmv9g7enWQSdnr4MGD4pw5z4XbRYHUAgAoH2p1EE3TyqbQ4na7TdOMRCIisn79ekccv1VoccoMbVILAKDYDMPYvn27iPT19dm50BKPx9vb23t6embOXnKz0HLu3Dl1+5IlS+z/LlBomQ5ziAAAHyjypBW32622Zpyr3/zmN/39/SKyY8eOW6cEW9krGAyq7KXWd/H7/Y6YP7x582YR8fl8FFomYQ4RAOCDi71TlmG1FsnVdb2urm7SvT09PV1dXZqmXblyRcWUhQsXJhKJ48ePNzc32/xdsFbyHR0dLdxKOQ7FCBEA4A8ctDqItUiuWjhuUvaatDJbKpVSo0UPPvig/d+F9AVm+J0ktQAAphCPx521DKtaLG7v3r2zZi8159nr9dp/zrPdtqsktQAA7Mhxq4M0NTWJSCKRSF9aN5VK3Zq91JznJ5980v4vikILqQUAMAsnTlrxeDxer1dEXnrpJevG9vb2SdnLMAynzHkOhUIUWkgtAIBZlGp1EMMwQqFQKBTK7ttV+WRoaGiG7HXhwgX1hc3nPKcvMEOhZTrMfAaASlfaQovaJ6ipqSmLppOtW7euWrVq6dKlM2SvwcFBEWlra7N5s0557KJAagEAFNa6deukRKuDWAvZGYaRRWrxeDzWd02XvVRq+cIXvmDnt6BsdlEoNEaIAKCiWZNW9u/f7+gXolZmm1RoicfjqoCxcuVKOx88hRZSCwBgduUxaSUajaqWW6vHRTl27JiKMnYuYBiGoYbJBgYGKLSQWgAA017sy2PSynTZS4UYVYaxLWuBmS1btvA7OTNW9AeACmWa5rJly3Rd9/v9Wc/iycN1qKpKclu9frol8K0NCqZc9d8mHLSLgh1QawGACjU4OKgKLTt37nT0C1EX+zvvvHNS7rHmPNs2soijdlGwA+YQAUAlSp+0Utp17tWez1n3cwwPD//bv/2biFy7di2VSqW/FmvOs23fhSlX8sUMGCECgEoUCoVUB+jY2JhzO0BN06ypqUkkEnffffc777wzaZBFjT3ZeZ/nQCAQDoe9Xu/58+dJLZlghAgAKk7ZrA5iTRh+9tln5eZ+Q0osFlNf2HbOc/oCM0QWUgsAYJaLvaNXB0nPXk899ZSIRCIRwzDUvWfOnBERn89n21hWql0USC0AAMewVgcJBoPlUWjp6Oiw+m2tDly1aJ5a9teGnLhdJakFAFBs5TFpxTCMSYNcqutWdeAahqGmRz366KP2PP4pV/LFrBhIA4AKYhiG3SatRKPRX//61ytWrJjTei19fX2JRELTNDXOIiJf+MIX3nrrrU984hNyc3hI0zR7Lvg73Uq+ILUAAP7PxV5sVmjZvXt3OBwOBoOZJ4wps1dzc7M1V+jVV18VEdsWk8pjFwVSCwAniUaju3fvnvkxO3fuLO1aIEhXNquDzJq9+vv7bZtaymYXBVILACcZHBycmJhobm7+8Ic/PN1j5s+fz4myj/b2dhHxer1O72iZOXtZc56XLl1qw+On0EJqAVCa1PL1r3/96aefnvlhjl7ErJyUzeogqpFlhkLLyy+/LHad8zw8PEyhhdQCoNhSqVQikfjwhz/M+trOutg7fdJKPB5Xoz9HjhyZLnsdPXpUbDnn2TTNZ555RkS6u7sptGSHmc8AsvHGG2/4fL4PfYi/IY652JfH6iCzZq/XX39dFTPUunO2Uh6L+5FaADjP4cOHV61a9cADD3AqHKE8VgfJJHtdunRJffHHf/zHtjr4stlFgdQCwHnC4fAdd9xhz25HTGLz1UFWrFjh9/vvvffeWR+ZySDXT37yE/XFuXPnbPUyKbSQWgCU7COv+uzIR0ZHsPmklW3btoVCoVmLQLFYbNZCi2maP/zhD62UYJ/XeOtKviC1ACiSs2fP0tTiFGWzOsjGjRtV9poh37z99tvW17ZKLbeu5AtSC4AiOXbsGE0tTlEeq4NkmL3UnOeHH35YRBKJhLVwS2nZcBcFUguACkJTi1OEQqHyKLRkmL3UnOdnn33W5/PJzd2ISq48tqsktQBwJJpanCJ90kolFFpSqZR6WFNTk1qsxQ7dxxRaSC0ASommFqdwyqSVeDweCoWi0eh02SvDQsupU6dERNM0j8ezadOmZDKpbiktNeecQgupBUBp0NTiCA5aHeTs2bOtra3T7cQ5ODioKij79++f+XkOHjwoIlu3bhURt9tth207rQVmZljJF6QWAHkQjUbr6+uHh4cn3U5TiyOUx+ogmWcv0zTVmjTr16+3z/GXxy4KtkL0AzCFpqYmj8ej6/pTTz2VSCSsCwZNLY5gGEZra6uIDAwMOPqdyjx7WWvKLVmyxCYHXza7KNgKtRYAU/jxj3/8qU996rnnnhsbGwsEAtbtNLU4gjVpZcuWLc59FXMa5Dp9+rSI+P1++wzEUGgpBGotAKbgdrs7OztN0zx9+vQrr7wyPDzc3NwsNLU4QdlMWtm3b1/mg1x79+6VmyvRpZ+KM2fOXLt2LT15F0c0GlWFlsOHD/M7mUd8YAIw/ccal0v1CrS2thqGITS1OEF5rA5iGMb27dtFJBgMzlpoSaVSKt88+OCD6befOXNm7dq1JensseY91dXV8TtJagFQJB6PJxgMXrt2bdOmTTS1OOJiXx6Fljllr5deeklEvF7vpHlDK1euFJFEIqF+dYumbHZRILUAcJ5A4P+3d/+xUdeH48dfZWe2SeOMsXi6McqGmS7r+SMSEmDqxjHHj61ZdCZX/WdxS5RJieE//ii7JmN/sURKpgkxJlvabh3GMCkOKRE3SmJ0ibSG+QeRY2za9RJ/bL1shvfs 94/ X10s/BUp/XMvd+Xj8Va/H9foG6ZPX+/Wjbd26db///e9bW1tNaqlycXeQTCZTQwMty5Yty+Vyq1evnnV7xd3k7r///kmPL168OJPJhBAOHjy4kN9RfZyiUJ0axsfHXQVgasViccmSJSGEX/ziF9/85jfNLqxOhUJh+fLlIYTjx4/X9O9RZ2fnzp070+n0uXPnLlstpVKpsbExhDA0NHTh7Zi9e/du3bo1k8mcPHlyYd784ODg2rVrQwhnzpxRLRXn30zA5cX7RCGExsZGk1qqVn0sWikWizMaaHnjjTfiBxdd87x58+YYNHFi1nxLkuSBBx4IIbS3t0sW1QJcMW1tbWNjY3/6059MaqlOdbM7yLZt22J7TXPhT19fX6yEiyZOc3NzOp0OC3WSYnmDGTNaVAtwhS1evHjv3r2uQ3Wqj4GWWbRXrJb77rvvUk+Ie/wvwArkGjpFoXbZrwWYgTi7hWpTN7uDzLS9CoVCHNuIy4UuKu7xv27duvl+8/VxioJqAWB+1fTuIKVSKS4CWr169UwHWuLioEwmM8XYRktLywJcFgMtqgWAy6v13UGKxWI8NSmbzYYZ3uSKuRPXe19Zu3btGhkZSafTBlrmlZXPALXttttuGxoayuVyPT09tfj+ywu2o+kvGJ56zfNCKr+T7u7uhT894FPFbFyAGnbo0KF62oZ1RjuzlZcFXfH7YvVxioJqAWAeJUnyyCOPhDraHWRG7XX48OH4vU//chWLxYq/57o5RUG1ADCP6mx3kJlugb9nz54w5ZrniQYHB6+66qo4daay4ronAy2qBYCpRg7qY9FKnFE70/YaHh6OH0yx5nmia665JszDJrmFQiHG0zPPPGOgRbUAcHH1sTtIkiQ///nP48czGmiJk1qy2ew0i62lpWU+NsktbzCzceNGfyZVCwAXUSqV6mOgpa+vL 841 +eEPfzijX7hv374QQmtr6/R/SbyDU8GN+OrmFIUaYuUzQO2Z0anIVStJkqVLl46MjOTz+Y6OjhlFW1xpPKNzlcunMZ8/f74iF62tra23t3chD5RGtQDUmLrZHaSnpyfuLzc2NjajEaNDhw5t2rQpnU6/++67M4qkq666KlRof5fh4eFMJhNCOH78eE2f/VRb3CECqDH1sTvIXG5yxTXPM/32U6lUXEP0/PPPz/39P/zwwyGEXC4nWVQLAJf8YV8fu4Ps3r07boEfJ7ROX5IkcdnOLKLtiSeeCCG89dZbc3zztX6KQu1yhwiglmzbtm3Pnj21PqNlLje5yrdmZnpfKRZPCGHu163WT1GoXRaXA9SM8u4g+/fvr/WBljDhJlf82d/a2jqdCon3d6a/5vn//MyrxEUz0KJaALi88u4gNT2X4sKbXHFO7pkzZ6YTIs8991yY4ZrnCkqS5IEHHggz38mXinCHCKA2lM9GrvVFK3HB8MSbXA0NDWF6y5iLxeKSJUtCCKOjo01NTQv/5me97omKMBsXoDbUx0BLeWe22d3keu2110II6XT6iiRL3ZyiULvcIQKoAcPDw/WxDesc2yvubPvYY4/N5T0Ui8Wnnnrquuuue/zxx2f0C+vjFIWa5g4RQA2oj0Url7rJNc07ROVt4uZ4j2x2m+TOeidfKsgdIoBqVzeLVuY40PLXv /41 frBq1aq5vI3bb7990gtOx9NPPx03mDHQoloAuKQtW7aE2l+0MvebXOU1z3NcwLx48eKZbpJbKpW2bt0aQti9e7cZLaoFgIurm4GWKbbAz+fzuVzuH//4x9Sv8NRTT4UQfvSjH839zcQXiS84HfVxikIdMK8FoHqV51LU+oyW8lSSGZ3SPFFl1zzP6NXq5rjKOmCsBaB6lRet7Nu3r6a/kbnf5Dpy5Eio3JrnpqameCzA7373u8s+2UCLagHgMupmd5CK3OR69tlnw5zXPE90//33hxAOHDgw9dMKhUJ9HFdZH9whAqhS9bENa0VucpXXPA8NDbW0tFTkjRUKhVOnTq1cuXLqwZu4k28mkzl58qQ/k6oFgKl+2Nf67iAVaa/Z7bBSkbKpj1MU6obBLoBqtGvXrjrYHWSaN7kGBwfPnj27evXqS816OXr0aAghl8st8D2a+jhFoZ4YawGoOnWzaGWaAy3xLswU3+yNN 944 MjLS39+/cePGBXvzBlqqkNm4AFWnPhatVGo2cbFYjAupVq5cuZDvv7W1NYSQzWYli2oB4OJKpVJ9LFqJW+CHOZ81GBcnZzKZeTrnuVgsDg8PT3qwvO6p1tecqxYA5lGcS1HrAy3lLfC7u7vnuAAqLk6OC5UrrqenZ8mSJXHf3onq4xQF1QLAPCoUCnv27AkhPPPMMzU90FKpm1ylUmlgYCCE8IMf/GA+3uf69etDCENDQ8Visfxg3ZyioFoAmEflRSsLOe204mZ6kyve+jl9+vSFn3rjjTfiB7feeut8vNWmpqZ0Oh0+2Xs3hJAkiYEW1QLAZRQKhTmeilwlZjrQsmrVqhDCW2+9deGn+vr6Qgjt7e3zN/IU99uNe+/GrxgHWp588kl/JlULABdXH7uDzGIL/GXLluVyudWrV1+qWu677775e8Px3tPAwECpVJq47mmeJv8yF/ZrAaiWH/b1sTtIBbfAL1+TeT3ToHxcwPHjx8+ePVsHpyjUMWMthBBCwzS4SgsjSZKGOXMZa1HcHSSXy9X6QEsFb3IdPHgwhJDJZOY1IFKpVHt7ewjht7/9bX0cV1nH7OhPCCEYcqui/ydTKb8dn0J1s2ilsje54prnn/zkJ/P9tu+7775jx469++67Fdlghnn8N7a/HwGuuEwmMzw8PJdTkatBZW9ylY81qOA5z9P5crV+ioJqAWAeFYvFZcuW/ec//7noZyf9LV3+4VqFz1y/fv3AwEA2mz1y5EhFXnPS8xfgO0qn0+fOnavpnXLqm3ktAFfYkSNHLpUsF5r+fIsFfubg4GDcDi5ugV+prx5nnMzfd1TeDyZ66aWXJItqAeCSHnzwwXXr1sWP77rrrvgv/vFPxMeTJClv3jp+CRcdV1iwZ164M9v0X7O7uzv+2gufNmnNcwW/o0Kh0NbWtnbt2vifuVzuzJkzC3ArCtUCUMNSqdQf//jHTCYTQnj99dffeeedODN30hjAkiVLbrzxxm3btg0ODpZKpar6Fio+m7h8nOE999xT8Xcbe2X58uVxuVPslZ6eHjvhqhYAphUuAwMDcWv5O++888InHD58OIQwMjKyZ8+etWvXNjY23nbbbZ2dnRceVnxFVHwL/FdeeSWEkM1mK7sCeVKvZDIZvaJaAJixpqamoaGhdDo9MjKSyWQmHuYXQnjyySdHR0f7+/vL8zyGhoZ27tz5/PPPX/F33tPTU/Fl23FyTNzDpiJKpVJnZ+fEXjl+/PjJkyf1Sm2xhgigihSLxUwmMzIykk6nh4aGLrWpfKFQOHHixMGDB3/6059OWmO8d+/e6667bvXq1Qvz8zhJkqVLl46MjOTz+Y6Ojtm9yPDwcLxBFn8kldf1nDlzZu7fRalU2r17dzxkIPbKr371q5reyk+1AFAtyrueZLPZF198caZLWiZujpzL5R5++OGVK1fO35E6PT09c98Cv/wtxx9Jhw4d2rRpUzqdfvfddyvYK+l0evfu3fZiqWnuEAFUl+bm5uPHj4cQBgYGNmzYkCTJjH5O5/P5OG4RQujt7d20aVOcxjvpllNFTDxrsIITUOIknmmeF32pN9bT07NixYqYLOl0uru7+9y5c5Kl1hlrAahGg4ODcVHu7EZcSqXSG2+80dfX19fXF3epP3/+/MQXSZLko48+mmNqzGigJa57uujTisXitm3b4gtOPMtwFvdxkiTp6+vbvn17/K7j+MqDDz5oF5Y6MQ5AVYojLjFczp8/P+vXGR0dPX78+KQH4/zZbDbb1dU1NDQ0i9cfGxuLi566urou++T45X7961+Pjo5O55mxhGb6lrq7u+NbivL5/FyuG1VItQBUr66urvIP4Hl65bJsNtvd3X3ZqijL5/NxMOOyZVDum1tuuSV+rVwu193dfdFaii+bzWZnWnjl+2Lxcs0ielAtAMxJ/Ck+H+EyNDTU1dWVzWYntsukDWqnCJH4/O7u7ss+OZfLxWeeOXOmvb19Yl6EEDKZTD6f7+/vj8EUPzudl9UrqgWAT1G4ROfPnx8aGorTeC/Mhf7+/v7+/kkpMP2Blrhb/6Sxk7GxsdhMMWgmTpSJH0xnyGdoaGhir+RyuekPFFGjzMYFqAGdnZ1xOUxXV9fjjz++kF/6tttui3NNMpnM/fffv27duptvvvmGG26IIyJTr8opFotLlixJp9OnT5+eYrpuoVA4derU66+/fvPNN7e1tV12zXOhUNixY0fcLy72yq5du+wX92lg5TNADejo6Ii3crZu3To4OLiQX/ree++Ns1Librxr166NydLU1DT14uQkSeJ73r9//9QrjJqamj 744 IMVK1a88MILIYTHHntsil5xhNCnmuEmgJpw/vz58hyUC9cEzbczZ850d3dPvKFz8ODB6dzYam9vn86LT/zBdNHvbnR0dOJXj1vy+1PhDhEAVSpJkg0bNgwMDITZbmcyd21tbb29vV/+8pfPnj078fF4MyiXy23evHn9+vXxNKVMJvOXv/zlsnullPfGjSZtLWNLfspUC0CthktFjumZkXJeXNhMcRv+8n9ef/31n//85/P5/ObNmy97nkAsnvhxNps9cuSIXkG1ANSDaZ6wOB/iQEsmkzl58uSkT8XdeI8ePfrcc8+Vd4qLqXHhky/y0+iT45PiDN8kSZ5++umtW7fGB21xi2oBEC4zUD6ZeWhoqKWlZeq399prrx0+fLivr++xxx6bdBZ0oVD497//feutt05MkHK1vPPOOy+//LIt+VEtAMJl9uIS6FwuV95VZTqSJJkUHOvXr493uLLZbGtr6+bNm5ubm2O13HTTTR9//LFeQbUA1GG4xOkg05z0Ohfl0xznPpmmXC1TyOfz27dvr+A50tQH+7UA1KqmpqZ4wuLQ0NCGDRuSJJm/r7Vly5YQQi6Xm/v83yNHjsTdeLu6uibt7h8+2ZK/o6NDsqBaAOrKmjVrYrgMDAzMX7gMDg7GCba7du2qyAumUqmWlpY77rhj4oPt7e16ham5QwRQ88q3b7LZ7IsvvljZW0VJkixdunRkZGSmM1qmUCgUWltby0uNbMnPNBlrAah5a9asiYcUDgwMVGo4pKyvry9Oj923b19FeiVuyR+TxZb8zMhnfvazn7kKALWupaVl0aJFx44dO3bs2KJFi+65556KvGySJN/97nfHxsby+fz69evn2Ctbtmz58Y9//Oabb4YQstns0aNHH3nkkWuvvdZvH9PkDhFA/SgfDZ3P5yftkjI7PT09Dz30UAhhbGxs1tNNSqXSjh079uzZE//TFrfMmjtEAPWjo6Mjnlm4c+fOvXv3zvHVkiTZvn17bKDZJUupVOrs7GxsbIzJEo88PHnypGRhdoy1ANSb8oYoczxhce/evVu3bk2n06dPn55ptUw6QiidTu/fv1+soFoA+D8qcjR0qVRqbGwMnxwMNKOv3tfXF+8rBVvcUlHuEAHUm1Qq9eKLL2az2RDC2rVrBwcHZ/Eiu3fvjs3x4IMPTr9Xenp6li5dGpMlnU53d3efO3eura1NslARxloA6tPEEZfLnnc4yUwHWuL4SvnIwxBCV1fXo48+KlaoLGMtAPUplUr19PSk0+kQwne+851isTj9XzujgZbBwcE4vhKTJW7J//jjj0sWKs5YC0A9m8XR0IVCYfny5WEaAy2Dg4Nbtmwpb3HryENUCwALGi5tbW29vb2ZTObkyZPT7JVcLrdv3z69gmoBoJLhcu7cuSnu3ZQHWi61+KhQKOzYsaO3t7fcK44QYsGY1wJQ/5qamvbv3x9CGBkZmfpo6B07doQQMpnMhclSPkIoJosjhFh4xloAPi0uezT0pQZaJo2vZDKZAwcOiBUWnrEWgE+LNWvWHD9+PIQwMDBw0RGX1tbW2DTlZIlb8pfHV8pb8ksWVAsA8x4u/f39MVziGUNlg4ODcXbtvn37woQjhOKu/I4QQrUAsNA2btwYT1jcs2dPZ2dn+fEtW7aEEHK5XFNT08ReiVvc6hWqgS2AAD51Ojo6Qgg7d+6MXdLR0VEeaFm1atWKFSvifnGOEKLamI0L8CnV2dkZqyWfz+/fv394ePhzn/vcf//7X72CagGg6sQN5SY9mM/nd+zYoVdQLQBUkXjC4v/+979isfjmm2/akh/VAkBVh0sI4f3337/66qv1CqoFAKACrHwGAFQLAIBqAQBUCwCAagEAUC0AgGoBAFAtAACqBQBQLQAAqgUAQLUAAKoFAEC1AACEkHIJqkSpVDpw4IDrMH+WLVu2Zs0a1wFAtTBXr7zyyvbt27/1rW+5FPNk9erVqgWgpjWMj4+7CtWgs7Pz 448 /zufzLsW88gceoHYZa6kWf/7zn9va2s6cOdPc3OxqAMCFzMatFgMDA//617++9KUvuRQAoFqqV6FQCCF85jOfSaWMfgGAaqlip06dymaz7733nksBAKqlqh0+fHjVqlUrVqxwKQBAtVS1Y8eO3XTTTatXr3YpAEC1VK8kSYaGhs6fP28qLgColqr297//PYTw4YcfmooLAKqlqp04cSKbzboOAKBaqt2rr75qKi4AqJYaYCouAKiWGhCn4i5atMhUXABQLVUtTsVNksRUXABQLVXtxIkTuVzOdQAA1VJFBgcH43lDE7366qt33XXXV77yFdcHAFTLlZckybZt29auXbtp06ZJn+rr67v66qu//vWvu0oAoFquvF27dq1ateqLX/ziqVOnjh49Wn68VCqNjIx88MEHzc3NrhIAqJYrr6Oj4/Tp03/4wx9CCA899FD58bfffjuE0NjY6BIBgGqponC58 847 c7ncP//5z2effTY+ODw8nMvl3nvvPdcHAC6rYXx83FVYMIVCYfny5Y2Nje+//34qlWpra8tkMplMZuPGjS4OAEzNWMuCam5ubm9vHxsb+81vfhNCePnll6+99lpTcQFAtVSjXbt2hRDa29sLhYKpuACgWqrX4sWL8/n82NjY9773vWAqLgColmq2ffv2G2 644 c033 Hướng dẫn giải CDBT từ các ĐTQG Toán học – 165 Bài 5: ĐẠI HỌC KHỐI D NĂM 2010 Cho hình ... src="data:image/png;base 64, iVBORw0KGgoAAAANSUhEUgAAAucAAARACAIAAADCrGrzAAAACXBIWXMAABYlAAAWJQFJUiTwAAAgAElEQVR42uzdfXBT153/8a9bkXSQJ5tNK3KZjCcmpd3SjWVSmmWC3TJZZBpMEsKEOpVMM8skzEIH7Kbe7e6SGbv2NO7Db7xZbJ5mKGWWIqlxYVNnwExAbJbUosMktHDFJtMZWqvLtihSNsuyvumwvl3//jjlRmv8IOvxXun9+stIsnx1ZXw/+p7vOUcEAADACaomJiY4CwAAwP4+xCkAAACkFgAAAFILAAAgtQAAAJBaAAAASC0AAIDUAgAAQGoBAAAgtQAAAFILAAAAqQUAAIDUAgAASC0AAACkFgAAAFILAAAgtQAAAJBaAAAAqQUAAIDUAgAAQGoBAACkFgAAAFILAAAAqQUAAJBaAAAASC0AAACkFgAAQGoBAAAgtQAAAJBaAAAAqQUAAIDUAgAASC0AAACkFgAAAFILAAAgtQAAAJBaAAAASC0AAIDUAgAAQGoBAACYhotTAJS9qqqqTB42MTHBuQJg679m/J0CAACOwAgRAAAgtQAAAJBaAAAAqQUAAFQi0zRjsZidj5A5RACAqWU4+wxlZmRkpKGhwaa/k8whAgAQWZDOttmAESIAwGSGYUy65WMf+9iZM2cmKoyu6yLS1tY2Pj5exi9zfHzc5/M54jeT1AIAmOz9999XX/z93//9Jz/5SRF59913V65cWVdXF41GK+QkmKa5evVqEXnrrbdcLlcZv8w1a9ZEIhERCQaDpBYAgMN4PB71xde+9rWf/exn3d3d6p+XLl1qbGysr6+vhOzS0dGRSCREJBQKVUJk6e7uDgQCpBYAgINt3ry5s7NzZGTEijK6rpd9donFYv39/SISDAatF17ekaWzs9P+x0w3LgBgqstDWjeurut1dXWpVMrr9T7yyCM3btwIh8PqLq/Xu2fPHttOOcn6cr5s2TJd130+36lTp8r1LW5qaro1sqj3nW5cAIDzqCbNjRs3iojH47ly5cr+/ftDodDo6Kjf75cyrbvs27dP9eGW8dhQT0+Ps6osfzABAMAt1DVidHRUfREMBm99jJVdrLrLyMiI01 /42 NiYpmkiMjAwUK5vrtWo1N3dPeX7btsjZ4QIADAFa6Sgp6enq6tL07TLly+73e5JD4tGo1evXv2nf/qnchozMgyjr69vx44dZTl1SL2h01VZGCECADhYR0eHpmmJRKKvr2/SXfF4vLGx8Ytf/OKKFSvKaczI7XZ3dnZWYGRxAKqgAIDpRojU19YyHqOjo5MGU6zVydRSbGU5ZlQJA0NOGSEitQAAZr96eb1eEfH5fJMeNj4+3tbWph7s8/mSyeREmfa7VEJkIbUAAMohtVhtucePH7/1wVYxRtM0qx7jrOyi67qKXJUcWUgtAIBySC0TExMqgmiaNuWmPCMjI2rqjYiMjY2lxx37Z5dkMjnlEFilRRZSCwCgTFLL2NiYunG6KcHJZNLr9U5ZjLF5dlHdOV6vt/x2SZxTZCG1AADKJLVMpI0EZTeYYs/sYr0oXdcrPLLYP7Uw8xkAkKmWlhY1DNTe3p7Ft9fW1tptXd1UKtXa2qrmQNXV1THJmZnPAIAyqbVMTEyMjIyouzIsk3R3d0/5SJvUXdTY0HTNOhVVZXFErYXUAgCY29VLpY1MukAGBgZmboUpbXYp17EhK7LcOlPd6amFESIAwNzs3LlTXekHBwdnfuSmTZtUMWP79u2BQMA0TRuOGZXZ2JA1MOTz+U6cOFFuv3x8ngAAzPUzt/VpPn2S85TGx8fTP/rP0MZbkrrL6OhoOY0NpZ/q7F6XzbMBuycCAKYw8y56pmnW1NQkEom2tjZVeplZKBRSTa+app08eXKG2kY8Ht+xY0c57cVYNNZJVlWW7PZRsvnuiaQWAEA2V6/h4eG1a9eKyOjoaG1t7axPGIvFVq9enUgkvF7vxYsXZ34w2WWuotFoY2NjjpFF2PMZAFCWmpubVc/KunXrMnl8XV2drus+ny8Sicz6YBvOka6EyOKAME2tBQCQ3WfueDy+aNEiEQkGg4FAoEBHkt+6y/Dw8KuvvtrX11c2l/b8RhZGiAAA5ZlaRKS9vb2/v1/TtCtXrhQ0B+QluxiGsXjx4szbcSotsggjRACAMtbb26tpWiKR6O3tzeLbTdNcuHBhJuM+eRkz2rx5cyKR0DQtu6Mt+8jiAMzuAwDkMgPWWqstiw2T29ra1PdOtwxdHudIHz9+XD1+yv0dHcdapDjrSc5OnPlMagEA5HT1Gh8f93q9ktVKrOPj46qlV0T8fv+crr5zyi7j4+NqByW/309kIbUAACo0tUxMTOi6rh6fxbpw6cvQeb3eue4mnWF2UUUdTdNmXRavkiMLqQUAUP6pZeLm5kRZb0NoDd9ompbFrkAzZxcrVJXB2FBBI8sE+xABACrB/v37RSSRSOzbty+Lb29ubtZ1XTX2fu9735vrt8/cq3vffff5/X6fz9fc3Ez7raMx8xkAMNXlYe4zYHft2rV9+3YRGRsbc7vdWfzQVCq1d+/eHTt25HI9nm6OtGmajr7MFyeysF4LAKAiUou1OZHf7w+FQqU9/jLbE6BoVRZSCwCgIlJL+sVV1/UZtkick1xqJOWRXayzqmna5cuXs6tjlUdqoa8FAJA3DQ0Naibzxo0bTdPM/Qnj8fi8efOy237IMIwy2M8oPbLoul7QyGJ/pBYAQD6ptlxd1wcHB3N/NrU1Y2NjY09Pz1zjTnV1tRqocm52mRRZPB5Phf92kVoAAPlUW1ur1l/p6OgwDCPHZzt//rwq3nR1dQUCgQzrN6Zpqrhz8ODB9ANzVnaJx+NElslYkwAAkN91O6yFaNva2vJyMHNdhm5gYEA9froHZ7cnQDElk0l1DjVNm+vKe2W8XgupBQCQ/6tXLpsTTSl9GbqZE8bo6Kh65Kx7G9k2u5QqskywyhwAoAIFAgG1OZEaqcldc3Pz6OioWoYuk7Ehr9e7ZcuWWQezbDhmlEqlvF6v2puagaFJSC0AgIIYGhpSUWB4eDgvT1hbW6vrejAYnGHq8r59+9T6/UNDQxnOl7ZVdiGyzIz1WgAAU10e8rFuR3t7e39/v6ZpV65cKcK6tIZhVFdXi8jAwMC2bduyeIbSru9ih8jCei0AgArV29srIolEQn1RuIu9+sLtdieTye7u7lnHhqZTwroLVZaMQhW1FgBA4T5zh0Kh1tZWEUkmk4W4EqvNj0ZGRvJeESlm3cU+kYVaCwCgcrW0tKi23Pb29rw/uWmaL7zwgmS1DN2silZ3ocoyh1BFrQUAUNDP3NYCr4WoiJimuWbNmkgkIiKf//znT58+XYgGmsLVXewWWai1AAAqWkNDgypXbNiwIS+bE6VzuVx///d/v3XrVhF5/fXXly1bZrW55FGB6i5UWeYcqqi1AAAK/Zk7lUotWLBARILBYCAQyONxWs9s0TTt5MmT+dpx+lb5qrvYM7JQawEAVDqPx6NW2W9tbc19c6J0kzLQ/PnzVXAp3GvJS92FKgupBQBgX1u2bFFhYvPmzfl6zlAopDpaLO+///6JEyeKEAJyyS5WZBGRI0eOEFlILQAAe3G5XAcOHBCRcDgci8Vyf8JUKqXmVLe1taXf/tvf/rZoLyqL7JIeWQrRnkxqAQAgD5qbm30+n4hs3Lgx92dTU6k1Tevr61O3qPjy4osvpj/MNM14PG6T7EJkyRX7mgIAirb3r7UhczAYzMsW0LquWzeqHYhEZGxsTN0yPj6uctLx48eLc95m2Ed6fHzcarixyebS7PkMAMBMZYnu7m4R6ejoyKUt980331TFlfS5QnV1dZqm+Xw+a/LzjRs3ksmkiKxduzbvy9DNqe7y+uuvr1mzhipLjpj5DACY6vJQsBmwhmEsXrw4kUh0d3d3dnZm/TyxWOy+++5zu92TnnzSLenL0Pl8vhMnThRhH0dl0hxpq8pi58hi85nPpBYAQLGvXtbmRKOjo7W1tUV4OT09PV1dXSJS/JnGKrtcunQpFovZv8pCagEAkFomq6+v13Xd5/OdOnWqOK/I2lig0MvQOTQQOOIg6WsBAJTA4cOHRSQSiQwPDxfnJzY0NCSTSU3T7r///iVLlvAWODJMU2sBnMs0zXnz5s36MP6b5+sDaEHZ7W0qwmfuQCAQDoc1Tbty5UomvSbRaPTXv/71lBsCTHm0pmne+rSqBXhS70vZnNKyP0hqLYCDuVyuzKcyIsdIUZwZpxVl//79IpJIJPbt25dJRt+wYUNra2smU4FisVh9ff3TTz99611ut7skkQX5CVX8RQMAlOozt9WWm0wmZ+6QbW9v7+/v1zTt8uXLt8aOSUdrtbCMjY3NmlHUQr1FaHOh1pI7ai0AgJJpaWlRC6+phW5nCBb9/f0icuDAgUwqJQ0NDepph4aGZn5kKpVavXq11+stWnsNSC0AAEdyuVxHjhwRkXA4PN3ePaZprl69WkR8Pl9zc3OGz7x161YR+c53vjPrIxcsWCA3l6EzTZM3xc4YIQIATHV5KOJIgWrL9Xq958+fv7V/Vo0NyYyjSLcebTweX7RokWQw9mSa5tNPP63WgivoMnSMEOWOWgsAoMR27twpIrquDw4OTrrLGhsKBoNzWhqutrbW6/WKyN69e2d+pMvlCoVCap+BSCRSU1NjbQgA24Uqai0AgJJ/5rbWrp3UP5tKpdRU55kXo5vyaFWrr6ZpV69ezeQYrB5eyayN1+antCwPktQCACj91cs0zZqamkQi0dbWpkov6W7dXSgThmFUV1d7vd5IJJJhnSaVSnm93q1bt+ayQRKphdQCACjzq9fw8PDatWslr5sTxePxuT5VdgmJ1EJqAQBU1tVLbU7k9XovXrzIKeUgb0U3LgDALtTyKrquh0Ih+xxVKBRSK9GB1AIAwB/U1ta2tbWJyJe//OULFy7Y4ZBisVhra6vX67VVkCK1AABQej09PS6X63//938feeQROxyPpmk+n09E1BZILENHagEA4A9+8IMfqGTwzjvvxOPxDL+rqqpqhn25Y7FYU1PTrl27sjgej8dz4sQJv98vIl1dXWvWrFG7RqMk6MYFAEydA6ToXZnWgrb33HPPb37zG5/PN/MyLRke7a5du7Zv3575wi0zPImIaJqm6/qclrwr4Skts4MktQAAbHH1Mk1z2bJlag7RP/7jPz7wwAMiMjIy0tDQkOPRplIptdmQruu57O1sLUOXXQAiteSOESIAgC0MDg7qui4iQ0NDS5cuVYMyGzZsyL2VxOPxqN6U733ve7k8T0NDQzKZ1DRN7fiIEoQqai0AgJJ/5lbr2IrIwMDAtm3bprwll6O1lrAbHx8v0OaIdjulZXmQpBYAgC2uXrFYbOPGjenbPlutJLPuCjTr0ZqmOW/ePMl4yInUYs/DY4QIAGALdXV1Fy9eTC+EbNmyRdM0Edm8eXOOT+5yudRKMN/4xjfye9imaQYCAZahI7UAACqay+VSHSThcDj3WPDss8+KyKVLl/K75sq+ffvC4TDL0JFaAACVrqGhQTXSbty4cYa0MTExMeugRl1d3cjIyNWrV/Pb1/LUU09Zy9C1t7ezDF1B0dcCAJjq8lCU/oZM9mS2FnEJBoOBQMCG58o0zY6Ojv7+fhHx+Xw//vGPp+zCoa8ld9RaAAClkUqlFi1a1NTUNPNqs7W1td3d3SLS0dFhz3VpXS7Xzp07BwYGRCQSiSxevDjzVX1BagEAOEB7e7uIXLp06fbbb5/5kTt27NA0LZFI7Nixw7YvZ9u2bSMjI+o4c28fxpQYIQIATHV5KPBIgbWASobr1YZCodbWVhEZHR2ddVCphFKplM/nO3v27K2DRIwQkVoAAM67ehmGsXjx4kQi4ff7M596U19fr9b7v3jxYi4/PRqNDg4OtrS0FHnhFlJL7hghAgAU2+bNmxOJhKZp+/fvz/y7hoaGRETX9eHh4VuvtTPs+TzJ4OBgf3//7t27eSMch9QCACiq4eHhcDgsIgcOHJh5xdtJamtr1UpxzzzzTC4TjFtaWkQkHA4Xp7c3lUrV19dHo1HeelILAMBhDh8+LCJ+v7+5uXmu39vb2ysiiURCfZGd5cuXqyV3z5w5U4TX297eruu62iwaOaKvBQAw1eWhkP0NoVBo3bp1cyq0pH+vastNJpMejye7o+3p6enq6sq9RSYThmE88cQTkUhE/bOE2zeW/H3PHbUWAECxBQKB7CKLiLS0tHi9Xrk5cTo7Tz/9tIjoup5KpQr9Yt1u94kTJ9TYloisWbOmCD+0XJFaAABO4nK59uzZIyLhcDjrZpHa2loVffbu3VucY965c6f6OhKJeL1elqEjtQAAKkJDQ4Pf7xeRDRs2ZN2WqxaCK05qSaeWoTt27BjvYxboawEATHV5yGt/g9qxOZPV5DKUSqUWLFggNzcnyuJoDcM4c+bM6tWri9Zlog4ymUx+85vftEov5f2+k1oAAA67epmmWVNTk0gk8rv94a5du7Zv3y4iY2NjWXfJEAicdZCMEAEACqujoyORSIhIU1NTHp92y5YtagJzGWz6k8vyMxWF1AIAKKBYLNbf3y8iwWDQmqicFy6X68CBAyISDofVCJRDRaPRmpoalqHLBCNEAICpLg/5GCmwxoZ8Pt+pU6cKcZxNTU1qVk4RVl4p0ClduHChqkUNDAxs27atDN73wqHWAgAolN7eXnU9znyLxLlSOxnpup71j4jH4z09PSVcQ+Xy5cs+n09Etm/f3t7ezmgRqQUAUGzxeLyrq0sKMDaUrra2tru7W0Q6Ojqy21fooYce6urqeumll0p1otQydOpV9Pf3swwdqQUAUAKapvl8vjzOG5pSR0eHiCQSib6+viy+/fnnn5ebNZtScblcnZ2dwWBQbi5D5+hOncKhrwUAMNXlIU99LTdu3CjCtGR1tCIyOjpaW1s7p++1ln7RdT2PK8pkd0pjsdjq1asTicTIyEhDQ4ND3/fCodYCAChgCaHIK6lkMQva4/GotpKXX3655Gesrq5O1/Xjx4+XJLI4IExTawEAOO4z95RHqxw/fry5uXlO3z48PLx27Vop8IbMrDKXO2otAIAyoTYneuaZZ+Y6DWflypXqi3PnztnwdZmmmV2jcfkhtQAA8iYejzc1NZVqQ2PVUZtIJPbt2zenb3S73W1tbSKye/duG57V3t7e6upqlqETRogAAFNfHrIaKaivr9d1vfhrvllHGwqFWltbRSSZTM5punUsFovFYuvWrStcI052p9QwjMWLFxdtGTp2TwQAVERqsRJDFhN58nW01mq8fr+/cEvbFTkQGIbxxBNPRCIREfH7/YcOHarY5htGiAAAeZBKpVRkGRgYKHJkUVdZdaF1uVxHjhwRkXA4XDZDKunL0IXD4Upeho5aCwAgD5+51X5AmqZduXKlcJWADAUCgXA47PV6z58/X/KDyfqU3sqa66Rp2k9/+tNCpENqLQCAMhcKhdT4xcmTJ+2QEnbu3Ckiuq4PDg6W03lubm7WdV3TNBEp3CYJtg7T1FoAALl85jYMo7q6WkTa2tpUXLCDnp4etQvS2NjYnBpsU6nUqVOnCrELQb7KGGp4qECphW5cAEA5pxYRCYVCHR0ddhgbslhtuXPKUlYCK8SC+qwylztGiAAAuQoEAlevXrVPZBERl8t14MABEenv7898/Ri3262WqnPW0FIqlaqQ/lxqLQAApxYGZj3aLNaPiUajjY2NMvehpVKdUtM016xZE4lE8lIfotYCAEBpDA0NiYiu65mv3bJ8+XLV7nrmzBlHvMYbN25cunRJRBobG3t6esr7DSW1AACyYfMhCdM0Y7HYoUOHPvaxj4lIR0dHhpsTuVyurVu3isjf/d3fOeKNcLvdV65cUdtWd3V1BQKBuW7DRGoBAJQzwzC8Xq8NL5CpVCoUCgUCgXnz5nm93q6urnfffVdEEolEb29vhk+yfv16EdF13SnNIi6XK30ZumXLlpVrmwt9LQCAqS4PM/Y3qGXcNE27fPly4TbuyTxCqYk/mqap/XosPp9v06ZNqVTqq1/9qsxlqwHVEJPffX+K0DKSvgxddm8NM58BAGWVWqxL4/Hjx5ubm0t1hLFY7MyZM0NDQ2qBO4vX633yySdXrVq1fPlyNa3JNM1ly5bpuu7z+U6dOpXh5f/NN9/cunVrHpdFKU4giMfjDz300P3335/hKyW1AADKNrVYWxCXZHvCVCr1xhtvvPrqq/39/bfee/z48QcffHDKnBGLxbxerxRmIRa7BQLDMG6//fbsJqKTWgAA5ZNaij82ZJrm22+//fLLLx89elTX9fS7vF7v5s2bV65cqRLJzFc068hLtRoeq8yRWgAAxbt6WWuZFGFsSK2sf/DgwUkDQJqmtbS0tLS0LF26dE6xyWp/yW+3iiMCQTQaveeeezLp6SG1AADKJLWoHtXCjQ0ZhnHhwoXBwcHBwcEp+2pXrFiRy0bHu3bt2r59uxRgBTk7p5ZUKrVgwQLJbHSM1AIAKJPUYppmb29vR0dHfi/5mffV5sjanCjz4KWCVF5aYUqYWrxer0qB3d3dnZ2dpBYAQPmnlvxeSqfrq/X7/Rs3bpyurzZH1iCXrut1dXUZVinyUpspYSCwVv0XEZ/Pd+LEielSIKkFAEBq+cO1c9a+2lmTRO6ampoikYjX6z1//vysJZyFCxcmEom8tMKUPBD09PR0dXWpsx2JRKYMhaQWAEBFp5a899XmKB6PL1q0SESCwWAgEJj5waoVZk77L9o2tUgGy9CRWgAADk4t8XhcRObaA1vovtocr7Wq6pDJ/G1rkCiTESX7pxa5uQxdX1/flImN1AIAcGpqGR8fV+2rGU51LlpfbY7XWqstt62tbefOnTM/WM2cmrWP1SmpRWXK6bIaqQUA4NTU0t3drTohksnkdL2xpeqrzfFaGwqFWltbJYPNidSoSu7L07HKHKkFAFDAq5dya/+HTfpqc7zWqiLKrD0r1vJ0Oe4GYOdAsGvXrkcffbS2tpbUAgBwcGpJ33HQbn21OQYCqy131vGv9vb2j370ozlupmjbQJC+Hab6gtQCAHBkavnXf/3X//zP/yxaX22RA0F7e3t/f39xNieybWpJpVI+ny+9ZkZqAQA4hlWE+JM/+ZNf/OIX6XcVuq+2yIHAGv3JvdnWualF/u8ydCIyPj5unzeX1AIAmIk1ZGBRfbWTbpzho3l6W0wRHjkpEBT5p2f4yFsfb9vjzGRqVUl8iP+cAIBJmpubk8mkiNxxxx3f/va3x8fHQ6HQDJ0fhmFkXtsoxCMnJiYy+RBe2uPMXMmP88knn7TnbyapBQAwhfnz54vI9evX//Zv/7ampiYUCpmmOTGNWztwnfXIkZER9c+RkZGZHzk+Pp5MJrP76VPWP+xzlqyT4PP5VqxYQWoBADiG2+0eGxvr7u4WkUQi0draamWX8nuxDQ0Nfr9fRDZs2DDDC4zFYvPmzfN6veV3BqxNJWfeW7Hk6GsBAMzEMIy+vj611pyIaJrW19fX0tJi2wtbdqyV+2fYnCjHhVts 241 rRRZN03RdL/SSgLmg1gIAmInb7e7s7Cz7uovH4xkYGBCR1tbW6VpA3G63z+cTkcHBwbJ54Q6KLEKtBQCQufKuu1ibE/n9/lAoNPM1Pou5wTastcRiMTXg5YjIItRaAACZK++6i8vlOnDggIiEw+FYLDblY5YvX66+OHnypNNfbyqVWr16tYMiC6kFAEB2+UBzc7MaA9q4ceN0yUa96hdffNHpkcXr9SYSCQdFFmGECACQi/IbM7LWBZ6uLdcaVZlhH+ypr7i2GSFyaGQRai0AgFyUX92ltrZWvZaOjo4p23Lr6uq8Xq/f7y/E+nJEllmSH7UWAEBelE3dxTCMxYsXJxKJ/G5OZIdai6MjC6kFAEB2mUIoFGptbRWR0dHRfO1oXfLU4vTIQmoBAJBdplZfX6/rus/nO3XqVBmkljKILKQWAADZZWpW1+3x48dn2DnSEamlPCILqQUAQHaZViAQCIfDmqZduXJluqM1DOPWjQltlVrKJrIIc4gAAIXm3HlG+/fvVwe8b9++W++NxWILFy584okn7PwSyimyCLUWAEAxOa7uYrXl3ro6i7W6/9jYWCblluLXWsossgi1FgBAMTmu7tLS0qJpmoi0t7dPuquhoUHddfDgQRseuRVZROTkyZNlEFlILQAAsstMXC7XkSNHRCQcDkej0Un3bt26VW4OJNk2soyMjNTV1ZXHbw4jRACAUnLEmJFqy/V6vefPn08/sFQqtWDBAslsWZeijRBNiiwNDQ1l89tCrQUAUEqOqLvs3LlTRHRdHxwcTL/d4/Go2dGHDh2yyaGaphkIBMoysgi1FgCAfdi57tLT06MObFLv7fDw8Nq1a2eeHf2HK27hay2maa5ZsyYSiZRlZBFqLQAA+7Bz3WXHjh2q93bHjh3pt69cuVJE7r///hs3bpT2CMs+sgi1FgCAPdmw7qLKKnJLF0sqlcpkhk5Bay2VEFlILQAAssscqM2JvF7vxYsX53zFLVhqqZDIIowQAQDszG5jRkNDQyKi63ooFLLJKaqcyCLUWgAATmGTukt7e3t/f38m7beTr7gFqLVUVGQRai0AAKewSd2lt7dX07REItHb21vaE1JpkYXUAgAgu8z5APr6+kSkq6srHo9btw8PD9fX1/f09BBZSC0AANglu7S0tKjF5TZv3mzd+Ktf/UrX9b179xJZCoe+FgCAs5Wk3yUWi6ngYoUGwzCqq6tFRNf1Kff9yVdfS8VGFqHWAgBwupLUXerq6vx+v4hs2LBB/RS32+3z+UTke9/7XuFebHpkCQaDFRVZhFoLAKCcFLPuYhVXBgYGtm3bJiLRaLSxsVFExsfHb/2Judda0iNLd3d3Z2dnpb2/1FoAAOWjmHUXt9s9MDAgItu3bzcMQ0SWL1+u7jp58mTeXxqRhdQCACC7ZG/Lli1qcyLVlutyudra2kTkxRdfzPuLevrppys8spBaAABkl+y5XLZDyY4AACAASURBVK4jR46ISDgcjsViIvLss8+KSDKZzG886unpCYfDFR5ZhL4WAEAlKGi/S1NTUyQS8Xq958+fd7lc8Xg8fW/FD6 642 fa19PT0qCOv8MhCagEAkF1yzS7xeHzRokUiEgwGA4HAtFfcrFILkSUdI0QAgEpRoDGj2tpa9YQdHR2qLTdfiCyTkx+1FgBABcpv3cU0zZqamkQi0dbWtnPnzqmvuHOstRBZSC0AABQku4RCodbWVhEZHR3Nva+FyDIlRogAAJUrj2NGgUBArfG/bt06EYlGo01NTdFoNIujIrKQWgAAKGx2GRoaEhFd14eHhwcHByORyO7du4ksecQIEQAAH8hxzKi9vb2/v1/TtJdeemnlypUiMjY25na7JbMRIiLLzKi1AADwgRzrLr29veq7/uVf/kUtmzs0NJThxCIiy6yotQAAMLXs6i5WW+7Xv/717373u3fffffvf//7t956a8GCBTJ9rYXIQmoBAKDY2cU0zWXLlum6/vjjj7/yyivqxnvuuec3v/nNdKnFiiw+n+/EiROF2KGa1AIAANllioQRjUYbGxunfJ6RkZGGhgYiS3boawEAYHZz6ndpaGioq6uz/vmpT33K7/errxsbG+vr64eHh9V37dq1i8iSOWotAADMjaq77N27N5FIyFR1F6t8IiJdXV3f+MY35OYcIoumaX/5l3+pMhCRhdQCAEABmaY5ODjY0dExKbv09vaqyNLc3Dw8PCw3Jz+r1DI2NpY+0kRkIbUAAFCa7FJdXT02NiYi3d3dO3bsUJsT+f3+UCiUvl7L6dOnfT6fiNx///0///nPiSwZoq8FAIDsuVyuQCBw5cqVYDCoaZqKLPPnz1+8eLGIHDhwQETC4XAsFrO+JRqNqsjy8MMPv/HGG0QWUgsAACXILocOHaqurn7//fdVr+61a9dWrVolIhs3brQii5pe5PP5Tp48+ZGPfISzlzlGiAAAyKdJY0YejyeVSk16DL0spBYAAGyaXYgspBYAAByQXb72ta/97ne/u379OpGF1AIAgN2zy7//+78fOnToJz/5CZGF1AIAgDPiC5GF1AIAAMofM58BAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AACASuTiFMxJNBr99a9/PevDVqxYUVtby+kSkVAolMnDOGMAivlX+t57721oaOB0OU7VxMQEZ2EO56uqKpOHBYPBQCDA6UqlUgsWLOCMASia+vp6XddnfZjf78/wMxVshRGiOYjH4yKybdu2WR/Z2tqaYb4pb2+88UaGj2xtbTUMgzMGIBeGYei6/sILL8z6yHA4zF9pUkuZO3v2rIh4PJ6JzHDGXn311VWrVg0MDGRyutxuN2cMQC4uXLggIu+//z5/pUktkGPHjn3xi19cvHgxpyJDg4ODf/Znf7Zy5UpOBYAiOH36tNfrve222zgVpBZIOBz+9Kc/vWLFCk5FJlKpVCKREJElS5ZwNgAUwdGjRx955JFVq1ZxKkgtlU41tVy/fp2pLhlSTS233Xaby8VUNQAFp5paPB7P0qVLORuklkqnmlruvPNOTkWGVFPLxz72MU4FgCJQTS0f+tCHaJIjtYCmljmjqQVAMdHUQmrBB2hqmROaWgAUmWpqeeCBBzgVpJZKR1PLXNHUAqCYaGohteADNLXMFU0tAIqJphZSCz5w8OBBmlrmhKYWAMVEUwupBX9gmmYkEqGpJXM0tQAosqNHj65atYqmFlIL5O233xaaWuaCphYAxaSaWu 644 w6aWkgtkDNnzghNLXNx+PBhmloAFI1qajFNk6YWUksFRfWenp5AIHDrXUNDQ1u3bqWp5dYzFggEdu3adetd4XCYphYA+WWaZigUampqMk1z0l00tZBaKksoFFq8eHFXV1c4HB4eHp70/yQSidx33300taSfk56enurq6nA4vH37djUt3GL9k6YWAHn8K11TU9Pa2hqJRPbs2TPpXtXUwvZDpBa7qMpYds9/+fLloaGh+vp6Efnyl79sGIZ1l2pqSaVSNLVM8sorr9TU1IjI2rVr0z/6qFnildbUUjUX/PLYn2EYvKFF/js8s/fee+9HP/rRk08+KSLt7e3pH5ZUU8vdd99NUwupxS4mMpbd83d2do6Pj7/55puapr333nvPPvusddeZM2c0TWOsNJ3L5ero6Kirqzt//ryIvPXWW/v27bPuPXbsWAU2tUzMBb9C9ud2u3lDi/x3eGbbtm27fv36kSNHfD6fiDz22GPWhyXV1PK73/2OP9SklgrS0NDgcrlOnjwpIj/84Q+tcaKhoaH169fT1HLr3/Ta2lqPxxMMBkUkfZyIphYAhdDc3CwioVBIRC5dumR9WDp9+rTP5/vQh7ickVoqT11dXVtbm4j8xV/8hWEYVlNLU1MTJ2dKgUBAffR5/PHHTdOkqQVAQd36Yeno0aOf+9znaGohtVSovr4+TdNSqdTmzZtVU4tpmh6PhzMzHfXRJxaL7du3rzKbWgCU6sNSKpXSdf3222+nqYXUUqFcLtdPf/pTEQmHwxs3btQ0rbq6mtOS4Uefjo4OVmoBULQPS2q5CppaSC0Vrba2dmBgQER0XV+/fv19993HOcnwo08ikaCpBUDRPixFIhGfz8cnJVJLpduyZcv9998vIvfdd9+DDz7ICcnwo49CUwuAInxYUr0sn/vc5/ikRGqpdC6X65//+Z//+q//+tq1azS1ZPjRR9f1J5988q677qKpBUARhMPhb3/728lkkk9KpBaIx+P57ne/y/ZDmaurq/vhD3+4YMECTgWA4vyV/pu/+Zv58+fzSalyVLHmFQAAcARqLQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAAKgELk4BgAq0a9eus2fPzvqwFStWbNu2jdMF2AS1FgCV6IUXXrh48eLExASnAnCQKv7TAqg0qVRqwYIFzz///AsvvJDJ4/k7CdgEI0QAKs4bb7whIrfddhtxBHAWRogAVJxXX331S1/60l133cWpAEgtAGBr/f39S5cuXblyJacCILUAgH3F43ERuXHjxpIlSzgbAKkFAOzLmvDsctHYB5BaAMDGjh07RlMLQGoBAAcIh8M0tQCkFgCwO5paAFILADgDTS0AqQUAnIGmFoDUAgDOQFMLQGoBAAegqQUgtQCA7RiGceuNNLUApBYAsJF4PB4IBBYvXmya5qS7aGoBSC0AYBft7e0PPfTQa6+9lkgknnvuuUn30tQCkFoAwC5aWlq++93v+nw+Edm1a1csFrPuoqkFKAMM7gIoHw0NDZ/85Ce//OUv//73vw+Hw6tWrfrtb3+rulhoagHKALUWAGXF4/GIyP79+zVNS6VSHR0d6naaWgBSCwDYkdvtPnDggIj09/ercSKaWgBSCwDYVHNzs9/vF5GmpiYVXGhqAUgtAGBT+/fvv/vuu9955x2v16tuoakFILUAgB253e7vf//76muaWgBSCwDYmjVORFMLQGoBALs7dOjQT37yk7feeoumFsDpGOIFUO5/5lyuxsZGwzBoagGcrmpiYoKzAAAA7I8RIgAAQGoBAAAgtQAAgEpDb9q0TNOcN2+es465JF1KVVVVpXqNRf7RjnjjCv17m8dDNQyjurqa/1kA5nDF4X+jfa7HpBZSi/3fEQcdKqkFILUAAACUBn0tAACA1AJUsKampqoMBAKB0h6naZpVmQmFQrytAEqLESKgIFFg3rx569evf/nllzN5fAn/G8ZiMWs/5FmNjo7W1tby/gIoFWotQP69/fbbIvKJT3xiIjMlPNQzZ85omtbd3Z3JcRJZAJBagHKjooDb7bb/oQ4NDT322GOf/exnedcAkFqASuSUKGCaZiQSueeeex588EHeNQCkFqDiOCgKqJGs999/3+Px8MYBILUAFcdBUcBBI1kAQGoBKjoK0NQCgNQCVDSaWgCA1AI4AE0tAEBqAZyBphYAILUAzkBTCwCQWgBnoKkFAEgtgAPQ1AIApBbAGc6dOyc0tQAAqQWwD8MwYrHYrbefPn3ablEgHo/H4/Fbb6epBQCpBShzpmmGQqHq6mqv15tKpSbde/ToUftEAcMwenp6Fi1atG7dOtM0J70KmloAkFqAMldTU3Pu3LmPf/zjIrJhw4ZJKUHXdZtEgVQqVV1dfeedd4qIrut79uxJv9dBI1kAQGoBsnT58uWPfvSj3/72t0Xk9ddfD4VC1l0XLlywTxTweDzvvPPOtWvX/uEf/kFE2tvb08eJbDiSBQCkFiDP3G53Z2fnhg0bBgYGRKS1tdUaJ7JbFFiwYEFnZ2d7e7vP5xORxx57zBonstVIFgCQWoDC2rJli9frFRG/32/zKKAKQpcuXdq3b5/YbCQLAEgtQMG5XK6hoSEROX36dCgUsnMU8Hg8wWBQRLZv3x6Px201kgUApBagGGpra61xooMHD9o5CgQCAVUTevzxxwcHB2lqAeBQVRMTE5wFIDumaX7mM59Ra7domrZ169bOzk57HqphGPfdd18ymRSRzZs3P/HEE83NzbyDAJyFWguQPZfL9corr6ivbd7f6na7VUFIRGhqAUBqASqRNU60cOFCm0eB5ubmL33pS0JTCwBSC1Cxtm3bNjY29uabb9o/CoTD4ZGRkf/4j//gXQPgRPS1APmRTCYXLFjAoQIAqQUAAFQ6RogAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAACAzLnS/1FVVcUZAQAANjQxMeG69SbOCwAAsBVVWGGECAAAOAOpBQAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAACC1AAAAkFoAAABy4eIUAEUQj8dnfUxtbS0nCgBmUDUxMfHBP6r+zz8B5IVpmvPmzZv1YfzvA4Bp80pV1cTEBCNEQMG9/fbbmqZl8n+ScwUAMyC1AAV35syZlpaWgYGBidlwrgCA1AKU0tDQ0NKlS1euXMmpAABSC2BfpmlGIpEbN24sWbKEswEApBbAvlRTi2maLhdT9gCA1ALYmGpq4TwAAKkFsDuaWgCA1AI4AE0tAEBqAZyBphYAILUAzkBTCwCQWgBnoKkFAEgtgAMYhkFTCwCQWgB7icViPT09k268cOGCpmnJZJKmFgDIC/6YAjlJpVLt7e2vvfZaIpF44IEHHnvsMeuu06dPb9iw4a677uIsAUBeUGsBcjJ//vyvfvWrKqxs3LjRMAzrrqNHjy5ZsoSmFgAgtQC24Ha7//RP/3TPnj3BYPD69euBQEDdbhiGruvXr1+nqQUASC2AjYKLy+UKBAI+n++VV14ZHh6Wm00t//M//0NTCwCQWgDbCYVCItLa2moYBk0tAEBqAezL4/EEg8Fr165t2rSJphYAyDtq10A+BQKB73//+z/60Y9EhKYWAMgvai1AnoXDYRG56667aGoBAFILYGsej0fX9YcffvjOO+/kbABAHlVNTEx88I+q//NPAFlLJpO/+93v7r33Xk4FAOQhr1RVTUxMkFoAAIAzUgsjRAAAwBlILQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAACpBQAAgNQCAABAagEAAKQWAAAAUgsAAACpBQAAkFoAAABILQAAAKQWAABAagEAACC1AAAAkFoAAACpBQAAgNQCAABILQAAAKQWAAAAUgsAACC1AAAAkFoAAABILQAAgNQCAABAagEAACC1AAAAUgsAAACpBQAAgNQCAABILQAAAPnnmvTvqqoqTgoAALChqomJCc4CAACwP0aIAAAAqQUAAIDUAgAASC0AAACkFgAAAFILAAAgtQAAAJBaAAAASC0AAIDUAgAAQGoBAAAgtQAAAFILAAAAqQUAAIDUAgAASC0AAACkFgAAQGoBAAAgtQAAAJBaAAAAqQUAAIDUAgAAQGoBAACkFgAAAFILAAAAqQUAAJBaAAAASC0AAACkFgAAQGoBAAAgtQAAAFILAAAAqQUAAIDUAgAAyp+LUwAAKAnTNOfNm8d5KLnx8XGXyxl5gFoLAKA07r//fk6CHTz66KOmaZJaAACYWjQa/cUvfqG+1jQtmUxOoFhGRka8Xq/1Xvz0pz91yq8NqQUAUAJf+cpXrK8TiYTX602lUpyWIoTF+vr6xsZGXdetG/fu3csIEQAAUwuFQuqq2dDQICLV1dUquBiGwckpTl7x+/3PP/+8iGia1tLS4pRXQWoBABSVaZodHR0i8txzz61YsUJEPvKRj4hIIpF44oknnNJg4SDxeDwQCKTnldHR0f3797/wwgsi0tfX55RCC6kFAFBsg4ODiURCROrq6v7f//t/IvLuu+8eO3ZMRCKRyJo1awgu+c0rixYtCofDVl4JhUK1tbWbN28WEa/X66BCC6kFAFBUVqGlu7v79ttvF5E777xTREZHR0dGRgguBcorXq9X13WVV9S96vY9e/Y4qNBCagEAFJVVaFHZRUQ+/vGPi8jZs2cbGhrSgwvnKjuGYfT09KTnlZGRkYsXL9bV1VmP2bFjh7pL9RWRWgAAmOKC2traKiIDAwNut1vdeO+99+q6fujQIRFpaGjo7u5WwaWnp4czlkVeqa6u7urqSs8rk6JJeqHFca+RtXEBAEXS19cnIpqmbdmyxbrx9ttvTy8DdHZ2ikhXV5e69Kp/Yta80tfXp86YOsN9fX2BQGDKBzu30EJqAQAU78qqLquzTlohuGTONM3BwcGOjg417qbySktLy3RnOBqNqkLL4cOHnfh6GSECABSDVWjJZNJKZ2enGirq6uoKhUKcvSnzSigUqqmpaW1tTSQSmqYFg8ErV64EAoEZQqFa3M/v96fXtxykamJigvceAFBQqVRqwYIFIhIMBq2Ri2g0unv37hUrVmzbtm3Kq/KaNWsikYiIjIyMOHE4o3B5Jb2+IiLd3d07duyYdTZQNBptbGwUkdHRUTWZiNQCAMBkgUAgHA57vd7z589PeXE1TfPcuXNyc7VcgssMyeMrX/mKtR5/d3d3R0eH1do8s/r6el3X/X6/c8tXpBYAQGHF4/FFixbNnDxCoVBra6umaVevXp2UZgguuecVERkeHl67dq04udBCagEAFJxVaLl48eJ0j7GGkJLJpMfjmS64OPqKm6+84vf7d+7cOekszcw0zZqamkQi0dbWtnPnTueeCrpxAQAFlOHqIB6Px+v1isipU6cm3eVyuUKhkKZpIvLQQw9V1NbQU24hFAqF5hRZJG1xv97eXkefEFILAKCArP1uZh3cefLJJ0Xk4MGDU2YaXdc1TVNbQ1dCcJlhC6G5PlX6LgqZjyjZEyNEAIBCmXnSimEYQ0NDIqJmFcViMVVuGRsbm/LimkqlvF6vmuWr6/pc6w0Oyis7duxQYUUFvsOHD+cyUVn1DM1wYkktAADMMmnF6tK1rkRVVVUyY9et1f6iadqVK1ectfPfrCYtcev1evfs2ZNjA7JhGIsXL04kEt3d3WWwXh8jRACAgohGo6obI/Neira2NhEZHByc7gEej0ftsJhIJMppa+gMtxDKQl9fn6pOqYX8SS0AAEzBWoY181aMlpaWtra2mRfPnbQ1tNODy6S8opa4zUtekbnsouAUjBABAPIvk9VBbh0hypzVMePz+U6cOOHES/JctxDKQk9PT1dXVzmNplFrAQDk/3r8zDPPiEh3d3eBlldpaGg4fvy4iEQiETVBxlnnJ4sthOaq/AotpBYAQP5Zq4MUNE80NzerHRb7+/t7enqcmFdUsMt7XlFUI0uG21U6xgQAAPkzPj6uVoTr7u6e+ZFjY2PqSpRMJrP+cSq4ZPLjSm5kZERN7bYOeGxsrEA/a3R0VP2UkZGRcvrtcvGZAABQkkKL2+32+/0zlCUyKT+o2bxdXV1qNMSek3tz3EIo60JLJov7UWsBAFSosbGxDAstM9ckNE3z+XyZf4uaMi0ix48ft3N9xe/351JYqvBCy8TEBH0tAIC8ycvqIHfccUcikYhEIoZhZP5zfT6fiKxduzYajdrhVORrCyEKLemY+QwAyA/DMKqrq0UkGAyqRfqzY5rmvHnzZMZFcqf8Lmtr6Dl9YyHySvqS/H6/v7e3t2hbVVsbI5T2JBQItRYAQH709fVJPiatuFyuWRfJnfK7Tpw4oSoujY2NJam4TNry0Ov16rqe3ZaHWdu4caOKSuUXWYRaCwAgL/JVaFHUInWapl29enVO32iaZk1NjWoHTiaTRdthsRBbCGVh5u0qywC1FgBAHmzevFnmXmgJhUKhUOjW/pWVK1eKSCKRiMViczoMl8ul67rqCPZ6valUqgh5pUBbCGUhi10UnIVaCwAgV9ba/HPtpVCbPE9ZGGhqaopEIgMDA9u2bZvr8aRSKa/Xq/qCdV0vUMVlUn1FLcmfe50pa2VfaBFqLSiyhQsXVpWpEv6pAkquEJNW1q1bJyJnz57N4ns9Ho+quCQSiUJUXNQSt4sXL07f8lAtcVuqt8A0zQ0bNpR3oUWE9VpQ3IUc5Ga/Hv+hgLKRy+og6htHR0dvvWt8fDzHpWOtA/P5fOPj43l5sePj48FgUI1AWXklX0+ei2AwqA6pcOvtsl4LKsuvfvUrTdNuu+22Mv4fxbsMCi354nK5clw9tra2dmRkREQikciaNWtM08y9vlKcLYSyODa1EnF3d3dBl9xlhAgVJBaLPfzww++99x6nAigb0WhUzfI9fPhw1k/y3//93wU6vIaGhrwEl2g0umzZsvS8MjY21tnZaZO9lIuzXSWpBZXl2LFjn//85z/72c9yKoCyYU1aqaury+Lb1T5Ec50oVMzgEo1G6+vrrSVurbxin5JG5RRaSC0oqtdee23+/Pmf/vSnORVAeYhGo+pa3tvba+fjbGhoUG0fkUgk80OdlFfUFkK2yitKb2+vmi1V9oUWEWHPZxSJYRiJROLdd98t5+Z2oMLkvjrIihUrROTee++d4U/H0NDQe++9l8X853SBQODy5csZbg1d2iX55/qnVb2ivr6+si+0iDDlAcWiZiEODAxwKoDyoIZdZJoZQPly/PhxEdE0LS/P1t3drY55ui2pR0dH1aCVlVcK+ury9Yo0TbPDPCbmEKF80IoLlBNrdZC2traCFiGyXiR3Sp2dneoy39XV1dPTM6m+UvIthHIptNikL7jQSC0oElpxgXJiTVopdEeL2+1WOxifOXMmL0/Y2dmpdljs6upSOyyqJfnT84pakj+7/uJiUnPOc9+uktQCTEYrLlA2ijxpRe1wtH///nw9YfrW0M8++6xNthCaq3g83t/fLyIHDhyokEILqQVFQisuUE6KvDrIo48+KiK6rudrYX6Xy3XixIlVq1apS77cXOLWKXlFsRb3a25urpzfPVILisFaFZdTAThdfgst0Wg0FArF4/EZHlNbW6tW0H/jjTfy9SpcLtef//mfq6+///3vl3YLoSzE43E1nrVnz56K+vUjtaAYVCsu5wEoA/ldHWT37t2tra2zbpG4detWyW353UkMw/jOd74jInffffemTZscN8JSoF0U7I/1WlAMqhXX/q1tAGa92JdkdZD169ffddddaj5RXvT19V2/ft26/DtLxRZaSC0oktdee+2RRx755Cc/yakAHE3t2V78SSt1dXV5/NhjZS8Refzxxx33Lqxbt05E/H5/pRVahBEiFOfDmWrF9Xg8nA3A0f+X8 746 yKc+9SkROXfuXPGzl4pfjpsi4JRdFEgtcIBQKLRw4cJJm5OpVlzVTAfAuQqxOsjixYtFJF+Tg+aUvUTEicuc5L6LAqkFEMMwAoFAR0dHIpF48cUX0+9iVVygDJTN6iDpjSyOSy0VXmghtSCfvv71rz/99NMi8s1vfjO93KJacR 944 AFOEeD0i33JVwcxDCOXwoyVvZSlS5c66C0wTbPCCy2kFuSN2+2+5557/uqv/qq7u/v69es/+MEPrLvUqri04gLOVbhJK/fee6/f71c7P89qeHi4urpaLWubS/a6++67RcTn8zlrk+TBwUFVaNm5c2fl/i6ybWkhlMGZHxsby+5VWN84NjZm/fP555/ntwJwLrUNstfrLfnW8el/XuZqdHRUffvHP/5xEXHWCfj1owAAIABJREFUFvTj4+OqO3C63aorBLWWkmVB+9dOsnsVbrdbban6rW99S0QuXLhAKy7gaLFYzCarg9TV1ak/JtntpKgKLZ/+9Kd/+ctfishTTz3lrEJLMXdRsC1SC/JP/ad64YUXDMP4+c9/zqq4gKNt3LhRbLM6iOqfzWKRXCt7bdq0SUQ0TXPQWgxF3q6S1ILK4na7g8GgiHzrW986e/bs8uXLacUFHMpuk1ZUagmHw5NWWMg8e/3sZz+Tm1sEOMW+ffsotChV9h+qgBOZpllTU6P+m+3evfuLX/wiS8wBTlRfX6/rut/vD4VCNvnbMm/ePBEZGRnJvPYTjUYbGxtF5PLly2qFmDl9e2kZhlFdXS0iwWDQWVs8FgK1FhSEy+WyVp/87W9/S2QBnKgIhZZ4PB4KhaLRaOZ/W9QcotOnT2f+U6wJw++//766Zfny5U55F0q1iwKpBZWlpaVF07Q77riDVlzAiUzT3LBhgxR4dZCzZ8+2trbu3r0782957rnn5vRXJT17vfzyyyLi8/mcslBeIXZRcPZHYk4BCvW75XLpun706FHrww0AB7Emrezfv7/QP2tOC8etXr366tWrmWev9JXZjh49Kjcbch2BQssk9LWgsP7rv/7rl7/85Wc+8xlOBeAgVmtad3d3Z2dn4X5QPB5ftGiRiBToYhQKhVpbW0UkmUyKyIIFC9TXjhi2tk4OHS0WRohQWH/0R39EZAEcpzxWB0mfMOzxeE6dOiWOmvNs7aJAZCG1AABmv9g7enWQSdnr4MGD4pw5z4XbRYHUAgAoH2p1EE3TyqbQ4na7TdOMRCIisn79ekccv1VoccoMbVILAKDYDMPYvn27iPT19dm50BKPx9vb23t6embOXnKz0HLu3Dl1+5IlS+z/LlBomQ5ziAAAHyjypBW32622Zpyr3/zmN/39/SKyY8eOW6cEW9krGAyq7KXWd/H7/Y6YP7x582YR8fl8FFomYQ4RAOCDi71TlmG1FsnVdb2urm7SvT09PV1dXZqmXblyRcWUhQsXJhKJ48ePNzc32/xdsFbyHR0dLdxKOQ7FCBEA4A8ctDqItUiuWjhuUvaatDJbKpVSo0UPPvig/d+F9AVm+J0ktQAAphCPx521DKtaLG7v3r2zZi8159nr9dp/zrPdtqsktQAA7Mhxq4M0NTWJSCKRSF9aN5VK3Zq91JznJ5980v4vikILqQUAMAsnTlrxeDxer1dEXnrpJevG9vb2SdnLMAynzHkOhUIUWkgtAIBZlGp1EMMwQqFQKBTK7ttV+WRoaGiG7HXhwgX1hc3nPKcvMEOhZTrMfAaASlfaQovaJ6ipqSmLppOtW7euWrVq6dKlM2SvwcFBEWlra7N5s0557KJAagEAFNa6deukRKuDWAvZGYaRRWrxeDzWd02XvVRq+cIXvmDnt6BsdlEoNEaIAKCiWZNW9u/f7+gXolZmm1RoicfjqoCxcuVKOx88hRZSCwBgduUxaSUajaqWW6vHRTl27JiKMnYuYBiGoYbJBgYGKLSQWgAA017sy2PSynTZS4UYVYaxLWuBmS1btvA7OTNW9AeACmWa5rJly3Rd9/v9Wc/iycN1qKpKclu9frol8K0NCqZc9d8mHLSLgh1QawGACjU4OKgKLTt37nT0C1EX+zvvvHNS7rHmPNs2soijdlGwA+YQAUAlSp+0Utp17tWez1n3cwwPD//bv/2biFy7di2VSqW/FmvOs23fhSlX8sUMGCECgEoUCoVUB+jY2JhzO0BN06ypqUkkEnffffc777wzaZBFjT3ZeZ/nQCAQDoe9Xu/58+dJLZlghAgAKk7ZrA5iTRh+9tln5eZ+Q0osFlNf2HbOc/oCM0QWUgsAYJaLvaNXB0nPXk899ZSIRCIRwzDUvWfOnBERn89n21hWql0USC0AAMewVgcJBoPlUWjp6Oiw+m2tDly1aJ5a9teGnLhdJakFAFBs5TFpxTCMSYNcqutWdeAahqGmRz366KP2PP4pV/LFrBhIA4AKYhiG3SatRKPRX//61ytWrJjTei19fX2JRELTNDXOIiJf+MIX3nrrrU984hNyc3hI0zR7Lvg73Uq+ILUAAP7PxV5sVmjZvXt3OBwOBoOZJ4wps1dzc7M1V+jVV18VEdsWk8pjFwVSCwAniUaju3fvnvkxO3fuLO1aIEhXNquDzJq9+vv7bZtaymYXBVILACcZHBycmJhobm7+8Ic/PN1j5s+fz4myj/b2dhHxer1O72iZOXtZc56XLl1qw+On0EJqAVCa1PL1r3/96aefnvlhjl7ErJyUzeogqpFlhkLLyy+/LHad8zw8PEyhhdQCoNhSqVQikfjwhz/M+trOutg7fdJKPB5Xoz9HjhyZLnsdPXpUbDnn2TTNZ555RkS6u7sptGSHmc8AsvHGG2/4fL4PfYi/IY652JfH6iCzZq/XX39dFTPUunO2Uh6L+5FaADjP4cOHV61a9cADD3AqHKE8VgfJJHtdunRJffHHf/zHtjr4stlFgdQCwHnC4fAdd9xhz25HTGLz1UFWrFjh9/vvvffeWR+ZySDXT37yE/XFuXPnbPUyKbSQWgCU7COv+uzIR0ZHsPmklW3btoVCoVmLQLFYbNZCi2maP/zhD62UYJ/XeOtKviC1ACiSs2fP0tTiFGWzOsjGjRtV9poh37z99tvW17ZKLbeu5AtSC4AiOXbsGE0tTlEeq4NkmL3UnOeHH35YRBKJhLVwS2nZcBcFUguACkJTi1OEQqHyKLRkmL3UnOdnn33W5/PJzd2ISq48tqsktQBwJJpanCJ90kolFFpSqZR6WFNTk1qsxQ7dxxRaSC0ASommFqdwyqSVeDweCoWi0eh02SvDQsupU6dERNM0j8ezadOmZDKpbiktNeecQgupBUBp0NTiCA5aHeTs2bOtra3T7cQ5ODioKij79++f+XkOHjwoIlu3bhURt9tth207rQVmZljJF6QWAHkQjUbr6+uHh4cn3U5TiyOUx+ogmWcv0zTVmjTr16+3z/GXxy4KtkL0AzCFpqYmj8ej6/pTTz2VSCSsCwZNLY5gGEZra6uIDAwMOPqdyjx7WWvKLVmyxCYHXza7KNgKtRYAU/jxj3/8qU996rnnnhsbGwsEAtbtNLU4gjVpZcuWLc59FXMa5Dp9+rSI+P1++wzEUGgpBGotAKbgdrs7OztN0zx9+vQrr7wyPDzc3NwsNLU4QdlMWtm3b1/mg1x79+6VmyvRpZ+KM2fOXLt2LT15F0c0GlWFlsOHD/M7mUd8YAIw/ccal0v1CrS2thqGITS1OEF5rA5iGMb27dtFJBgMzlpoSaVSKt88+OCD6befOXNm7dq1JensseY91dXV8TtJagFQJB6PJxgMXrt2bdOmTTS1OOJiXx6Fljllr5deeklEvF7vpHlDK1euFJFEIqF+dYumbHZRILUAcJ5A4P+3d/+xUdeH48dfZWe2SeOMsXi6McqGmS7r+SMSEmDqxjHHj61ZdCZX/WdxS5RJieE//ii7JmN/sURKpgkxJlvabh3GMCkOKRE3SmJ0ibSG+QeRY2za9RJ/bL1shvfs 94/ X10s/BUp/XMvd+Xj8Va/H9foG6ZPX+/Wjbd26db///e9bW1tNaqlycXeQTCZTQwMty5Yty+Vyq1evnnV7xd3k7r///kmPL168OJPJhBAOHjy4kN9RfZyiUJ0axsfHXQVgasViccmSJSGEX/ziF9/85jfNLqxOhUJh+fLlIYTjx4/X9O9RZ2fnzp070+n0uXPnLlstpVKpsbExhDA0NHTh7Zi9e/du3bo1k8mcPHlyYd784ODg2rVrQwhnzpxRLRXn30zA5cX7RCGExsZGk1qqVn0sWikWizMaaHnjjTfiBxdd87x58+YYNHFi1nxLkuSBBx4IIbS3t0sW1QJcMW1tbWNjY3/6059MaqlOdbM7yLZt22J7TXPhT19fX6yEiyZOc3NzOp0OC3WSYnmDGTNaVAtwhS1evHjv3r2uQ3Wqj4GWWbRXrJb77rvvUk+Ie/wvwArkGjpFoXbZrwWYgTi7hWpTN7uDzLS9CoVCHNuIy4UuKu7xv27duvl+8/VxioJqAWB+1fTuIKVSKS4CWr169UwHWuLioEwmM8XYRktLywJcFgMtqgWAy6v13UGKxWI8NSmbzYYZ3uSKuRPXe19Zu3btGhkZSafTBlrmlZXPALXttttuGxoayuVyPT09tfj+ywu2o+kvGJ56zfNCKr+T7u7uhT894FPFbFyAGnbo0KF62oZ1RjuzlZcFXfH7YvVxioJqAWAeJUnyyCOPhDraHWRG7XX48OH4vU//chWLxYq/57o5RUG1ADCP6mx3kJlugb9nz54w5ZrniQYHB6+66qo4daay4ronAy2qBYCpRg7qY9FKnFE70/YaHh6OH0yx5nmia665JszDJrmFQiHG0zPPPGOgRbUAcHH1sTtIkiQ///nP48czGmiJk1qy2ew0i62lpWU+NsktbzCzceNGfyZVCwAXUSqV6mOgpa+vL 841 +eEPfzijX7hv374QQmtr6/R/SbyDU8GN+OrmFIUaYuUzQO2Z0anIVStJkqVLl46MjOTz+Y6OjhlFW1xpPKNzlcunMZ8/f74iF62tra23t3chD5RGtQDUmLrZHaSnpyfuLzc2NjajEaNDhw5t2rQpnU6/++67M4qkq666KlRof5fh4eFMJhNCOH78eE2f/VRb3CECqDH1sTvIXG5yxTXPM/32U6lUXEP0/PPPz/39P/zwwyGEXC4nWVQLAJf8YV8fu4Ps3r07boEfJ7ROX5IkcdnOLKLtiSeeCCG89dZbc3zztX6KQu1yhwiglmzbtm3Pnj21PqNlLje5yrdmZnpfKRZPCGHu163WT1GoXRaXA9SM8u4g+/fvr/WBljDhJlf82d/a2jqdCon3d6a/5vn//MyrxEUz0KJaALi88u4gNT2X4sKbXHFO7pkzZ6YTIs8991yY4ZrnCkqS5IEHHggz38mXinCHCKA2lM9GrvVFK3HB8MSbXA0NDWF6y5iLxeKSJUtCCKOjo01NTQv/5me97omKMBsXoDbUx0BLeWe22d3keu2110II6XT6iiRL3ZyiULvcIQKoAcPDw/WxDesc2yvubPvYY4/N5T0Ui8Wnnnrquuuue/zxx2f0C+vjFIWa5g4RQA2oj0Url7rJNc07ROVt4uZ4j2x2m+TOeidfKsgdIoBqVzeLVuY40PLXv /41 frBq1aq5vI3bb7990gtOx9NPPx03mDHQoloAuKQtW7aE2l+0MvebXOU1z3NcwLx48eKZbpJbKpW2bt0aQti9e7cZLaoFgIurm4GWKbbAz+fzuVzuH//4x9Sv8NRTT4UQfvSjH839zcQXiS84HfVxikIdMK8FoHqV51LU+oyW8lSSGZ3SPFFl1zzP6NXq5rjKOmCsBaB6lRet7Nu3r6a/kbnf5Dpy5Eio3JrnpqameCzA7373u8s+2UCLagHgMupmd5CK3OR69tlnw5zXPE90//33hxAOHDgw9dMKhUJ9HFdZH9whAqhS9bENa0VucpXXPA8NDbW0tFTkjRUKhVOnTq1cuXLqwZu4k28mkzl58qQ/k6oFgKl+2Nf67iAVaa/Z7bBSkbKpj1MU6obBLoBqtGvXrjrYHWSaN7kGBwfPnj27evXqS816OXr0aAghl8st8D2a+jhFoZ4YawGoOnWzaGWaAy3xLswU3+yNN 944 MjLS39+/cePGBXvzBlqqkNm4AFWnPhatVGo2cbFYjAupVq5cuZDvv7W1NYSQzWYli2oB4OJKpVJ9LFqJW+CHOZ81GBcnZzKZeTrnuVgsDg8PT3qwvO6p1tecqxYA5lGcS1HrAy3lLfC7u7vnuAAqLk6OC5UrrqenZ8mSJXHf3onq4xQF1QLAPCoUCnv27AkhPPPMMzU90FKpm1ylUmlgYCCE8IMf/GA+3uf69etDCENDQ8Visfxg3ZyioFoAmEflRSsLOe204mZ6kyve+jl9+vSFn3rjjTfiB7feeut8vNWmpqZ0Oh0+2Xs3hJAkiYEW1QLAZRQKhTmeilwlZjrQsmrVqhDCW2+9deGn+vr6Qgjt7e3zN/IU99uNe+/GrxgHWp588kl/JlULABdXH7uDzGIL/GXLluVyudWrV1+qWu677775e8Px3tPAwECpVJq47mmeJv8yF/ZrAaiWH/b1sTtIBbfAL1+TeT3ToHxcwPHjx8+ePVsHpyjUMWMthBBCwzS4SgsjSZKGOXMZa1HcHSSXy9X6QEsFb3IdPHgwhJDJZOY1IFKpVHt7ewjht7/9bX0cV1nH7OhPCCEYcqui/ydTKb8dn0J1s2ilsje54prnn/zkJ/P9tu+7775jx469++67Fdlghnn8N7a/HwGuuEwmMzw8PJdTkatBZW9ylY81qOA5z9P5crV+ioJqAWAeFYvFZcuW/ec//7noZyf9LV3+4VqFz1y/fv3AwEA2mz1y5EhFXnPS8xfgO0qn0+fOnavpnXLqm3ktAFfYkSNHLpUsF5r+fIsFfubg4GDcDi5ugV+prx5nnMzfd1TeDyZ66aWXJItqAeCSHnzwwXXr1sWP77rrrvgv/vFPxMeTJClv3jp+CRcdV1iwZ164M9v0X7O7uzv+2gufNmnNcwW/o0Kh0NbWtnbt2vifuVzuzJkzC3ArCtUCUMNSqdQf//jHTCYTQnj99dffeeedODN30hjAkiVLbrzxxm3btg0ODpZKpar6Fio+m7h8nOE999xT8Xcbe2X58uVxuVPslZ6eHjvhqhYAphUuAwMDcWv5O++888InHD58OIQwMjKyZ8+etWvXNjY23nbbbZ2dnRceVnxFVHwL/FdeeSWEkM1mK7sCeVKvZDIZvaJaAJixpqamoaGhdDo9MjKSyWQmHuYXQnjyySdHR0f7+/vL8zyGhoZ27tz5/PPPX/F33tPTU/Fl23FyTNzDpiJKpVJnZ+fEXjl+/PjJkyf1Sm2xhgigihSLxUwmMzIykk6nh4aGLrWpfKFQOHHixMGDB3/6059OWmO8d+/e6667bvXq1Qvz8zhJkqVLl46MjOTz+Y6Ojtm9yPDwcLxBFn8kldf1nDlzZu7fRalU2r17dzxkIPbKr371q5reyk+1AFAtyrueZLPZF198caZLWiZujpzL5R5++OGVK1fO35E6PT09c98Cv/wtxx9Jhw4d2rRpUzqdfvfddyvYK+l0evfu3fZiqWnuEAFUl+bm5uPHj4cQBgYGNmzYkCTJjH5O5/P5OG4RQujt7d20aVOcxjvpllNFTDxrsIITUOIknmmeF32pN9bT07NixYqYLOl0uru7+9y5c5Kl1hlrAahGg4ODcVHu7EZcSqXSG2+80dfX19fXF3epP3/+/MQXSZLko48+mmNqzGigJa57uujTisXitm3b4gtOPMtwFvdxkiTp6+vbvn17/K7j+MqDDz5oF5Y6MQ5AVYojLjFczp8/P+vXGR0dPX78+KQH4/zZbDbb1dU1NDQ0i9cfGxuLi566urou++T45X7961+Pjo5O55mxhGb6lrq7u+NbivL5/FyuG1VItQBUr66urvIP4Hl65bJsNtvd3X3ZqijL5/NxMOOyZVDum1tuuSV+rVwu193dfdFaii+bzWZnWnjl+2Lxcs0ielAtAMxJ/Ck+H+EyNDTU1dWVzWYntsukDWqnCJH4/O7u7ss+OZfLxWeeOXOmvb19Yl6EEDKZTD6f7+/vj8EUPzudl9UrqgWAT1G4ROfPnx8aGorTeC/Mhf7+/v7+/kkpMP2Blrhb/6Sxk7GxsdhMMWgmTpSJH0xnyGdoaGhir+RyuekPFFGjzMYFqAGdnZ1xOUxXV9fjjz++kF/6tttui3NNMpnM/fffv27duptvvvmGG26IIyJTr8opFotLlixJp9OnT5+eYrpuoVA4derU66+/fvPNN7e1tV12zXOhUNixY0fcLy72yq5du+wX92lg5TNADejo6Ii3crZu3To4OLiQX/ree++Ns1Librxr166NydLU1DT14uQkSeJ73r9//9QrjJqamj 744 IMVK1a88MILIYTHHntsil5xhNCnmuEmgJpw/vz58hyUC9cEzbczZ850d3dPvKFz8ODB6dzYam9vn86LT/zBdNHvbnR0dOJXj1vy+1PhDhEAVSpJkg0bNgwMDITZbmcyd21tbb29vV/+8pfPnj078fF4MyiXy23evHn9+vXxNKVMJvOXv/zlsnullPfGjSZtLWNLfspUC0CthktFjumZkXJeXNhMcRv+8n9ef/31n//85/P5/ObNmy97nkAsnvhxNps9cuSIXkG1ANSDaZ6wOB/iQEsmkzl58uSkT8XdeI8ePfrcc8+Vd4qLqXHhky/y0+iT45PiDN8kSZ5++umtW7fGB21xi2oBEC4zUD6ZeWhoqKWlZeq399prrx0+fLivr++xxx6bdBZ0oVD497//feutt05MkHK1vPPOOy+//LIt+VEtAMJl9uIS6FwuV95VZTqSJJkUHOvXr493uLLZbGtr6+bNm5ubm2O13HTTTR9//LFeQbUA1GG4xOkg05z0Ohfl0xznPpmmXC1TyOfz27dvr+A50tQH+7UA1KqmpqZ4wuLQ0NCGDRuSJJm/r7Vly5YQQi6Xm/v83yNHjsTdeLu6uibt7h8+2ZK/o6NDsqBaAOrKmjVrYrgMDAzMX7gMDg7GCba7du2qyAumUqmWlpY77rhj4oPt7e16ham5QwRQ88q3b7LZ7IsvvljZW0VJkixdunRkZGSmM1qmUCgUWltby0uNbMnPNBlrAah5a9asiYcUDgwMVGo4pKyvry9Oj923b19FeiVuyR+TxZb8zMhnfvazn7kKALWupaVl0aJFx44dO3bs2KJFi+65556KvGySJN/97nfHxsby+fz69evn2Ctbtmz58Y9//Oabb4YQstns0aNHH3nkkWuvvdZvH9PkDhFA/SgfDZ3P5yftkjI7PT09Dz30UAhhbGxs1tNNSqXSjh079uzZE//TFrfMmjtEAPWjo6Mjnlm4c+fOvXv3zvHVkiTZvn17bKDZJUupVOrs7GxsbIzJEo88PHnypGRhdoy1ANSb8oYoczxhce/evVu3bk2n06dPn55ptUw6QiidTu/fv1+soFoA+D8qcjR0qVRqbGwMnxwMNKOv3tfXF+8rBVvcUlHuEAHUm1Qq9eKLL2az2RDC2rVrBwcHZ/Eiu3fvjs3x4IMPTr9Xenp6li5dGpMlnU53d3efO3eura1NslARxloA6tPEEZfLnnc4yUwHWuL4SvnIwxBCV1fXo48+KlaoLGMtAPUplUr19PSk0+kQwne+851isTj9XzujgZbBwcE4vhKTJW7J//jjj0sWKs5YC0A9m8XR0IVCYfny5WEaAy2Dg4Nbtmwpb3HryENUCwALGi5tbW29vb2ZTObkyZPT7JVcLrdv3z69gmoBoJLhcu7cuSnu3ZQHWi61+KhQKOzYsaO3t7fcK44QYsGY1wJQ/5qamvbv3x9CGBkZmfpo6B07doQQMpnMhclSPkIoJosjhFh4xloAPi0uezT0pQZaJo2vZDKZAwcOiBUWnrEWgE+LNWvWHD9+PIQwMDBw0RGX1tbW2DTlZIlb8pfHV8pb8ksWVAsA8x4u/f39MVziGUNlg4ODcXbtvn37woQjhOKu/I4QQrUAsNA2btwYT1jcs2dPZ2dn+fEtW7aEEHK5XFNT08ReiVvc6hWqgS2AAD51Ojo6Qgg7d+6MXdLR0VEeaFm1atWKFSvifnGOEKLamI0L8CnV2dkZqyWfz+/fv394ePhzn/vcf//7X72CagGg6sQN5SY9mM/nd+zYoVdQLQBUkXjC4v/+979isfjmm2/akh/VAkBVh0sI4f3337/66qv1CqoFAKACrHwGAFQLAIBqAQBUCwCAagEAUC0AgGoBAFAtAACqBQBQLQAAqgUAQLUAAKoFAEC1AACEkHIJqkSpVDpw4IDrMH+WLVu2Zs0a1wFAtTBXr7zyyvbt27/1rW+5FPNk9erVqgWgpjWMj4+7CtWgs7Pz 448 /zufzLsW88gceoHYZa6kWf/7zn9va2s6cOdPc3OxqAMCFzMatFgMDA//617++9KUvuRQAoFqqV6FQCCF85jOfSaWMfgGAaqlip06dymaz7733nksBAKqlqh0+fHjVqlUrVqxwKQBAtVS1Y8eO3XTTTatXr3YpAEC1VK8kSYaGhs6fP28qLgColqr297//PYTw4YcfmooLAKqlqp04cSKbzboOAKBaqt2rr75qKi4AqJYaYCouAKiWGhCn4i5atMhUXABQLVUtTsVNksRUXABQLVXtxIkTuVzOdQAA1VJFBgcH43lDE7366qt33XXXV77yFdcHAFTLlZckybZt29auXbtp06ZJn+rr67v66qu//vWvu0oAoFquvF27dq1ateqLX/ziqVOnjh49Wn68VCqNjIx88MEHzc3NrhIAqJYrr6Oj4/Tp03/4wx9CCA899FD58bfffjuE0NjY6BIBgGqponC58 847 c7ncP//5z2effTY+ODw8nMvl3nvvPdcHAC6rYXx83FVYMIVCYfny5Y2Nje+//34qlWpra8tkMplMZuPGjS4OAEzNWMuCam5ubm9vHxsb+81vfhNCePnll6+99lpTcQFAtVSjXbt2hRDa29sLhYKpuACgWqrX4sWL8/n82NjY9773vWAqLgColmq2ffv2G2 644 c033...

Ngày tải lên: 02/06/2014, 20:02

28 1,4K 1
Chuyên đề Đại số tổ hợp và xác suất (Hướng dẫn giải các dạng bài tập từ các đề thi quốc gia toán học.)

Chuyên đề Đại số tổ hợp và xác suất (Hướng dẫn giải các dạng bài tập từ các đề thi quốc gia toán học.)

... Giải Số cách chọn 4 học sinh từ 12 học sinh đã cho là  4 12 C 49 5 . Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một em được tính như sau:  Lớp A có 2 học sinh, các lớp B, C mỗi lớp có ... sinh. Số cách chọn là:  2 1 1 5 4 3 C .C .C 120  Lớp B có 2 học sinh, các lớp C, A mỗi lớp có 1 học sinh. Số cách chọn là:  1 2 1 543 C .C .C 90  Lớp C có 2 học sinh, các lớp A, ... sinh lớp A, 4 học sinh lớp B và 3 học sinh lớp C. Cần chọn 4 học sinh đi làm nhiệm vụ, sao cho 4 học sinh này thuộc không quá 2 trong 3 lớp trên. Hỏi có bao nhiêu cách chọn như vậy? Giải...

Ngày tải lên: 02/06/2014, 20:03

11 3K 4
w