Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 191 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
191
Dung lượng
5,84 MB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ - Lê Thị Như Trang ỔN ĐỊNH NHIỆT ĐÀN HỒI CỦA TẤM VÀ VỎ THOẢI COMPOSITE GIA CƯỜNG CARBON NANOTUBE LUẬN ÁN TIẾN SĨ NGÀNH KỸ THUẬT CƠ KHÍ VÀ CƠ KỸ THUẬT Hà Nội, 2021 BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ - Lê Thị Như Trang ỔN ĐỊNH NHIỆT ĐÀN HỒI CỦA TẤM VÀ VỎ THOẢI COMPOSITE GIA CƯỜNG CARBON NANOTUBE Chuyên ngành: Cơ kỹ thuật Mã sỗ: 952 01 01 LUẬN ÁN TIẾN SĨ NGÀNH KỸ THUẬT CƠ KHÍ VÀ CƠ KỸ THUẬT NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS TS Hồng Văn Tùng PGS TS Nguyễn Đình Kiên Hà Nội, 2021 I LỜI CAM ĐOAN Tôi Lê Thị Như Trang, xin cam đoan công trình nghiên cứu riêng tơi Các số liệu, kết trình bày luận án tơi trung thực chưa công bố cơng trình khác Nghiên cứu sinh Lê Thị Như Trang II LỜI CẢM ƠN Luận án hoàn thành hướng dẫn khoa học hai thày PGS.TS Hồng Văn Tùng PGS.TS Nguyễn Đình Kiên Tác giả xin bày tỏ lòng biết ơn chân thành tới hai thày tận tình hướng dẫn, giúp đỡ, động viên tạo điều kiện thuận lợi để tác giả hồn thành luận án Trong q trình thực Luận án, tác giả nhận nhiều giúp đỡ, tạo điều kiện thuận lợi lãnh đạo tập thể cán bộ, nhà khoa học Học viện Khoa học Công nghệ, Viện Cơ học, Viện Hàn lâm Khoa học Công nghệ Việt Nam Tác giả xin bày tỏ lòng biết ơn chân thành giúp đỡ Tác giả xin trân trọng cảm ơn Ban Giám Hiệu – Trường Đại học Công nghệ Giao thông vận tải đồng nghiệp Bộ môn Kết cấu – Vật liệu xây dựng, khoa Cơng trình tạo điều kiện, ln quan tâm động viên trình tác giả học tập hoàn thiện luận án Cuối cùng, tác giả xin bày tỏ lòng biết ơn sâu sắc tới gia đình, bạn bè người thân ln động viên chia sẻ khó khăn tác giả suốt trình thực luận án III MỤC LỤC LỜI CAM ĐOAN I LỜI CẢM ƠN .II MỤC LỤC III DANH MỤC HÌNH VẼ VII DANH MỤC B ẢNG BIỂU XIII DANH MỤC VIẾT TẮT, KÝ HIỆU XV MỞ ĐẦU CHƯƠNG TỔNG QUAN 1.1 Ống nano các-bon (CNT) composite gia cường CNT có tính biến đổi 1.1.1 Ống nano các-bon (CNT) 1.1.2 Composite gia cường CNT có tính biến đổi 1.2 Các nghiên cứu ứng xử kết cấu làm từ composite gia cường CNTs 10 1.2.1 Phân tích tĩnh động kết cấu FG-CNTRC 10 1.2.2 Ổn định tuyến tính vỏ FG-CNTRC 12 1.2.3 Ổn định phi tuyến vỏ FG-CNTRC 14 1.2.4 Ổn định nhiệt đàn hồi kết cấu composite nanocomposite 15 1.2.5 Ứng xử kết cấu với cạnh biên chịu liên kết đàn hồi 18 1.2.6 Ứng xử kết cấu sandwich vấn đề lỗ rỗng (porosity) kết cấu 19 1.3 Tình hình nghiên cứu nước 20 1.4 Về ổn định tĩnh kết cấu 21 1.4.1 Mất ổn định kiểu rẽ nhánh (bifurcation-type buckling) 22 1.4.2 Mất ổn định kiểu giới hạn (limit-type buckling) cực trị (extereme-type buckling) 23 1.4.3 Một vài trường hợp đặc biệt 24 CHƯƠNG ỔN ĐỊNH NHIỆT ĐÀN HỒI CỦA TẤM CHỮ NHẬT VÀ PANEL TRỤ MỎNG FG-CNTRC 25 2.1 Ổn định chữ nhật panel trụ FG-CNTRC chịu tải môi trường nhiệt độ 25 IV 2.1.1 Vật liệu FG-CNTRC panel trụ FG-CNTRC 26 2.1.2 Các phương trình 29 2.1.3 Điều kiện biên nghiệm giải tích 32 2.1.4 Một số toán cụ thể 34 2.1.4.1 Panel trụ FG-CNTRC chịu áp lực 34 2.1.4.2 Panel trụ FG-CNTRC chịu tải nén dọc trục 37 2.1.4.3 Tấm chữ nhật FG-CNTRC chịu nén cạnh 39 2.1.5 Kết số thảo luận 41 2.1.5.1 Các tính chất vật liệu tham số hiệu CNT 41 2.1.5.2 Các nghiên cứu so sánh 43 2.1.5.3 Kết cho toán chữ nhật chịu tải nén 47 2.1.5.4 Kết cho toán panel trụ chịu nén dọc trục 50 2.1.5.5 Kết cho panel trụ FG-CNTRC chịu áp lực 56 2.2 Ổn định chữ nhật FG-CNTRC chịu nhiệt độ khơng 61 2.2.1 Các phương trình 61 2.2.2 Nghiệm giải tích kết dạng đóng 64 2.2.3 Kết số thảo luận 69 2.2.3.1 Kết phân tích vồng 71 2.2.3.2 Kết phân tích sau vồng 72 2.3 Kết luận chương 75 CHƯƠNG PHÂN TÍCH ỔN ĐỊNH PHI TUYẾN CỦA TẤM VÀ VỎ THOẢI FG– CNTRC CHỊU TẢI NHIỆT VÀ CƠ- NHIỆT DỰA TRÊN LÝ THUYẾT BIẾN DẠNG TRƯỢT BẬC NHẤT 77 3.1 Các phương trình 77 3.1.1 Các thành phần biến dạng nội lực 78 3.1.2 Các phương trình cân tương thích biến dạng 80 3.2 Điều kiện biên nghiệm giải tích 82 3.3 Một số toán cụ thể 85 V 3.3.1 Panel hai độ cong FG-CNTRC chịu áp lực ngồi mơi trường nhiệt 85 3.3.2 Tấm chữ nhật FG-CNTRC chịu nhiệt độ tăng 86 3.3.3 Panel trụ FG-CNTRC chịu tải kết hợp môi trường nhiệt 87 3.4 Các nghiên cứu so sánh 89 3.4.1 Panel FG-CNTRC chịu áp lực 90 3.4.2 Panel trụ chịu nén dọc trục tải kết hợp 90 3.4.3 Tấm chữ nhật FG-CNTRC chịu nhiệt độ tăng 91 3.5 Kết số thảo luận 92 3.5.1 Bài toán chữ nhật FG-CNTRC chịu nhiệt độ tăng 94 3.5.1.1 Phân tích ứng xử vồng hoàn hảo 94 3.5.1.2 Phân tích ứng xử sau vồng 96 3.5.2 Bài toán panel hai độ cong FG-CNTRC chịu áp lực 98 3.5.3 Bài toán panel trụ FG-CNTRC chịu tải kết hợp 103 3.6 Kết luận chương 109 CHƯƠNG ỔN ĐỊNH PHI TUYẾN CỦA TẤM VÀ PANEL CONG FG – CNTRC CHỊU TẢI NHIỆT VÀ CƠ-NHIỆT DỰA TRÊN LÝ THUYẾT BIẾN DẠNG TRƯỢT BẬC CAO 112 4.1 Các phương trình 113 4.1.1 Các thành phần biến dạng nội lực 114 4.1.2 Phương trình cân tương thích biến dạng 116 4.2 Điều kiện biên nghiệm giải tích 118 4.3 Một số toán cụ thể 120 4.3.1 Panel hai độ cong FG-CNTRC chịu nhiệt độ có áp lực ngồi 120 4.3.2 Panel trụ FG-CNTRC chịu nhiệt độ tăng 121 4.3.3 Tấm chữ nhật FG-CNTRC chịu đồng thời tải nén nhiệt độ 123 4.4 Các nghiên cứu so sánh 125 4.4.1 Tấm FG-CNTRC chịu tải nén phương 125 4.4.2 Panel chịu tải nhiệt tăng 126 4.5 Kết số thảo luận 127 VI 4.5.1 Bài toán dày FG-CNTRC chịu tải – nhiệt 128 4.5.1.1 Tấm đặt môi trường nhiệt trước chịu nén 128 4.5.1.2 Tấm bị nén trước chịu nhiệt độ tăng 132 4.5.2 Bài toán panel trụ FG-CNTRC chịu tải nhiệt 133 4.6 Kết luận chương 139 KẾT LUẬN 141 DANH MỤC CÁC CƠNG TRÌNH CỦA TÁC GIẢ LIÊN QUAN ĐẾN LUẬN ÁN 145 TÀI LIỆU THAM KHẢO 147 PHỤ LỤC 163 VII DANH MỤC HÌNH VẼ Hình 1.1: Một số kiểu phân bố CNTs qua chiều dày kết cấu FG-CNTRC Hình 1.2 Hai kiểu ổn định kết cấu 22 Hình 1.3 Sự không ổn định từ đầu kết cấu (khơng có ứng xử màng) 24 Hình 2.1 Hình dáng hệ tọa độ panel trụ tựa đàn hồi hai tham số 26 Hình 2.2 Các dạng phân bố kiểu FG CNTs pha 26 Hình 2.3 Ràng buộc đàn hồi theo phương tiếp tuyến cạnh biên kết cấu 34 Hình 2.4 Panel trụ chịu nén dọc trục với hai cạnh thẳng chịu liên kết đàn hồi 37 Hình 2.5 So sánh đáp ứng tải – độ võng panel trụ FG-CNTRC chịu áp lực phân bố 46 Hình 2.6 Ảnh hưởng ràng buộc cạnh y 0, b chịu nén dọc trục x 48 Hình 2.7 Ảnh hưởng ràng buộc cạnh x 0, a chịu nén dọc trục y 48 Hình 2.8 Ảnh hưởng kiểu phân bố CNT lên đáp ứng tải-độ võng CNTRC chịu nén hai phương 49 * Hình 2.9 Ảnh hưởng VCNT đàn hồi lên ứng xử sau vồng CNTRC chịu nén hai phương 49 Hình 2.10 Ảnh hưởng mức độ ràng buộc cạnh lên ứng xử sau vồng chịu nén môi trường nhiệt 49 Hình 2.11 Ảnh hưởng tăng nhiệt lên ứng xử sau vồng chịu nén theo phương 49 Hình 2.12 Ảnh hưởng kiểu phân bố CNT lên đáp ứng sau vồng panel trụ CNTRC chịu nén dọc trục 54 Hình 2.13 Ảnh hưởng tỷ lệ thể tích CNT lên đáp ứng sau vồng panel trụ CNTRC chịu nén dọc trục 54 Hình 2.14 Ảnh hưởng kết hợp tỷ lệ thể tích, đàn hồi nhiệt độ lên đáp ứng sau vồng panel chịu nén 54 Hình 2.15 Ảnh hưởng hình dáng nhiệt độ lên ổn định panel trụ với cạnh thẳng tựa cố định chịu nén dọc trục 54 Hình 2.16 Ảnh hưởng mức độ ràng buộc cạnh thẳng lên đáp ứng tải – độ võng panel chịu nén dọc trục 55 VIII Hình 2.17 Ảnh hưởng nhiệt độ đàn hồi lên đáp ứng tải nén–độ võng panel trụ với cạnh thẳng cố định 55 Hình 2.18 Ảnh hưởng độ không hoàn hảo lên đáp ứng vồng tựa rẽ nhánh panel trụ với cạnh thẳng cố định 56 Hình 2.19 Ảnh hưởng mức độ ràng buộc cạnh thẳng độ khơng hồn hảo lên đáp ứng tải nén – độ võng panel 56 Hình 2.20 Ảnh hưởng ràng buộc cạnh lên đáp ứng tải – độ võng panel trụ chịu áp lực 57 Hình 2.21 Ảnh hưởng riêng rẽ ràng buộc cặp cạnh lên đáp ứng tải – độ võng panel trụ chịu áp lực 57 Hình 2.22 Ảnh hưởng ràng buộc cạnh lên đáp ứng tải– độ võng panel trụ chịu áp lực môi trường nhiệt 58 Hình 2.23 Ảnh hưởng nhiệt độ lên áp lực điểm rẽ nhánh panel trụ chịu áp lực môi trường nhiệt 58 Hình 2.24 Ảnh hưởng a / R 1 , 2 lên ứng xử sau vồng panel chịu áp lực môi trường nhiệt 59 * Hình 2.25 Ảnh hưởng tỷ lệ thể tích VCNT lên ứng xử sau vồng panel chịu áp lực môi trường nhiệt 59 Hình 2.26 Ảnh hưởng nhiệt độ khơng hồn hảo lên ứng xử sau vồng panel chịu áp lực 60 Hình 2.27 Ảnh hưởng không hoàn hảo lên ứng xử sau vồng panel chịu áp lực môi trường nhiệt 60 Hình 2.28 Hình dạng hệ tọa độ chữ nhật tựa đàn hồi Pasternak 61 Hình 2.29 Phân bố nhiệt độ theo quy luật hàm sin 62 Hình 2.30 Phân bố nhiệt độ theo quy luật hàm tuyến tính 63 Hình 2.31 Phân bố nội lực nén nhiệt dạng sin gây trạng thái trước vồng 65 Hình 2.32 So sánh đáp ứng sau vồng chữ nhật FG-CNTRC chịu nhiệt độ tăng 70 Hình 2.33 Ảnh hưởng kiểu phân bố đối xứng CNTs lên ứng xử sau vồng CNTRC chịu tải nhiệt dạng sin 73 159 122 K Mehar, S.K Panda, Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method, Polymer Composites, 2018, 39, 2751–2764 123 Y Kiani, Thermal post-buckling of temperature dependent sandwich plates with FG-CNTRC face sheets, Journal of Thermal Stresses, 2018, 41, 866–882 124 N Wattanasakulpong, V Ungbhakorn, Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities, Aerospace Science and Technology, 2014, 32, 111–120 125 Nguyen Van Nam, Nguyen Xuan Hoang, S Lee, Nguyen Xuan Hung, Geometrically nonlinear polygonal finite element analysis of functionally graded porous plates, Advances in Engineering Software, 2018, 126, 110–126 126 A.M Zenkour, A.F Radwan, Bending response of FG plates resting on elastic foundations in hygrothermal environment with porosities , Composite Structures, 2019, 213, 133–143 127 P.A Demirhan, V Taskin, Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach , Composites Part B Engineering, 2019, 160, 661–676 128 Pham Hong Cong, Trinh Minh Chien, Nguyen Dinh Khoa, Nguyen Dinh Duc, Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy’s HSDT, Aerospace Science and Technology, 2018, 77, 419–428 129 B Safaei, R Moradi-Dastjerdi, K Behdinan, Z Qin, F Chu, Thermoelastic behavior of sandwich plates with porous polymeric core and CNT clusters/polymer nanocomposite layers, Composite Structures, 2019, 226, 111209 130 A.R Setoodeh, M Shojaee, P Malekzadeh, Vibrational behavior of doubly curved smart sandwich shells with FG-CNTRC face sheets and FG porous core, Composites Part B Engineering, 2019, 165, 798–822 131 Nguyen Van Thanh, Nguyen Dinh Khoa, Ngo Duc Tuan, Tran Phuong, Nguyen Dinh Duc, Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite FG-CNTRC, shear deformable plates 160 with temperature-dependent material properties and surrounded on elastic foundations, Journal of Thermal Stresses, 2017, 40, 1254–1274 132 Nguyen Dinh Duc, Tran Quoc Quan, Nguyen Dinh Khoa, New approach to investigate nonlinear dynamic response and vibration of imperfect functionally graded carbon nanotube reinforced composite double curved shallow shells subjected to blast load and temperature, Aerospace Science and Technology, 2017, 71, 360–372 133 Nguyen Dinh Duc, Pham Hong Cong, Ngo Duc Tuan, Tran Phuong, Nguyen Van Thanh, Thermal and mechanical stability of functionally graded carbon nanotubes FG CNT-reinforced composite truncated conical shells surrounded by the elastic foundations, Thin-Walled Structures, 2017, 115, 300–310 134 Nguyen Dinh Duc, Pham Dinh Nguyen, Nguyen Huy Cuong, Nguyen Van Sy, Nguyen Dinh Khoa, An analytical approach on nonlinear mechanical and thermal post-buckling of nanocomposite double-curved shallow shells reinforced by carbon nanotubes, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 3888–3903 135 Ngo Dinh Dat, Nguyen Van Thanh, Vu Minh Anh, Nguyen Dinh Duc, Vibration and nonlinear dynamic analysis of sandwich FG-CNTRC plate with porous core layer, Mechanics of Advanced Materials and Structures, 2020, 1– 18 136 Phung-Van Phuc, M Abdel-Wahab, K.M Liew, S.P.A Bordas, Nguyen-Xuan Hung, Isogeometric analysis of functionally graded carbon nanotube reinforced composite plates using higher-order shear deformation theory, Composite Structures, 2015, 123, 137–149 137 Nguyen Ngoc Tan, Thai Hoang Chien, Nguyen Xuan Hung, J Lee, NURBSbased analyses of functionally graded carbon nanotube -reinforced composite shells, Composite Structures, 2018, 203, 349–360 138 Nguyen Ngoc Tan, Thai Hoang Chien, Luu Tuan Anh, Nguyen Xuan Hung, J Lee, NURBS-based postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells, Computer Methods in Applied Mechanics and Engineering, 2019, 347, 983–1003 161 139 Nguyen Ngoc Tan, S Lee, Nguyen Phu Cuong, Nguyen Xuan Hung, J Lee, Geometrically nonlinear postbuckling behavior of imperfect FG-CNTRC shells under axial compression using isogeometric analysis, European Journal of Mechanics - A/Solids, 2020, 84, 104066 140 Tran Quoc Huu, Vu Van Tham, Tran Minh Tu, Nguyen-Tri Phuong, A new four-variable refined plate theory for static analysis of smart laminated functionally graded carbon nanotube reinforced compos ite plates, Mechanics of Materials, 2020, 142, 103294 141 P.L Librescu, S.-Y Oh, O Song, Thin-walled beams made of functionally graded materials and operating in a high temperature environment: vibration and stability, Journal of Thermal Stresses, 2005, 28, 649–712 142 W Lin, L Librescu, Thermomechanical postbuckling of geometrically imperfect shear-deformable flat and curved panels on a nonlinear elastic foundation, International Journal of Engineering Science, 36, 1998, 189–206 143 J.M Klosner, M.J Forray, Buckling of simply supported plates under arbitrary symmetrical temperature distributions, Journal of the Aerospace Sciences, 1958, 25, 181–184 144 H.M Haydl, Elastic buckling of heated doubly curved thin shells, Nuclear Engineering and Design, 1968, 7, 141–151 145 H.W Bargmann, Thermal buckling of elastic plates, Journal of Thermal Stresses, 1985, 8, 71–98 146 J.N Reddy, Mechanics of laminated composite plates and shells: theory and analysis, Boca Raton: CRC Press, 2004 147 E Efraim, M Eisenberger, Exact vibration analysis of variable thickness thick annular isotropic and FGM plates, Journal of Sound and Vibration 2007, 299, 720–738 148 D.O Brush, B.O Almroth, Buckling of bars, plates, and shells, McGraw-Hill, 1975 149 Đào Huy Bích, Lý thuyết đàn hồi, Nhà xuất Đại học Quốc gia Hà Nội, Hà Nội, 2000 150 J.N Reddy, C.F Liu, A higher-order shear deformation theory of laminated elastic shells, International Journal of Engineering Science, 1985, 23, 319–330 162 151 I.-K Oh, I Lee, Thermal snapping and vibration characteristics of cylindrical composite panels using layerwise theory, Composite Structures, 2001, 51, 49– 61 152 A.S Volmir, Non-linear dynamics of plates and shells, 1972 in Russian 153 H Huang, Q Han, Nonlinear elastic buckling and postbuckling of axially compressed functionally graded cylindrical shells, International Journal of Mechanical Sciences, 2009, 51, 500–507 154 Dao Van Dung, Vu Hoai Nam, Nonlinear dynamic analysis of eccentrically stiffened functionally graded circular cylindrical thin shells under external pressure and surrounded by an elastic medium, European Journal of Mechanics - A/Solids, 2014, 46, 42–53 155 S Touloukian, Thermophysical properties of high temperature solid materials, New York: MacMillan, 1967 156 J.N Reddy, C.D Chin, Thermomechanical analysis of functionally graded cylinders and plates, Journal of Thermal Stresses, 1998, 21, 593–626 163 PHỤ LỤC A Phụ lục chương Các hệ số ai1 ( i ) phương trình (2.20) a11 e13 e122 , e11 a21 e23 e22 e e e , a41 32 12 22 e21 e31 e11 e21 2 e32 e122 e22 a31 e33 21 e13 12 e23 e e e 31 11 21 Các hệ số a j ( j ) phương trình (2.22) 1 e e a12 , a22 21 11 12 21 , a32 , e31 1 12 21 e11e21 1 12 21 e21 1 12 21 e11 a42 12e12e21 12e11e22 , 1 12 21 e11e21 (A1) (A2) 1 e a52 12 21e11e22 e12e21 12 21e12e21 e11e22 32 , e31 1 12 21 e11e21 a62 21e11e22 21e12e21 1 12 21 e11e21 Các hệ số a j ( j ) phương trình (2.27) a13 4 m Ba4 a11 n a21 m n Ba2 a31 Bh E0m K K 2 m Ba2 n Bh m2 Ba2 n2 a41 Bh Ba Ra m2 4 2 4 Ba Bh Ra m Ba a42 m n Ba a52 n a62 2 Bh m Ba a12 m n Ba a22 n a32 4 32mn Ba2 m n m2 2 a23 4 m B a m n B a n a B B R a 42 a 52 62 a h a 2 3Bh m Ba a12 m n Ba2 a22 n a32 2nBa Ra a a33 , 43 m n 3mBh3a12 m B a 4 a 12 n a32 (A3) 16 Bh4 a12 a32 a11 , a21 , a31 1 a , a21 , a31 , a41 , a42 , a52 , a62 a41 , a42 , a52 , a62 , 11 h h a12 , a22 , a32 h a12 , a22 , a32 , K1 k1b k 2b K , E0m h3 E0m h3 với E0m giá trị E m tính nhiệt độ phòng T0 300 K Các hệ số ak ( k ) phương trình (2.32a) (A4) 164 a14 m 2 Ba2 e21 e , a24 21 11 , a44 , a54 e21e11T 21 e11 e21 T , 8Bh a72 a72 a72 m4 Ba4 a42 m2 n 2 Ba2 a52 n 4 a62 m2 Ba3 Bh Ra a34 21m B e n e21 mn Bh2 a72 m4 Ba4 a12 m2 n Ba2 a22 n 4a32 2 a 11 4mBa2 4n e12e21 12 21e11e22 21 e12e21 e11e22 nBh a72 mBh a72 (A5) h e11, e21, e11T , e21T e11, e21, e11T , e21T , e12 , e22 e12 , e22 , h2 a72 (1 12 21 )e11e21 (A6) Các hệ số ak ( k ) phương trình (2.32b) a15 12e21 a72 , a25 n 2 e11 , a45 , a55 e11e21T 12 e21 e11 T , Bh a72 a72 a35 12 n 2e21 m2 Ba2e11 m4 Ba4 a42 m2 n 2 Ba2 a52 n 4 a62 m2 Ba3 Bh Ra mn Bh2 a72 m4 Ba4 a12 m2 n Ba2 a22 n 4a32 4 12 mBa2 4n e11e22 12 21e12e21 e11e22 e12e21 mBh2 a72 nBh a72 (A7) Các hệ số ak ( k ) phương trình (2.33a) a16 a34 a c2a25 1 a46 c2a35a46 , a26 44 c2a25 1 a46 c2a45a46 , a24 a24 a36 a54 c1a24 c2a25 1 a46 c2a55a46 , a46 a24 c1c2 a24 a15 (c2 a25 1)(1 c1a14 ) (A8) c1 c1 h, c2 c2 h (A9) Các hệ số ak ( k ) phương trình (2.33b) a17 a35 a c1a14 1 a47 c1a34a47 , a27 45 c1a14 1 a47 c1a44a47 , a15 a15 a37 a55 c2 a15 c1a14 1 a47 c1a54a47 , a47 a15 c1c2 a24 a15 (c1a14 1)(1 c2 a25 ) Các hệ số gi1 i phương trình (2.34) (A10) 165 g11 BR mn mn B a m2 Ba2 a16 n2 a17 , a13 a a a17 , g 21 h 23 16 m n Bh 16 m n Bh Ba Ra mn mn g31 a33 a27 , g 41 B a m2 Ba2 a26 n2 a27 , h 43 16 m n Bh 16 m n Bh g51 mn BR m Ba2 a36 n a37 , g61 a a a37 16 m n Bh Bh (A11) Các hệ số a Sj4 ( j ) công thức (2.37) a S 14 12e21 a72 S , a24 n 2 e11 S , a44 , a54S e11e21T 12 e21 e11 T , Bh a72 a72 m4 Ba4 a42 m2 n 2 Ba2 a52 n 4 a62 m2 Ba3 Bh Ra a 12 n e21 m B e mn Bh2 a72 m4 Ba4 a12 m2 n Ba2 a22 n 4a32 S 34 2 a 11 4 12 mBa2 4n e e e e e11e22 e12e21 11 22 12 21 12 21 mBh2 a72 nBh2 a72 (A12) Các hệ số akS5 ( k ) công thức (2.38) a55S Ba Ra e21 1 1221 , Bhe11 a15S 4 m nc2 c2 12 e21 S , a25 S a65 mn Bh a65S a35S n 2 2c2 (1 12 21 )e21 e e e e S 11 21T 12S 21 11 T c2 , a45 S 8Bh a65 e11a65 (A13) n e S 55 a 21 12 m2 Ba2e11 m2 Ba3 Bh Ra m 4 Ba4a42 m 2n Ba2 2a52 n 4 2a62 m4 Ba4 a12 m2 n Ba2 a22 n a32 m 2 Ba2 12 e12 e21 e11e22 n 2 12 21e12 e21 e11e22 S a65 c2 1 12 21 e21 (A14) B Phụ lục chương Các hệ số ai1fs ( i ) phương trình (3.10) e2 e2 e2 a11fs e13 12 , a21fs 12e23 12 22 2e33 32 , e11 e21 e31 2 e32 e122 e22 e e e fs a 21e13 21 2e33 , a41 e23 , a51fs 12 32 22 e11 e31 e21 e11 e31 e21 fs 31 fs Các hệ số a j ( j ) phương trình (3.13) (B1) 166 1 e11 e , a22fs fs 21e11 12e21 , a32fs 21fs , a42fs 12fs e12e21 e11e22 fs e31 a82 a82 a82 a82 e a52fs 32 fs 12 21e12e21 e11e22 , a62fs 21fs e11e22 e12e21 e31 a82 a82 e a72fs 32 fs 12 21e11e22 e12e21 , e31 a82 a12fs a82fs 1 12 21 e11e21 (B2) Các hệ số A3* , B1* , B2* phương trình (3.18) B1* b13b32 b12b33 b22b33 b23b32 b b b e b e 24 n m 34 32 51 n 33 41 m K S b22b33 b23b32 b14 Rx Ry b14 B2* b12b23 b13b22 b22b33 b23b32 b b b e b e 24 n m 34 23 41 m 22 51 n K S b22b33 b23b32 b14 Rx Ry b14 b24 n2 m2 b34 A b14 Rx Ry b14 * (B3) b11 a12 m4 a22 m2 n2 a32 n4 , b21 a42 m3 a72 m n2 , b31 a52 m2 n a62 n3 e12 e32 e322 e122 b12 m n , b22 e13 m e33 n K S e41 , e11 e31 e11 e31 e e e2 e2 b32 e13 12 21 e33 32 m n , b13 22 32 m2 n , e11 e31 e21 e31 e2 e2 e2 e2 b23 e33 32 e23 22 12 m n , b33 e33 32 m2 e23 22 n2 K S e51 , e31 e21 e31 e21 b14 b11 b22b33 b23b32 b21 b13b32 b12b33 b31 b12b23 b13b22 (B4) b24 b22b33 b23b32 , b34 b21b32 e51 n b21b33 e41 m b31 b23 e41 m b31 b22 e51 n K S fs Các hệ số a j ( j ) phương trình (3.19) a a B m B a B mn Ba a B m nB a B n fs 13 fs 11 * 3 a fs 21 * fs 31 * 2 a fs 41 * 3 B n 2 a51fs m 2 2 m n 2 Ba2 Ba Rby b24 b34 Ba Rax b14 Bh3 Bh4 Bh h 167 Ba 2 Ba b24 2 b34 n Rax m Ba Rby n Rax m Ba Rby b14 Bh3 Bh 4 E0m a23fs Ba K1 E0m m2 Ba2 n K Bh b24 8mn 2 2 b n R m B R B Ba m n 34 ax a by a b14 Bh3 3Bh2 a33fs a43fs 2 m n m2 n2 B R Rby fs a ax fs 6mn Ba Bh a32 a12 n4 64Bh2 a12fs Ba m4 Ba3 a32fs (B5) a , a21fs , a31fs , a41fs a , a22fs , a32fs , a42fs , B1* , B2* h a12fs , a22fs , a32fs , a42fs , B1* , B2* , a , a42fs , a52fs , a62fs , a72fs fs 11 fs 12 fs 51 fs fs fs fs a11 , a21 , a31 , a41 , h3 fs fs fs fs fs a51 , a42 , a52 , a62 , a72 , b14 b14 h3 , b24 b24 / h , h b11 b11h5 , b21 , b31 , b12 , b13 b21 , b31 , b12 , b13 h2 , b 22 (B6) , b32 , b23 , b33 b22 , b32 , b23 , b33 / h fs Các hệ số akfs4 , ak ( k ) phương trình (3.22) a14fs , a24fs 1 12 21 e11 e e e e a54fs 11T 21 11 21T 21 , 1 12 21 e11e21 m 2 Ba2 21 , , a44fs Bh2 1 12 21 e21 (B7) 2 2 4 m n 21e11m Ba e21n a mn 1 12 21 e11e21 b14 Bh2 fs 34 b34 e11e2212 21 e12e21 n 2 B R m2 Ba2 Rby a ax Bh3 Bh3 b24 m B1* Ba n B2* 4 m n Ba Rax e11e22 21 e12 e21 21 , Bh Bh mn Bh 168 a15fs n 2 12 , , a25fs , a45fs Bh2 1 12 21 e11 1 12 21 e21 a55fs e21T e11 e21e11T 12 , 1 12 21 e11e21 (B8) 2 2 2 2 2 4 m n e21 12 n e11m Ba n Ba Rax m Ba Rby a mn 1 12 21 e11e21 b14 Bh2 Bh3 Bh3 fs 35 b34 e12e2112 e11e2212 b24 m B1* Ba n B2* 4 m n Rby e12e2112 21 e11e22 Bh Bh mn Bh e11 , e21 , e12 , e22 , e11T , e21T xác định công thức (A6) phụ lục A Các hệ số aifs6 , aifs7 ( i ) phương trình (3.23a) (3.23b) a fs 16 a fs 36 fs 17 a fs 27 a c1 1 c2 a25fs a34fs c1c2 a24fs a35fs 1 c a 1 c a c c a fs 14 fs 25 fs fs 15 24 a c1 1 c2 a25fs a54fs c1c2 a24fs a55fs 1 c a 1 c a c c a fs 14 fs 25 fs fs 15 24 a 1 c a c a c c a a 1 c a 1 c a c c a a fs 14 fs 14 fs 35 fs 25 fs fs 15 34 fs fs 15 24 1 c a c a c c a a 1 c a 1 c a c c a a fs 14 fs 14 fs 45 fs 25 fs fs 15 44 fs fs 15 24 , a fs 26 c1 1 c2a25fs a44fs c1c2a24fs a45fs 1 c a 1 c a c c a fs 14 fs 25 fs fs 15 24 a , , , (B9) fs 37 , a 1 c a c a c c a a 1 c a 1 c a c c a a fs 14 fs 55 fs 14 fs 25 fs fs 15 54 fs fs 15 24 c1 c2 xác định cơng thức (A9) phụ lục A Các hệ số bi i phương trình (3.24) b1 R mn fs Ba mn fs mn a13 Rax a16fs by a17fs , b2 a23 m Ba2 a16fs n a17fs , 16 m n Bh Bh 16 m n 16 m n Bh b3 mn fs a33 Ba Rax a26fs Rby a27fs , 16 m n Bh mn fs mn b4 a43 m Ba2 a26fs n a27fs , 16 m n 16 m n Bh b5 R B mn m Ba2 a36fs n a37fs , b6 a Rax a36fs by a37fs 16 m n Bh Bh Bh (B10) 169 Các hệ số gi1 i công thức (3.30) g11 g12 g51 , g 21 g32 g51 , g31 g 42 g51 , g 41 g52 g51 (B11) g51 n 2 c2 12 , g12 , g22 , g 42 , (1 12 21 )e21 8Bh2 c2 g 22 (1 12 21 )e11 g52 12e21e11T e11e21T , (1 12 21 )e11e21 (B12) e21 12 n 2 e11m 2 Ba2 4 m n g32 m 2 2b24 Ba3 Ra b34 Bh3 mn (1 12 21 )e11e21 b14 Bh với Ra Ba BR n * m B1* e12e21 12 e11e22 12 B2 e12e21 12 21 e11e22 m n 2a a Bh Bh mn Bh a 1 , e11 , e21 , e11T , e21 T e11 , e21 , e11 T , e21 T , e12 , e22 e12 , e22 h h R C Phụ lục chương Các hệ số aihs1 i phương trình cân (4.11) có dạng sau: a11hs e13 ce15 e12 ce14 e12 , e11 e32 e ce34 e32 12 22 ce24 e22 , e31 e21 e e hs a31 21 e13 ce15 e33 ce35 21 12 ce14 e12 32 ce34 e32 , e11 e31 hs a21 e33 ce35 12 e23 ce25 e 2e e22 e e ce24 e22 , a51hs 12 32 22 , a61hs c e12 14 e15 , e21 e11 e31 e21 e11 e e e e e hs (C1) a71 c 21 12 14 e15 c 12 22 24 e25 4c e32 34 e35 , e e e 31 11 21 e a81hs c e22 24 e25 e21 hs a41 e23 ce25 Các hệ số a hsj2 j phương trình tương thích biến dạng (4.14) sau: hs a02 c 21 e14e21 e11e24 e e hs 21 11 12 21 , , a12hs , a22 e31 (1 12 21 )e11e21 1 12 21 e21 1 12 21 e11e21 170 hs a32 (1 12 21 )e11 hs , a42 12 e12 e21 e11 e22 ce11 e24 ce14 e21 , 1 12 21 e11 e21 hs a52 12 21e21 e12 ce14 e11 ce24 e22 ce34 e32 , e31 1 12 21 e11e21 hs a62 21 e e ce e ce e , 1 12 21 e11e21 11 22 24 21 14 12 hs a72 1 12 21e11 e22 ce24 e21 ce14 e12 ce34 e32 , e31 1 12 21 e11e21 a82hs c hs a92 12 e24e11 e21e14 , 1 12 21 e11e21 (C2) e e11e24 e14e21 c 12 21 e14 e21 e11e24 2c 34 e31 1 12 21 e11e21 c Các đại lượng bijhs ( i, j ) phương trình (4.18) cụ thể sau hs 2 b11hs a12hs m4 a22 m n a32hs n4 , b21hs a42hs m3 a72hs m n2 , b31hs a52hs m2 n a62hs n3 , e e e e hs 2 b41hs a82hs m4 a92 m n a02hs n4 , b12hs m n2 12 32 c 14 c 34 , e11 e31 e11 e31 e122 e12e14 hs 2 e14 b22 e13 2c 2ce15 c e17 c m e11 e11 e11 e2 e e e2 e33 32 2ce35 2c 32 34 c 2e37 c 34 n2 6ce43 9c 2e45 e41 , e31 e31 e31 e2 e e e2 b32hs 21 e13 12 2c 12 14 2ce15 c 2e17 c 14 m n e11 e11 e11 2 e32 e32e34 2 e34 e33 2ce35 2c c e37 c m n , e31 e31 e31 e e e2 b42hs m 6ce43 9c 2e45 e41 c 12 14 e15 ce17 c 14 m2 21 n2 e11 e11 e2 e e 2c ce37 c 34 e35 32 34 m n2 , e31 e31 e e e e b13hs m2 n 32 22 c 34 c 24 , e31 e21 e31 e21 2 e32 e32e34 hs 2 e34 b23 m n e33 2ce35 2c c e37 c e31 e31 e31 171 2 e22 e22e24 2 e24 12e23 12 2 12c 2 12ce25 12c e27 12c , e21 e21 e21 e2 e e e2 (C3) b33hs m2 e33 32 2ce35 2c 32 34 c 2e37 c 34 e e e 31 31 31 e e e e2 n2 e23 22 2c 22 24 2ce25 c 2e27 c 24 e21 e21 e21 3ce53 9c 2e55 e51 3ce53 , e22e24 e24 b 3ce53 9c e55 e51 3ce53 n c 12 e25 ce27 c e21 e21 e34 e e 2c m n c ce37 e35 32 34 , e31 e31 hs 43 2 m n n b14hs b11hs b22hsb33hs b23hsb32hs b21hs b13hsb32hs b12hsb33hs b31hs b12hsb23hs b13hsb22hs , b24hs b22hsb33hs b23hsb32hs , b34hs b41hs b22hsb33hs b23hsb32hs b21hs b33hsb42hs b32hsb43hs b31hs b22hsb43hs b23hsb42hs Các hệ số aihs3 i phương trình (4.19) có dạng cụ thể sau a hs 13 3 h B a hs 11 B1*hs m3 Ba3 a21hs B1*hs mn Ba a31hs B2*hs m 2nBa2 a41hs B2*hs n hs a23 32 a51hs m n 2 Ba2 Ba hs n R m B R b24 b34hs ax a by hs b14 Bh Bh 4 a hs m4 Ba4 a71hs m2 n2 Ba2 a81hs n4 61 Bh E0m K K (m2 Ba2 n2 ) Bh Ba Ba hs n R m B R b24 b34hs n Rax m Ba Rby , ax a by hs b14 Bh Bh mn Ba2 Ba hs hs n R m B R b b , m n ax a by 24 34 3b14hs Bh4 B h (C4) n2 2 m n m2 Ba3 m2 Ba4 m2 n2 n2 hs a Rax hs Rby , a43 hs hs 3mnBh3 a32hs a12 a12 m a32 n 16Bh hs 33 a , a21hs , a31hs , a41hs , a61hs , a71hs , a81hs a hs , a32hs h a12hs , a32 , b14hs b14hs h3 , b34hs b34hs h , B1*hs B1*hs h , B2*hs B2*hs h (C5) hs 11 hs 12 a51 hs hs hs hs hs hs hs a , a , a , a , a , a , a a , , 11 21 31 41 61 71 81 51 h3 h hs Các hệ số aihs4 i phương trình (4.20a) (4.20b) 172 a14hs hs , a24 1 12 21 e11 e e e e hs a54 11T 21 11 21T 21 , 1 12 21 e11e21 m 2 Ba2 21 hs , , a44 Bh2 1 12 21 e21 21e11m 2 Ba2 e21n2 4 m n Bab24hs a n Rax m Ba Rby mn 1 12 21 e11e21 Bh2b14hs B h hs 34 b34hs 12 21e11e22 e12e21 m B1* 4m Ba 3Bh Ba e11e22 e12e21 n B2* 21 Bh Bh *hs Ba 4 21n B1 m 12 21e11e24 e14 e21 Bh 3Bh *hs n B2 e11e24 e14 e21 Bh n 2 12 hs hs , ,a a ,a 1 12 21 e11 25 1 12 21 e21 45 Bh2 hs 15 e21T e11 e21e11T 12 , 1 12 21 e11e21 hs a55 e21 12 n 2 e11m 2 Ba2 4 m n Ba hs 2 a n R m B R b24 ax a by mn 1 12 21 e11e21 Bh2b14hs Bh3 hs 35 b34 e12 e21 e11e22 B1*hs12 m 12 m Ba n 12 21e12 e21 e11e22 B2*hs Bh Bh Ba *hs Ba 4n B1 m e14 e21 e11e24 3Bh Bh 3Bh (C6) *hs n B2 12 21e14e21 e24e11 Bh h e11, e21, e11T , e21T e11, e21, e11T , e21T , e12 , e22 e14 , e24 e12 , e22 , h2 e14 , e24 h4 (C7) tp Các hệ số a13 , a23 a43 phương trình (4.30) có dạng cụ thể sau a13tp 3 h B a hs 11 B1*hs m3 Ba3 a21hs B1*hs mn Ba a31hs B2*hs m nBa2 a41hs B2*hs n3 a51hs m2 n2 Ba2 hs E0m hs 4 hs 2 hs 2 b34 K1 K2 (m Ba n ) a61 m Ba a71 m n Ba a81 n , b14hs Bh4 Bh Bh 173 n2 m2 Ba4 m2 n2 mn Ba2 hs a , a 32 b34 m n hs 43 hs 3b14hs Bh4 a m a n 16 B 32 h 12 23 (C8) Các hệ số aktp4 ( k ) phương trình (4.31) có dạng cụ thể sau n 2 12 e e e e tp , a24 , a44 , a54 a 12 21 11 T 11 21 T , Bh 1 12 21 e11 1 12 21 e21 1 12 21 e11e21 14 12e21n2 e11m2 Ba2 4 m n a b34 mn 1 12 21 e11e21 Bh2b14 34 e12e21 e11e22 12 m B1* Ba n 12 21e12e21 e11e22 B2* Bh Bh 4 12 m Ba * m Ba 4n B1 e14 e21 e11e24 3Bh Bh 3Bh (C9) * n B e e e e 12 21 14 21 24 11 Bh ... DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ - Lê Thị Như Trang ỔN ĐỊNH NHIỆT ĐÀN HỒI CỦA TẤM VÀ VỎ THOẢI COMPOSITE GIA CƯỜNG CARBON NANOTUBE. .. luận án nghiên cứu ổn định nhiệt đàn hồi vỏ thoải composite gia cường carbon nanotube Mục tiêu luận án Thơng thường, đề cập đến tốn ổn định người ta hay hướng đến mục tiêu thông thường xác định. .. lên ổn định nhiệt có nghiên cứu ổn định panel vỏ thoải chịu tải nhiệt Vì vậy, luận án này, vấn đề ổn định FG-CNTRC chịu phân bố nhiệt không đều, ổn định panel vỏ thoải FG-CNTRC chịu tải nhiệt