Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 15 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
15
Dung lượng
259,71 KB
Nội dung
HĐBM Toán An Giang-Tài liệu tham khảo Ôn tập thi TN
Trang
64
Chuyên đề7
PHƯƠNG PHÁPTỌAĐỘTRONGKHÔNG GIAN
ℑ
ℑℑ
ℑ 1 TỌAĐỘ ĐIỂM VÀ VECTƠ
A. CÁC KIẾN THỨC CƠ BẢN:
I. Tọađộ điểm
:
Trongkhônggian với hệ tọađộ Oxyz:
1.
( ; ; )
M M M M M M
M x y z OM x i y j z k
⇔ = + +
uuuur r r r
2. Cho A(x
A
;y
A
;z
A
) và B(x
B
;y
B
;z
B
) ta có:
( ; ; )
B A B A B A
AB x x y y z z
= − − −
uuur
;
2 2 2
( ) ( ) ( )
B A B A B A
AB x x y y z z
= − + − + −
3. M là trung điểm AB thì M
+++
2
;
2
;
2
BABABA
zzyyxx
II. Tọađộ của véctơ
:
Trongkhônggian với hệ tọađộ Oxyz .
1.
1 2 3
( ; ; )
a a a a
=
r
⇔
1 2 3
a a i a j a k
= + +
r r r r
2. Cho
1 2 3
( ; ; )
a a a a
=
r
và
1 2 3
( ; ; )
b b b b
=
r
ta có
1 1
2 2
3 3
a b
a b a b
a b
=
= ⇔ =
=
r r
1 1 2 2 3 3
( ; ; )
a b a b a b a b
± = ± ± ±
r r
1 2 3
. ( ; ; )
k a ka ka ka
=
r
1 1 2 2 3 3
. . os(a; )
a b a b c b a b a b a b
= = + +
r r r r r r
2 2 2
1 2 3
a a a a
= + +
r
1 1 2 2 3 3
2 2 2 2 2 2
1 2 3 1 2 3
. . .
s( , )
.
a b a b a b
co a b
a a a b b b
+ +
=
+ + + +
r r
(với
0 , 0
a b
≠ ≠
r r r r
)
a
r
và
b
r
vuông góc
1 1 2 2 3 3
. . . 0
a b a b a b
⇔ + + =
III. Tích có hướng của hai vectơ và ứng dụng:
Tích có hướng của
1 2 3
( ; ; )
a a a a
=
r
và
1 2 3
( ; ; )
b b b b
=
r
là :
2 3 3 1 1 2
2 3 3 2 3 1 1 3 1 2 2 1
2 3 3 1 1 2
a a a a
a a
, ; ; ( ; ; )
b b b b b b
a b a b a b a b a b a b a b
= = − − −
r r
HĐBM Toán An Giang-Tài liệu tham khảo Ôn tập thi TN
Trang
65
Chương trình chuẩn Chương trình nâng cao
a
r
và
b
r
cùngphương
1 1
2 2
3 3
:
a kb
k R a kb a kb
a kb
=
⇔ ∃ ∈ = ⇔ =
=
r r
a
r
,
b
r
,
c
r
đồng phẳng
, :
m n R c ma nb
⇔ ∃ ∈ = +
r r r
(
a
r
,
b
r
không cùng phương)
1.
Tính ch
ất
:
,
a b a
⊥
r r r
,
,
a b b
⊥
r r r
, sin( , )
a b a b a b
=
r r r r r r
a
r
và
b
r
cùng phương ⇔
, 0
a b
=
r r r
a
r
,
b
r
,
c
r
đồng phẳng ⇔
, . 0
a b c
=
r r r
Diện tích:
( )
2
2 2
1
. .
2
ABC
S AB AC AB AC
= −
uuur uuur
Thể tích: V
ABCD
=
( )
1
. , ( )
3
ABC
S d C ABC
Thể tích khối hộp:
V
ABCD.A’B’C’D’
=
(
)
2 . ',( )
ABC
S d A ABC
2.Các ứng dụng tích có hướng :
Diện tích tam giác :
1
[ , ]
2
ABC
S AB AC
=
uuur uuur
Thểtích tứ diệnV
ABCD=
1
[ , ].
6
AB AC AD
uuur uuur uuur
Thể tích khối hộp:
V
ABCD.A’B’C’D’
=
[ , ]. '
AB AD AA
uuur uuur uuur
V.Phương trình mặt cầu:
1. Mặt cầu (S) tâm I(a;b;c) bán kính r có phưong trình là :(x-a)
2
+ (y-b)
2
+ (z-c)
2
= r
2
2. Phương trình : x
2
+ y
2
+ z
2
+ 2Ax + 2By + 2Cz + D=0 với A
2
+B
2
+C
2
-D>0
là phương trình mặt cầu tâm I(-A;-B;-C) , bán kính
2 2 2
r A B C D
= + + −
.
IV. Điều kiện khác:( Kiến thức bổ sung )
1. Nếu M chia đoạn AB theo tỉ số k (
MA kMB
=
uuur uuur
) thì ta có :
; ;
1 1 1
A B A B A B
M M M
x kx y ky z kz
x y z
k k k
− − −
= = =
− − −
Với k ≠ 1
2. G là trọng tâm của tam giác ABC ⇔
; ;
3 3 3
A B C A B C A B C
G G G
x x x y y y z z z
x y z
+ + + + + +
= = =
3. G là trọng tâm của tứ diện ABCD ⇔
4
4
4
A B C D
G
A B C D
G
A B C D
G
x x x x
x
y y y y
y
z z z z
z
+ + +
=
+ + +
=
+ + +
=
BÀI TẬP
Bài 1
: Trongkhônggian Oxyz cho A(0;1;2) ; B( 2;3;1) ; C(2;2;-1)
a) Tính
, .( 3 )
AB AC O B
F
A C
= +
uuur uuur uuur uuur
.
b) Chứng tỏ rằng OABC là một hình chữ nhật tính diện tích hình chữ nhật đó.
c) Viết phương trình mặt phẳng (ABC).
d) Cho S(0;0;5).Chứng tỏ rằng S.OABC là hình chóp.Tính thể tích khốichóp đó
HĐBM Toán An Giang-Tài liệu tham khảo Ôn tập thi TN
Trang
66
Bài 2
: Cho bốn điểm A(1;0;0) , B(0;1;0) , C(0;0;1) , D(-2;1;-1)
a) Chứng minh rằng A,B,C,D là bốn đ ỉnh của tứ diện.
b) Tìm tọađộtrọng tâm G của tứ diện ABCD.
c) Tính các góc của tam giác ABC.
d) Tính diện tích tam giác BCD.
e) Tính thể tích tứ diện ABCD và độ dài đường cao của tứ diện hạ từ đỉnh A.
Bài 3: Cho hình hộp chữ nhật ABCD.A’B’C’D’ biết A(0,0,0), B(1;0;0), D(0;2;0),
A’(0;0;3), C’(1;2;3).
a) Tìm tọađộ các đỉnh còn lại của hình hộp.
b) Tính thể tích hình hộp.
c) Chứng tỏ rằng AC’ đi qua trọng tâm của hai tam giác A’BD và B’CD’.
d) Tìm tọađộ điểm H là hình chiếu vuông góc của D lên đoạn A’C.
Bài 4:
Trongkhônggian Oxyz cho điểm A(2;3;4). Gọi M
1
, M
2
, M
3
lần lượt là hình chiếu
của A lên ba trục tọađộ Ox;Oy,Oz và N
1
, N
2
, N
3
là hình chiếu của A lên ba mặt phẳng
tọa độ Oxy, Oyz, Ozx.
a) Tìm tọađộ các điểm M
1
, M
2
, M
3
và N
1
, N
2
, N
3
.
b) Chứng minh rằng N
1
N
2
⊥ AN
3
.
c) Gọi P,Q là các điểm chia đoạn N
1
N
2
, OA theo tỷ số k xác định k để PQ//M
1
N
1.
Bài 5:
a/. Cho ba điểm A(2 ; 5 ; 3), B(3 ; 7 ; 4), C(x ; y ; 6).Tìm x, y để A, B, C thẳng
hàng
b/.Cho hai điểm A(-1 ; 6 ; 6), B(3 ; -6 ; -2).Tìm điểm M thuộc mp(Oxy) sao cho
MA + MB nhỏ nhất.
c/. Tìm trên Oy điểm cách đều hai điểm A(3 ; 1 ; 0) và B(-2 ; 4 ; 1).
d/. Tìm trên mp(Oxz) điểm cách đều ba điểm A(1 ; 1; 1), B(-1 ; 1 ; 0), C(3 ;1 ; -1).
e/. Cho hai điểm A(2 ; -1 ; 7), B(4 ; 5 ; -2). Đường thẳng AB cắt mp(Oyz) tại điểm
M.
Điểm M chia đọan AB theo tỉ số nào? Tìm tọađộ điểm M.
Bài 6: Trongkhônggian Oxyz cho A(1 ; 1 ; 0), B(0 ; 2 ; 1), C(1 ; 0 ; 2), D(1 ; 1 ; 1)
a) Chứng minh bốn điểm đókhông đồng phẳng. Tính thể tích tứ diện ABCD.
b) Tìm tọađộtrọng tâm của tam giác ABC, trọng tâm của tứ diện ABCD.
c) Tính diện tích các mặt của tứ diện ABCD
d) Tính độ dài các đường cao của tứ diện ABCD
e) Tính góc giữa hai đường thẳng AB và CD.
f) Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD.
Bài 7:
Cho bốn điểm A(2 ; -1 ; 6), B(-3 ; -1 ; -4), C(5 ; -1 ; 0), D(1 ; 2 ; 1).
a) Chứng minh ABC là tam giác vuông.
b) Tính bán kính đường tròn nội, ngọai tiếp tam giác ABC.
c) Tính độ dài đường phân giác trong của tam giác ABC vẽ từ đỉnh C.
Bài 8 :Viết phương trình mặt cầu trong các trường hợp sau:
a) Tâm I(1 ; 0 ; -1), đường kính bằng 8.
b) Đường kính AB với A(-1 ; 2 ; 1), B(0 ; 2 ; 3)
HĐBM Toán An Giang-Tài liệu tham khảo Ôn tập thi TN
Trang
67
c) Tâm O(0 ; 0 ; 0) tiếp xúc với mặt cầu tâm I(3 ; -2 ; 4) và bán kính R = 1
d) Tâm I(2 ;-1 ; 3) và đi qua A(7 ; 2 ; 1).
e) Tâm I(-2 ; 1 ; – 3) và tiếp xúc mp(Oxy).
Bài 9
:Viết phương trình mặt cầu trong các trường hợp sau:
a) Đi qua ba điểm A(1 ; 2 ; -4), B(1 ; -3 ; 1), C( 2 ; 2 ; 3) và có tâm nằm trên mp(Oxy).
b) Đi qua hai điểm A(3 ; -1 ; 2), B(1 ; 1 ; -2) và có tâm thuộc trục Oz.
c) Đi qua bốn điểm A(1 ; 1 ; 1), B(1 ; 2 ; 1), C(1 ; 1 ; 2), D(2 ; 2 ; 1)
Bài 10
:Cho phương trình x
2
+ y
2
+ z
2
– 4mx + 4y + 2mz + m
2
+ 4m = 0.Tìm m để nó là
phương trình một mặt cầu và tìm m để bán kính mặt cầu là nhỏ nhất.
ℑ
ℑℑ
ℑ2. MẶT PHẲNG
A. CÁC KIẾN THỨC CƠ BẢN:
I. Phương trình mặt phẳng:
§ Định nghĩa
:
Trongkhônggian Oxyz phương trình dạng Ax + By + Cz + D = 0
với A
2
+B
2
+C
2
≠ 0 được gọi là phương trình tổng quát của mặt phẳng
Mặt phẳng (P) : Ax + By + Cz + D = 0 có véctơ pháp tuyến là
( ; ; )
n A B C
=
r
Mặt phẳng (P) đi qua điểm M
0
(x
0
;y
0
;z
0
) và nhận
( ; ; )
n A B C
=
r
làm vectơ pháp tuyến
có phương trình dạng: A(x-x
0
)+B(y-y
0
)+C(z-z
0
)=0.
Nếu (P) có cặp vectơ
1 2 3 1 2 3
( ; ; ), b ( ; ; )
a a a a b b b
= =
r r
không cùng phương và có giá song
song hoặc nằm trên (P) thì vectơ pháp tuyến của (P) được xác định
,
n a b
=
r r r
§ Các trường hợp riêng của phương trình mặt phẳng
:
Trong khônggian Oxyz cho mp(
)
α
: Ax + By + Cz + D = 0. Khi đó:
D = 0 khi và chỉ khi (
)
α
đi qua gốc tọa độ.
A=0 ,B
0
≠
,C
0
≠
, D
0
≠
khi và chỉ khi
( )
α
song song với trục Ox
A=0 ,B = 0 ,C
0
≠
, D
0
≠
khi và chỉ khi
( )
α
song song mp (Oxy )
A,B,C,D
0
≠
. Đặt
, ,
D D D
a b c
A B C
= − = − = −
Khi đó
( ) : 1
x y z
a b c
α
+ + =
(Các trường hợp khác nhận xét tương tự)
II. Vị trí tương đối của hai mặt phẳng
Trong khônggian Oxyz cho (
α
): Ax+By+Cz+D=0 và (
α
’):A’x+B’y+C’z+D’=0
(
α
)cắt (
α
’) ⇔ A : B : C ≠ A’: B’: C’
(
α
) // (
α
’) ⇔ A : A’ = B : B’ = C : C’ ≠ D : D’
(
α
) ≡ (
α
’) ⇔ A : B : C : D = A’: B’: C’: D’
Đặc biệt
HĐBM Toán An Giang-Tài liệu tham khảo Ôn tập thi TN
Trang
68
(
α
)
⊥
(
α
’)
1 2
. 0 . ' . ' . ' 0
n n A A B B C C
⇔ = ⇔ + + =
ur uur
B. BÀI TẬP
:
Bài 1
: Trongkhônggian Oxyz, cho bốn điểm A( 3;-2;-2), B(3;2;0), C(0;2;1), D( -1;1;2)
a) Viết phương trình mặt phẳng (ABC).
b) Viết phương trình mặt phẳng trung trực của đoạn AC.
c) Viết phương trình mặt phẳng (P) chứa AB và song song với CD.
d) Viết phương trình mặt phẳng (Q) chứa CD và vuông góc với mp(ABC).
Bài 2:
Trongkhônggian Oxyz, cho hai mặt phẳng (P): 2x – y + 2z - 4=0 và
(Q): x - 2y - 2z + 4=0
a) Chứng tỏ rằng hai mặt phẳng (P) và (Q) vuông góc nhau.
b) Viết phương trình tham số của đường thẳng (∆) là giao tuyến của hai mặt
phẳng đó.
c) Chứng minh rằng đường thẳng (∆) cắt trục Oz .Tìm tọađộ giao điểm.
d) Mặt phẳng (P) cắt ba trục tọađộtại ba điểm A,B,C. Tính diện tích tam giác
ABC.
e) Chứng tỏ rằng gốc tọađộ O không thuộc mặt phẳng (P), từ đó tính thể tích tứ
diện OABC.
Bài 3: Trongkhônggian Oxyz, cho mặt phẳng (P): 2x + y - z - 6 = 0
a) Viết phương trình mp (Q) đi qua gốc tọađộ O và song song với mp (P).
b) Viết phương trình tham số, chính tắc của đường thẳng đi qua gốc tọađộ O và
vuông góc với mặt mp(P).
c) Tính khoảng cách từ gốc tọađộ đến mặt phẳng (P). ( TNPT năm 1993)
Bài 4
: Trongkhônggian Oxyz, cho hai mặt phẳng (P): x + y – z +5 = 0 và (Q): 2x – z = 0
a) Chứng tỏ hai mặt phẳng đó cắt nhau
b) Lập phương trình mặt phẳng (α) qua giao tuyến của hai mặt phẳng (P) và (Q)
và đi qua A(-1;2;3).
c) Lập phương trình mặt phẳng (β) qua giao tuyến của hai mặt phẳng (P) và (Q)
và song song với Oz.
d) Lập phương trình mặt phẳng (
γ
) đi qua gốc tọađộ O và vuông góc với hai mặt
phẳng (P) và (Q).
Bài 5
:Trong khônggian Oxyz, cho điểm M(2;1;-1) và mặt phẳng (P) : 2x + 2y - z + 2 = 0
a) Tính độ dài đoạn vuông góc kẽ từ M đến mặt phẳng (P).
b) Viết phương trình đường thẳng (d) qua M vuông góc với mặt phẳng (P).
c) Viết phương trình mặt phẳng (α) đi qua điểm M song song Ox và hợp với mặt
phẳng (P) một góc 45
0
.
Bài 6
: Trongkhônggian Oxyz, cho hai mặt phẳng (P): 2x + ky + 3z – 5 = 0 và
(Q): mx - 6y - 6z + 2 = 0
a) Xác định giá trị k và m để hai mặt phẳng (P) và (Q) song song nhau, lúc đó hãy
tính khoảng cách giữa hai mặt phẳng.
b) Trong trường hợp k = m = 0 gọi (d) là giao tuyến của (P) và (Q), hãy tính
khoảng cách từ A(1;1;1) đến đường thẳng (d).
HĐBM Toán An Giang-Tài liệu tham khảo Ôn tập thi TN
Trang
69
ℑ
ℑℑ
ℑ3. ĐƯỜNG THẲNG
A. CÁC KIẾN THỨC CƠ BẢN:
I. Phương trình đường thẳng
:
Định nghĩa :
Phương trình tham số của đường thẳng
∆
đi qua điểm M
0
(x
0
;y
0
;z
0
) và có vectơ
chỉ phương
1 2 3
( ; ; )
a a a a
=
r
:
0 1
0 2
0 3
(t R)
x x a t
y y a t
z z a t
= +
= + ∈
= +
Nếu a
1
, a
2
, a
3
đều khác không .Phương trình đường thẳng
∆
viết dưới dạng
chính tắc như sau:
0 0 0
1 2 3
x x y y z z
a a a
− − −
= =
II Vị Trí tương đối của các đường thẳng và các mặt phẳng:
Chương tr
ình
chu
ẩn
Chương tr
ình nân
g cao
1)Vị trí tương đối của hai đường thẳng.
Trong Kg Oxyz cho hai đường thẳng
' '
1
1
' '
2 2
' '
0 3
3
'
: ' : '
'
o
o
o o
o
x x a t
x x a t
d y y a t d y y a t
z z a t
z z a t
= +
= +
= + = +
= +
= +
d cóvtcp
u
r
đi qua M
o
;d’có vtcp
'
u
ur
đi quaM
o
’
u
r
,
'
u
ur
cùng phương
§ d // d’⇔
0
'
'
u ku
M d
=
∉
r ur
§ d ≡ d’⇔
0
'
'
u ku
M d
=
∈
r ur
u
r
,
'
u
ur
không cùng phương
' '
1 1
' '
2 2
' '
0 3 3
'
'
'
o o
o o
o
x a t x a t
y a t y a t
z a t z a t
+ = +
+ = +
+ = +
(I)
§ dcắtd’⇔HệPtrình (I) có một nghiệm
§ d chéo d’⇔Hệ Ptrình (I) vô nghiệm
1)Vị trí tương đối của hai đường thẳng.
Trong Kg Oxyz cho hai đ ường thẳng
' '
1
1
' '
2 2
' '
0 3
3
'
: ' : '
'
o
o
o o
o
x x a t
x x a t
d y y a t d y y a t
z z a t
z z a t
= +
= +
= + = +
= +
= +
d có vtcp
u
r
điqua M
o
;d’cóvtcp
'
u
ur
điqua M
o
’
(d) // (d’) ⇔
[ , ']=0
M '
o
u u
d
∉
r ur r
(d) ≡ (d’) ⇔
0
[ , ']=0
M '
u u
d
∈
r ur r
(d) cắt (d’) ⇔
'
0
, ' 0
, ' . 0
o
u u
u u M M
≠
=
r ur
uuuuuur
r ur
(d) chéo (d’) ⇔
'
0 0
, ' . 0
u u M M
≠
uuuuuur
r ur
HĐBM Toán An Giang-Tài liệu tham khảo Ôn tập thi TN
Trang
70
2)Vị trí tương đốicủa đthẳng vàmặtphẳng:
Trong Kg Oxyz cho (α): Ax+By+Cz+D=0
và
1
2
0 3
:
o
o
x x a t
d y y a t
z z a t
= +
= +
= +
pt:A(x
o
+a
1
t)+B(y
o
+a
2
t)+C(z
0
+a
3
t)+D=0(1)
P.trình (1) vô nghiệm thì d // (α)
P.trình (1) có một nghiệm thì d cắt (α)
P. trình (1) có vô số nghiệm thì d
⊂
(α)
Đặc biệt :
(
d
)
⊥
(
α
)
,
a n
⇔
r r
cùng phương
2)Vị trí tương đốicủa đthẳng vàmặtphẳng:
Trong khônggian Oxyz cho đ ường thẳng
d qua M(x
0
;y
0
;z
0
) có vtcp
1 2 3
( ; ; )
a a a a
=
r
và(α): Ax+By+Cz+D=0 cóvtpt
( ; ; )
n A B C
=
r
d cắt (α) ⇔
. 0
a n
≠
r r
d // (α) ⇔
. 0
( )
a n
M
α
=
∉
r r
d
⊂
(α) ⇔
. 0
( )
a n
M
α
=
∈
r r
(Bổ sungkiếnthức chươngtrình nâng cao)
3) Khoảng cách:
Khoảng cách giữa hai điểm A(x
A
;y
A
;z
A
) và B(x
B
;y
B
;z
B
) là:
2 2 2
( ) ( ) ( )
B A B A B A
AB x x y y z z
= − + − + −
Khoảng cách từ M
0
(x
0
;y
0
;z
0
) đến mặt phẳng (α): Ax+By+Cz+D=0 cho bởi công thức
0 0 0
0
2 2 2
Ax
( ,( ))
By Cz D
d M
A B C
α
+ + +
=
+ +
Khoảng cách từ M đến đường thẳng d
Phương pháp
:
§ Lập ptmp(
α
)đi quaM vàvuônggócvới d
§ Tìm tọađộ giao điểm Hcủa mp(
α
) và d
§ d(M, d) =MH
Khoảng cách giữa hai đường chéo nhau:
d điqua M(x
0
;y
0
;z
0
);cóvtcp
1 2 3
( ; ; )
a a a a
=
r
d’quaM’(x’
0
;y’
0
;z’
0
) ;vtcp
1 2 3
' ( ' ; ' ; ' )
a a a a
=
uur
Phương pháp
:
§ Lập ptmp(
α
)chứa d và songsong với d’
§ d(d,d’)= d(M’,(
α
))
Khoảng cách từ M đến đuờng thẳng d
( d đi qua M
0
có vtcp
u
r
)
0
[M , ]
( , )
M u
d M d
u
=
uuuuur r
r
Khoảng cách giữa hai đường chéo nhau
d điqua M(x
0
;y
0
;z
0
);cóvtcp
1 2 3
( ; ; )
a a a a
=
r
d’quaM’(x’
0
;y’
0
;z’
0
) ;vtcp
1 2 3
' ( ' ; ' ; ' )
a a a a
=
uur
[ , ']. '
( , ')
[ , ']
hop
day
a a MM
V
d d d
S
a a
= =
r uur uuuuur
r uur
Kiến thức bổ sung
G
ọ
i
φ
là góc gi
ữ
a hai m
ặ
t ph
ẳ
ng (0
0
≤φ≤
90
0
)
(P):Ax+By+Cz+D=0 và (Q):A’x+B’y+C’z+D’=0
P
P
2 2 2 2 2 2
P Q
n .
A.A' . ' . '
os = cos(n , )
n . n
. ' ' '
Q
Q
n
B B C C
c n
A B C A B C
ϕ
+ +
= =
+ + + +
uur uur
uur uur
uur uur
Góc gi
ữ
a hai
đườ
ng th
ẳ
ng
(∆)
đ
i qua M(x
0
;y
0
;z
0
) có VTCP
1 2 3
( ; ; )
a a a a
=
r
(∆’)
đ
i qua M’(x’
0
;y’
0
;z’
0
) có VTCP
1 2 3
' ( ' ; ' ; ' )
a a a a
=
uur
HĐBM Toán An Giang-Tài liệu tham khảo Ôn tập thi TN
Trang
71
1 1 2 2 3 3
2 2 2 2 2 2
1 2 3 1 2 3
. '
. ' . ' . '
os os( , ')
. '
. ' ' '
a a
a a a a a a
c c a a
a a
a a a a a a
ϕ
+ +
= = =
+ + + +
r uur
r uur
r uur
Góc gi
ữ
a
đườ
ng th
ẳ
ng và m
ặ
t ph
ẳ
ng
(∆)
đ
i qua M
0
có VTCP
a
r
, mp(
α
) có VTPT
( ; ; )
n A B C
=
r
G
ọ
i
φ
là góc h
ợ
p b
ở
i (∆) và mp(
α
)
1 2 3
2 2 2 2 2 2
1 2 3
Aa +Ba +Ca
sin os( , )
A .
c a n
B C a a a
ϕ
= =
+ + + +
r r
B. BÀI TẬP:
Bài 1:
a)
Vi
ế
t ph
ươ
ng trình tham s
ố
,chính t
ắ
c c
ủ
a
đườ
ng th
ẳ
ng qua hai
đ
i
ể
m
A(1;3;1) và B(4;1;2).
b)
Vi
ế
t ph
ươ
ng trình
đườ
ng th
ẳ
ng (d)
đ
i qua M(2;-1;1) vuông góc v
ớ
i m
ặ
t ph
ẳ
ng
(P) : 2x – z + 1=0 . Tìm t
ọ
a
độ
giao
đ
i
ể
m c
ủ
a (d) và (P).
c)
Vi
ế
t ph
ươ
ng trình tham s
ố
, chính t
ắ
c c
ủ
a
đ
u
ờ
ng th
ẳ
ng d là giao tuy
ế
n c
ủ
a hai
m
ặ
t ph
ẳ
ng
( ) : 2 4 0 , ( ) : 2 2 0
P x y z Q x y z
+ − + = − + + =
Bài 2
: Trongkhônggian Oxyz cho ba
đ
i
ể
m A(0;1;1), B(-1;0;2), C(3;1;0) và m
ộ
t
đườ
ng
th
ẳ
ng (∆) có ph
ươ
ng trình :
9 2 ,
5 3
x t
y t t R
z t
=
= + ∈
= +
a)
Vi
ế
t ph
ươ
ng trình m
ặ
t ph
ẳ
ng (
α
)
đ
i qua ba
đ
i
ể
m A,B,C.
b)
Vi
ế
t ph
ươ
ng trình tham s
ố
, chính t
ắ
c
đườ
ng th
ẳ
ng BC.Tính d(BC,∆).
c)
Ch
ứ
ng t
ỏ
r
ằ
ng m
ọ
i
đ
i
ể
m M c
ủ
a
đườ
ng th
ẳ
ng (∆)
đề
u th
ỏ
a mãn AM ⊥ BC,
BM ⊥ AC, CM ⊥ AB.
Bài 3:
Trongkhônggian Oxyz cho hình h
ộ
p ch
ữ
nh
ậ
t có các
đỉ
nh A(3;0;0), B(0;4;0),
C(0;0;5), O(0;0;0) và D là
đỉ
nh
đố
i di
ệ
n v
ớ
i O.
a)
Xác
đị
nh t
ọ
a
độ
đỉ
nh D.Vi
ế
t ph
ươ
ng trình t
ổ
ng quát m
ặ
t ph
ẳ
ng (A,B,D).
b)
Vi
ế
t ph
ươ
ng trình
đườ
ng th
ẳ
ng
đ
i qua D và vuông góc v
ớ
i m
ặ
t ph
ẳ
ng (A,B,D).
c)
Tính kho
ả
ng cách t
ừ
đ
i
ể
m C
đế
n m
ặ
t ph
ẳ
ng (A,B,D).
Bài 4:
Cho hai
đườ
ng th
ẳ
ng:
x=2+t
2 '
( ) : ( '): y=1-t , '
3
z=2t
1 '
x t
t t R
y
z t
= −
∆ ∆ ∈
=
= +
a)
Ch
ứ
ng minh r
ằ
ng hai
đườ
ng th
ẳ
ng (∆) và (∆’) không c
ắ
t nhau nh
ư
ng vuông
góc nhau.
b)
Tính kho
ả
ng cách gi
ữ
a hai
đườ
ng th
ẳ
ng (∆)và (∆’).
c)
Vi
ế
t ph
ươ
ng trình m
ặ
t ph
ẳ
ng (P)
đ
i qua (∆) và vuông góc v
ớ
i (∆’).
d)
Vi
ế
t ph
ươ
ng trình
đườ
ng vuông góc chung c
ủ
a (∆)và (∆’).
HĐBM Toán An Giang-Tài liệu tham khảo Ôn tập thi TN
Trang
72
Bài 5:
Trongkhônggian Oxyz cho b
ố
n
đ
i
ể
m A(-1;-2;0), B(2;-6;3),C(3;-3;-1),D(-1;-5;3).
a)
L
ậ
p ph
ươ
ng trình tham s
ố
đườ
ng th
ẳ
ng AB.
b)
L
ậ
p ph
ươ
ng trình mp (P)
đ
i qua
đ
i
ể
m C và vuông góc v
ớ
i
đườ
ng th
ẳ
ng AB.
c)
L
ậ
p ph
ươ
ng trình
đườ
ng th
ẳ
ng (d) là hình chi
ế
u vuông góc c
ủ
a
đườ
ng th
ẳ
ng
CD xu
ố
ng m
ặ
t ph
ẳ
ng (P).
d)
Tính kho
ả
ng cách gi
ữ
a hai
đườ
ng th
ẳ
ng AB và CD.
Bài 6
: Trongkhônggian Oxyz cho A(3;-1;0) , B(0;-7;3) , C(-2;1;-1) , D(3;2;6).
a)
Tính các góc t
ạ
o b
ở
i các c
ặ
p c
ạ
nh
đố
i di
ệ
n c
ủ
a t
ứ
di
ệ
n ABCD.
b)
Vi
ế
t ph
ươ
ng trình m
ặ
t ph
ẳ
ng (ABC).
c)
Vi
ế
t ph
ươ
ng trình
đườ
ng th
ẳ
ng (d) qua D vuông góc v
ớ
i m
ặ
t ph
ẳ
ng (ABC).
d)
Tìm t
ọ
a
độ
đ
i
ể
m D’
đố
i x
ứ
ng D qua m
ặ
t ph
ẳ
ng (ABC).
e)
Tìm t
ọ
a
độ
đ
i
ể
m C’
đố
i x
ứ
ng C qua
đườ
ng th
ẳ
ng AB.
Bài 7
: Cho
đườ
ng th
ẳ
ng
2
( ) :
4
1 2
x t
y t
z t
= − +
∆
=
= − +
và mp (P) : x + y + z - 7=0
a)
Tính góc gi
ữ
a
đườ
ng th
ẳ
ng và m
ặ
t ph
ẳ
ng.
b)
Tìm t
ọ
a
độ
giao
đ
i
ể
m c
ủ
a (∆) và (P).
c)
Vi
ế
t ph
ươ
ng trình hình chi
ế
u vuông góc c
ủ
a (∆) trên mp(P).
Bài 8
: Trongkhônggian Oxyz cho hai
đườ
ng th
ẳ
ng (∆) và (∆’) l
ầ
n l
ượ
t có ph
ươ
ng
trình:
7 3
1 2 5
: ; ' : 2 2
2 3 4
1 2
x t
x y z
y t
z t
= +
− + −
∆ = = ∆ = +
−
= −
.
a)
Ch
ứ
ng minh r
ằ
ng hai
đườ
ng th
ẳ
ng (∆) và (∆’) cùng n
ằ
m trong m
ặ
t ph
ẳ
ng (
α
)
b)
Vi
ế
t ph
ươ
ng trình t
ổ
ng quát c
ủ
a m
ặ
t ph
ẳ
ng (
α
)
c)
Vi
ế
t ph
ươ
ng trình
đườ
ng th
ẳ
ng (d) vuông góc và c
ắ
t c
ả
hai
đườ
ng th
ẳ
ng (∆) và
(∆’) .
Bài 9
: Trongkhônggian Oxyz, cho ba
đ
i
ể
m A(5;0;0), B(0;5/2;0), C(0;0;5/3) và
đườ
ng
th
ẳ
ng (∆): x = 5 + t ; y = -1 + 2t ; z = - 4 + 3t .
a)
L
ậ
p ph
ươ
ng trình m
ặ
t ph
ẳ
ng (
α
)
đ
i qua A , B, C. Ch
ứ
ng minh r
ằ
ng (
α
) và (∆)
vuông góc nhau, tìm t
ọ
a
độ
giao
đ
i
ể
m H c
ủ
a chúng.
b)
Chuy
ể
n ph
ươ
ng trình c
ủ
a (∆) v
ề
d
ạ
ng chính t
ắ
c. Tính kho
ả
ng cách t
ừ
đ
i
ể
m
M(4;-1;1)
đế
n (∆).
c)
L
ậ
p ph
ươ
ng trình
đườ
ng th
ẳ
ng (d) qua A vuông góc v
ớ
i (∆), bi
ế
t (d) và (∆) c
ắ
t
nhau.
BÀI TẬP TỔNG HỢP:
Bài 1:
Trongkhônggian Oxyz cho m
ặ
t c
ầ
u (S) : x
2
+ y
2
+ z
2
-2x - 4y - 6z = 0 và hai
đ
i
ể
m
M(1;1;1), N(2;-1;5).
a)
Xác
đị
nh t
ọ
a
độ
tâm I và bán kính c
ủ
a m
ặ
t c
ầ
u (S).
b)
Vi
ế
t ph
ươ
ng trình
đườ
ng th
ẳ
ng MN.
c)
Tìm k
để
m
ặ
t ph
ẳ
ng (P): x + y – z + k = 0 ti
ế
p xúc m
ặ
t c
ầ
u (S).
HĐBM Toán An Giang-Tài liệu tham khảo Ôn tập thi TN
Trang
73
d)
Tìm t
ọ
a
độ
giao
đ
i
ể
m c
ủ
a m
ặ
t c
ầ
u (S) và
đườ
ng th
ẳ
ng MN .Vi
ế
t ph
ươ
ng trình
m
ặ
t ph
ẳ
ng ti
ế
p xúc v
ớ
i m
ặ
t c
ầ
u t
ạ
i các giao
đ
i
ể
m.
Bài 2
: Trongkhônggian Oxyz, cho A(6;-2;3), B(0;1;6), C(2;0;-1), D(4;1;0).
a)
Ch
ứ
ng minh r
ằ
ng A,B,C,D là b
ố
n
đỉ
nh c
ủ
a t
ứ
di
ệ
n.
b)
Tính th
ể
tích t
ứ
di
ệ
n ABCD.
c)
Vi
ế
t ph
ươ
ng trình m
ặ
t ph
ẳ
ng qua ba
đ
i
ể
m A,B,C.
d)
Vi
ế
t ph
ươ
ng trình m
ặ
t c
ầ
u ngo
ạ
i ti
ế
p t
ứ
di
ệ
n ABCD. Xác
đị
nh t
ọ
a
độ
tâm và
bán kính m
ặ
t c
ầ
u
đ
ó
e)
G
ọ
i (T) là
đườ
ng tròn qua ba
đ
i
ể
m A,B,C . Hãy tìm tâm và tính bán kính c
ủ
a
đườ
ng tròn (T)
Bài 3:
Trongkhônggian Oxyz cho m
ặ
t ph
ẳ
ng (P): 2x - 3y + 4z – 5 = 0 và m
ặ
t c
ầ
u
(S): x
2
+ y
2
+ z
2
+ 3x + 4y - 5z + 6=0
a)
Xác
đị
nh t
ọ
a
độ
tâm I và bán kính r c
ủ
a m
ặ
t c
ầ
u (S).
b)
Tính kho
ả
ng cách t
ừ
tâm I
đế
n m
ặ
t ph
ẳ
ng (P).T
ừ
đ
ó suy ra r
ằ
ng m
ặ
t ph
ẳ
ng (P)
c
ắ
t m
ặ
t c
ầ
u (S) theo m
ộ
t
đườ
ng tròn mà ta ký hi
ệ
u là (C). Tính bán kính R và
t
ọ
a
độ
tâm H c
ủ
a
đườ
ng tròn (C).
Bài 4:
Trongkhônggian Oxyz cho m
ặ
t ph
ẳ
ng (P): x + 2y – z + 5 = 0,
đ
i
ể
m I(1;2;-2) và
đườ
ng th
ẳ
ng
1 2
( ) : ,
4
x t
d t R
y t
z t
= − +
∈
=
= +
a)
Tìm giao
đ
i
ể
m c
ủ
a (d) và (P). Tính góc gi
ữ
a (d) và (P).
b)
Vi
ế
t ph
ươ
ng trình m
ặ
t c
ầ
u (S) tâm I ti
ế
p xúc v
ớ
i m
ặ
t ph
ẳ
ng (P).
c)
Vi
ế
t ph
ươ
ng trình m
ặ
t ph
ẳ
ng (Q) qua (d) và I.
d)
Vi
ế
t ph
ươ
ng trình
đườ
ng th
ẳ
ng (d’) n
ằ
m trong (P), c
ắ
t (d) và vuông góc (d).
Bài 5
: Trongkhônggian Oxyz cho A(1;-1;2) , B(1;3;2), C(4;3;2), D(4;-1;2).
a)
Ch
ứ
ng minh A,B,C,D là b
ố
n
đ
i
ể
m
đồ
ng ph
ẳ
ng.
b)
G
ọ
i A’ là hình chi
ế
u vuông góc c
ủ
a
đ
i
ể
m A trên m
ặ
t ph
ẳ
ng Oxy. hãy vi
ế
t
ph
ươ
ng trình m
ặ
t c
ầ
u (S)
đ
i qua b
ố
n
đ
i
ể
m A’,B,C,D.
c)
Vi
ế
t ph
ươ
ng trình ti
ế
p di
ệ
n (
α
) c
ủ
a m
ặ
t c
ầ
u (S) t
ạ
i
đ
i
ể
m A’.
Bài 6:
Trongkhônggian Oxyz, cho A(1;0;0), B(1;1;1) và C(1/3; 1/3;1/3)
a)
Vi
ế
t ph
ươ
ng trình m
ặ
t ph
ẳ
ng (P) vuông góc OC t
ạ
i C. Ch
ứ
ng minh O,B,C
th
ẳ
ng hàng. Xét v
ị
trí t
ươ
ng
đố
i c
ủ
a m
ặ
t c
ầ
u (S) tâm B, bán kính
2
R =
v
ớ
i
m
ặ
t ph
ẳ
ng (P).
b)
Vi
ế
t ph
ươ
ng trình tham s
ố
c
ủ
a
đườ
ng th
ẳ
ng là hình chi
ế
u vuông góc c
ủ
a
đườ
ng
th
ẳ
ng AB lên m
ặ
t ph
ẳ
ng (P).
Bài 7
: Trongkhônggian Oxyz, cho mp(P): x + y + z – 1 = 0, mp(P) c
ắ
t các tr
ụ
c t
ọ
a
độ
t
ạ
i
A, B, C.
[...]... SA và BM Bài 6: Trong khônggian Oxyz cho đi m D (-3 ;1;2) và m t ph ng (α ) đi qua ba đi m A(1;0;11) , B(0;1;10), C(1;1;8) a/ vi t phương trình đư ng th ng AC b/ Vi t phương trình t ng quát c a m t ph ng (α ) c/.Vi t phương trình m t c u (S) tâm D,bán kính r = 5.Ch ng minh m t ph ng (α ) c t m t c u (S) Bài 7:Trongkhônggian Oxyz ,cho m t ph ng (α ) : 2x +y – z – 6 = 0 a/ Vi t phương trình m t... u tham kh o Ôn t p thi TN b/ Vi t phương trình tham s c a đư ng th ng đi qua D và vuông góc v i m t ph ng (ABD) Bài 9 : Trongkhônggian Oxyz, cho A( 6 ;- 2 ;3) ,B(0 ;1 ;6) , C(2 ;0 ;-1 ), D(4 ;1 ;0) a/ G i (S) là m t c u đi qua b n đi m A, B, C, D Hãy l p phương trình m t c u (S) b/ Vi t phương trình m t ph ng ti p xúc v i m t c u (S) t i A Bài 10 : Trongkhônggian Oxyz cho A(1; 0; 0), B(0; 1; 0)... CD c/ Vi t phương trình m t c u (S) đi qua b n đi m A, B, C, D d/.Vi t phương trình m t ph ng (α ) ti p xúc v i m t c u (S) và song song v i m t ph ng (ABD) Bài 12 :Trong khônggian Oxyz cho A(3 ;-1 ;6) , B (-1 ;7 ;-2 ) , C( 1 ;-3 ;2), D(5;1;6) a/.Ch ng minh A,B,C không th ng hàng Tìm t a đ tr ng tâm c a tam giác ABC b/.Ch ng minh A,B,C,D không đ ng ph ng.Xác đ nh t a đ tr ng tâm c a t di n c/ Tính góc t o... – 2z +5=0 x = −3 + 2t ,t ∈ R Bài 4 :Trong khônggian Oxyz cho đi m A (-4 ;-2 ;4)và đư ng th ng d: y = 1 − t z = −1 + 4t Vi t phương trình đư ng th ng ∆ đi qua đi m A , c t và vuông góc v i đư ng th ng d Bài 5:Cho hình chóp S.ABCD có đáy là hình thoi ABCD , AC c t BD t i g c t a đ O Bi t A(2;0;0), B(0;1;0), S(0;0; 2 2 ) G i M là trung đi m SC a/ Vi t phương trình m t ph ng ch a SA và song song... Vi t phương trình m t c u (S) đi qua b n đi m A, B, C, D b/ Xác đ nh t a đ tâm và bán kính c a đư ng tròn là giao tuy n c a m t c u (S) v i m t ph ng (ACD) Bài 11: Trong khônggian Oxyz cho A( 2;4 ;-1 ) ,B(1;4 ;-1 ) , C(2 ;4;3), D(2;2 ;-1 ) a/ Ch ng minh các đư ng th ng AB,AC,AD vuông góc v i nhau t ng đôi m t b/.Vi t phương trình tham s c a đư ng vuông góc chung ∆ c a hai đư ng th ng ABvà CD c/ Vi t phương. .. 8 Tìm m đ h phương trình sau đây có đúng m t nghi m tìm nghi m đó x2 + y 2 + z 2 = 1 2 x − y + 2 z = m Bài 9 Cho ba s th c x,y,z th a x 2 + y 2 + z 2 = 1 tìm giá tr l n nh t và giá tr nh nh t c a F = 2x + 2 y − z − 3 Trang 75 HĐBM Toán An Giang -Tài li u tham kh o Ôn t p thi TN BÀI T P T NG H P B SUNG PHƯƠNGPHÁP T A Đ x y+2 z Bài 1:Cho hai dư ng th ng ∆1 : = = 2 3 4 TRONGKHÔNGGIAN x = 1+... HĐBM Toán An Giang -Tài li u tham kh o Ôn t p thi TN Bài 17: Cho hai đư ng th ng (d1) và (d2) có phương trình (d1) : x+7 y −5 z −9 = = 3 −1 4 , (d2) x y + 4 z + 18 = = 3 −1 4 a/ Ch ng t (d1) và (d2) song song v i nhau b/ Vi t phương trình m t ph ng (P) ch a (d1) và (d2) c/ Tính kho ng cách gi a (d1) và (d2) d/ L p phương trình m t ph ng (Q) ch a (d1) và cách (d2) m t kho ng b ng 2 e/.L p phương trình... b/ Vi t phương trình tham s c a đư ng th ng đi qua g c t a đ O và vuông góc v i m t ph ng (α ) c/ Tính kho ng cách t g c t a đ O đ n m t ph ng (α ) Bài 8: Cho hình h p ch nh t có các đ nh A(3 ;0 ;0), B(0 ;4 ;0), C(0 ;0 ;5), O(0 ;0 ;0 ) và đ nh D đ i x ng v i O qua tâm c a hình h p ch nh t a/ Xác đ nh t a đ đ nh D Vi t phương trình t ng quát c a m t ph ng (ABD) Trang 76 HĐBM Toán An Giang -Tài li... ng AC và SB Bài 5 Cho hình l p phương ABCD.A’B’C’D’.Tính s đo c a góc nh di n [B,A’C,D] Bài 6 Cho hình lăng tr đ ng ABCD.A’B’C’D’có đáy ABCD là hình thoi c nh a, góc BAD = 600 G i M là trung đii m c nh AA’ và N là trung đi m c a c nh CC’ Ch ng minh r ng b n đi m B’,M,D,N cùng thu c m t m t ph ng Hãy tính đ dài c nh AA’ theo a đ t giác B’MDN là hình vuông Bài 7*: Cho hình l p phương ABCD.A’B’C’D’ có... An Giang -Tài li u tham kh o Ôn t p thi TN a) Tìm t a đ A, B, C Vi t phương trình giao tuy n c a (P) v i các m t ph ng x = 2+t t a đ Tìm t a đ giao đi m D c a (d): y = −t , t ∈ R v i mp(Oxy) Tính z = −3 − 3t th tích t di n ABCD b) L p phương trình m t c u (S) ngo i ti p t di n ABCD G i (T) là đư ng tròn ngo i ti p tam giác ACD Xác đ nh tâm và tính bán kính c a đư ng tròn đó Bài 8: Trongkhông . HĐBM Toán An Giang -Tài liệu tham khảo Ôn tập thi TN
Trang
64
Chuyên đề7
PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
ℑ
ℑℑ
ℑ 1 TỌA ĐỘ ĐIỂM VÀ VECTƠ. Toán An Giang -Tài liệu tham khảo Ôn tập thi TN
Trang
72
Bài 5:
Trong không gian Oxyz cho b
ố
n
đ
i
ể
m A (-1 ;-2 ;0), B(2 ;-6 ;3),C(3 ;-3 ;-1 ),D (-1 ;-5 ;3).