1. Trang chủ
  2. » Luận Văn - Báo Cáo

Về các họ nhận giá trị trong không gian p định chuẩn

34 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 34
Dung lượng 367,61 KB

Nội dung

❇❐ ●■⑩❖ ❉Ư❈ ❱⑨ ✣⑨❖ ❚❸❖ ❚❘×❮◆● ✣❸■ ❍➴❈ ❱■◆❍ ✲✲✲✲✲✲ ✲✲✲✲✲✲ ◆●❯❨➍◆ ❚❍➚ ▼❨ ❍❯❨➋◆ ❱➋ ❈⑩❈ ❍➴ ◆❍❾◆ ●■⑩ ❚❘➚ ❚❘❖◆● ❑❍➷◆● ●■❆◆ P ✲✣➚◆❍ ❈❍❯❽◆ ▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙➒ ❚❖⑩◆ ❍➴❈ ◆❣❤➺ ❆♥ ✲ ✷✵✶✻ ❇❐ ●■⑩❖ ❉Ư❈ ❱⑨ ✣⑨❖ ❚❸❖ ❚❘×❮◆● ✣❸■ ❍➴❈ ❱■◆❍ ✲✲✲✲✲✲ ✲✲✲✲✲✲ ◆●❯❨➍◆ ❚❍➚ ▼❨ ❍❯❨➋◆ ❱➋ ❈⑩❈ ❍➴ ◆❍❾◆ ●■⑩ ❚❘➚ ❚❘❖◆● ❑❍➷◆● ●■❆◆ P ✲✣➚◆❍ ❈❍❯❽◆ ❈❤✉②➯♥ ♥❣➔♥❤✿ ❚❖⑩◆ ●■❷■ ❚➑❈❍ ▼➣ sè✿ ✻✵✳ ✹✻✳ ✵✶✳ ✵✷ ▲❯❾◆ ❱❿◆ ❚❍❸❈ ữớ ữợ P P❍×❒◆● ❈❍■ ◆❣❤➺ ❆♥ ✲ ✷✵✶✻ ✶ ▼Ư❈ ▲Ư❈ ▼ư❝ ❧ö❝ ✶ ▼ð ✤➛✉ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷ ✶ ❈→❝ ❤å sè ✈➔ ❦❤æ♥❣ ❣✐❛♥ ❝→❝ ❞➣② ♥❤➟♥ ❣✐→ trà tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ ✈➔ ❦❤æ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥ ✹ ✶✳✶✳ ▼ët sè ❦✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹ ✶✳✷✳ ❈→❝ ❤å sè ❦❤↔ tê♥❣ ✾ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✸✳ ❑❤æ♥❣ ❣✐❛♥ ❝→❝ ❞➣② ♥❤➟♥ ❣✐→ trà tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ ✶✳✹✳ ❑❤æ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥ ✳ ✶✹ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✺ ✶✳✺✳ ❑❤æ♥❣ ❣✐❛♥ ❝→❝ ❞➣② ♥❤➟♥ ❣✐→ trà tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥ ✶✽ ✷ ❱➲ ❝→❝ ❤å ♥❤➟♥ ❣✐→ trà tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥ ✷✵ ✷✳✶✳ ❈→❝ ❤å ❜à ❝❤➦♥ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✵ ✷✳✷✳ ❈→❝ ❤å ❤ë✐ tö tỵ✐ ✈➔ ❝→❝ ❤å ❤ë✐ tư tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤ ✷✳✸✳ ❈→❝ ❤å ❦❤↔ tê♥❣ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥ ❑➳t ❧✉➟♥ ✳ ✳ ✳ ✳ ✳ ✳ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ✷✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✻ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✷ ✷ ▼Ð ✣❺❯ ❚r♦♥❣ ❣✐↔✐ t➼❝❤ ❤➔♠✱ ❧ỵ♣ ❦❤ỉ♥❣ ❣✐❛♥ t✉②➳♥ t➼♥❤ ✤à♥❤ ❝❤✉➞♥ ❝â ✈❛✐ trá q✉❛♥ trå♥❣ ❧➔ ❧ỵ♣ ❦❤ỉ♥❣ ❣✐❛♥ ❝→❝ ❞➣②✳ ❑❤ỉ♥❣ ❣✐❛♥ ữủ t ợ tr tr trữớ ổ ữợ t t ổ ❣✐❛♥ ❝→❝ ❞➣② ❧➔ ♥❤ú♥❣ ✈➼ ❞ö ❦❤→ ✤✐➸♥ ❤➻♥❤ ❝õ❛ ❣✐↔✐ t➼❝❤ ❤➔♠ ❝ê ✤✐➸♥✳ ❑❤æ♥❣ ❣✐❛♥ ❝→❝ ❞➣② ♥❤➟♥ ❣✐→ trà tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ ❧➔ sü rở trữớ ủ ổ ữợ t ❤✐➺♥ tr♦♥❣ ♥❤✐➲✉ t➔✐ ❧✐➺✉ q✉❛♥ trå♥❣ ✈➲ ❣✐↔✐ t➼❝❤ ❤➔♠ ✭①❡♠ ❬✺❪✱ ❬✼❪✱ ✳✳✳✮ ✈➔ ✤÷đ❝ ♥❣❤✐➯♥ ❝ù✉ ❝ư t❤➸ ❤ì♥ ❜ð✐ ♠ët sè t→❝ ❣✐↔ tr♦♥❣ ❬✸❪✳ ❑❤ỉ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥ ✭0 < p 1✮ ❧➔ ❧ỵ♣ ❦❤ỉ♥❣ ❣✐❛♥ ✈➨❝tì tỉ♣ỉ tê♥❣ q✉→t ❤ì♥ ❦❤ỉ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥✱ ❝❤ó♥❣ ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ❜à ❝❤➦♥ ✤à❛ ♣❤÷ì♥❣ ♥❤÷♥❣ ❦❤ỉ♥❣ ỗ ữỡ p = p = t❤➻ ❝❤ó♥❣ trð t❤➔♥❤ ❦❤ỉ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥✮✳ ❑❤ỉ♥❣ p ữủ ợ t t ♥❣❤✐➯♥ ❝ù✉ t❤➜✉ ✤→♦ ❜ð✐ ❇❛②♦✉♠✐ ✭❬✹❪✮✳ ❚r♦♥❣ ❬✷❪✱ t→❝ ❣✐↔ ✤➣ ♥❣❤✐➯♥ ❝ù✉ ✈➲ ❦❤æ♥❣ ❣✐❛♥ ❝→❝ ❞➣② ♥❤➟♥ ❣✐→ trà tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥✳ ▼ët sü ♠ð rë♥❣ tü ♥❤✐➯♥ ❝õ❛ ❝→❝ ❞➣② ✤â ❧➔ ❝→❝ ❞➣② s✉② rë♥❣ ✭❤❛② ❝á♥ ❣å✐ ❧➔ ❝→❝ ❤å sè✮ ①✉➜t ❤✐➺♥ ❦❤→ ♥❤✐➲✉ tr♦♥❣ ❣✐↔✐ t➼❝❤ ✭①❡♠ ❬✽❪✮✳ ▼ö❝ ✤➼❝❤ ❝õ❛ ❧✉➟♥ ✈➠♥ ❧➔ ♥❣❤✐➯♥ ❝ù✉ ✈➲ ❦❤æ♥❣ ❣✐❛♥ ❝→❝ ❤å ✭❞➣② sè s✉② rë♥❣✮ ♥❤➟♥ ❣✐→ trà tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥✱ ✈➻ ✈➟② ❝❤ó♥❣ tỉ✐ ❧ü❛ ❝❤å♥ ✤➲ t➔✐✿ ❱➲ ❝→❝ ❤å ♥❤➟♥ ❣✐→ trà tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥✳ ◆ë✐ ❞✉♥❣ ❝õ❛ ❧✉➟♥ ✈➠♥ ✤÷đ❝ tr➻♥❤ ❜➔② tr♦♥❣ ❤❛✐ ❝❤÷ì♥❣✱ ❝❤÷ì♥❣✶✿ ❈→❝ ❤å sè ✈➔ ❦❤ỉ♥❣ ❣✐❛♥ ❝→❝ ❞➣② ♥❤➟♥ ❣✐→ trà tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ ✈➔ ✸ ❦❤ỉ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥✱ ❝❤÷ì♥❣✷✿ ❱➲ ❝→❝ ❤å ♥❤➟♥ ❣✐→ trà tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥✳ ▲✉➟♥ ✈➠♥ ữủ t t trữớ ữợ sỹ ữợ P Pữỡ ❚→❝ ❣✐↔ ①✐♥ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ s➙✉ s➢❝ ♥❤➜t ✤➳♥ t❤➛②✳ ◆❤➙♥ ❞à♣ ♥➔② t→❝ ❣✐↔ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥ ❇❛♥ ❝❤õ ♥❤✐➺♠ ❑❤♦❛ ❙÷ ♣❤↕♠ ❚♦→♥ ❤å❝✱ ❇❛♥ ❧➣♥❤ ✤↕♦ P❤á♥❣ ✣➔♦ t↕♦ ❙❛✉ ✤↕✐ ❤å❝✱ qỵ ổ tr ữ ❚r÷í♥❣ ✣↕✐ ❤å❝ ❱✐♥❤ ✤➣ ❣✐ó♣ ✤ï tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣ ✈➔ ❤♦➔♥ t❤➔♥❤ ❧✉➟♥ ✈➠♥✳ ❈✉è✐ ❝ò♥❣ ①✐♥ ❣û✐ ❧í✐ ❝↔♠ ì♥ tỵ✐ ❇❛♥ ●✐→♠ ❤✐➺✉✱ tê trữớ P ỗ ♥❣❤✐➺♣✱ ❜↕♥ ❜➧✱ ✤➦❝ ❜✐➺t ❧➔ ❝→❝ ❤å❝ ✈✐➯♥ ❝❛♦ ❤å❝ ❚♦→♥ ●✐↔✐ t➼❝❤ ❦❤â❛ ✷✷ t↕✐ ❚r÷í♥❣ ✣↕✐ ❤å❝ ❱✐♥❤ ✤➣ t↕♦ ✤✐➲✉ ❦✐➺♥ t❤✉➟♥ ❧đ✐ ❣✐ó♣ t→❝ ❣✐↔ ❤♦➔♥ t❤➔♥❤ ♥❤✐➺♠ ✈ö tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣✳ ▼➦❝ ❞ị ✤➣ ❝â r➜t ♥❤✐➲✉ ❝è ❣➢♥❣ ♥❤÷♥❣ ❞♦ t❤í✐ ❣✐❛♥ ✈➔ ♥➠♥❣ ❧ü❝ ❤↕♥ ❝❤➳ ♥➯♥ ❧✉➟♥ ✈➠♥ ❦❤æ♥❣ t❤➸ tr→♥❤ ❦❤ä✐ ♥❤ú♥❣ ❤↕♥ ❝❤➳✱ t❤✐➳✉ sât✳ ❚→❝ rt ữủ ỳ qỵ t ổ ỳ õ ỵ ❜↕♥ ✤å❝ ✤➸ ❧✉➟♥ ✈➠♥ ✤÷đ❝ ❤♦➔♥ t❤✐➺♥ ❤ì♥✳ ◆❣❤➺ ❆♥✱ t❤→♥❣ ✽ ♥➠♠ ✷✵✶✻ ❚→❝ ❣✐↔ ◆❣✉②➵♥ ❚❤à ▼② ❍✉②➲♥ ✹ ❈❍×❒◆● ✶ ❈⑩❈ ❍➴ ❙➮ ❱⑨ ❑❍➷◆● ●■❆◆ ❈⑩❈ ❉❶❨ ◆❍❾◆ ●■⑩ ❚❘➚ ❚❘❖◆● ❑❍➷◆● ●■❆◆ ✣➚◆❍ ❈❍❯❽◆ ❱⑨ ❑❍➷◆● ●■❆◆ P ✲✣➚◆❍ ❈❍❯❽◆ ❈❤÷ì♥❣ ♥➔② ♥❤➡♠ ♠ư❝ ✤➼❝❤ tr➻♥❤ ❜➔② ✈➲ ❦❤æ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥❀ ❦❤→✐ ♥✐➺♠ ✈➔ ❝→❝ t➼♥❤ ❝❤➜t ❝ì ❜↔♥ ✈➲ ❝→❝ ❤å sè ♥❤÷ ❤å sè ❜à ❝❤➦♥✱ ❤å sè ❦❤↔ tê♥❣✱ ❤å tử tợ ổ tữỡ ự trà tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥✳ ✶✳✶✳ ▼ët sè ❦✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ▼ö❝ ♥➔② ♥❤➢❝ ❧↕✐ ♠ët sè ❦➳t q t ữợ ổ ổ ❣✐❛♥ ❇❛♥❛❝❤ ❝➛♥ ❞ò♥❣ ✈➲ s❛✉✳ ❈→❝ ❦➳t q✉↔ ♥➔② ❝â t❤➸ t➻♠ t❤➜② tr♦♥❣ ❬✶❪✳ ✶✳✶✳✶ ✣à♥❤ ♥❣❤➽❛✳ ❚➟♣ I = ữủ ữợ ữủ tr➯♥ ✤â ✤➣ ①→❝ ✤à♥❤ ♠ët q✉❛♥ ❤➺ “ > ” t❤♦↔ ♠➣♥ ❝→❝ t➼♥❤ ❝❤➜t✿ ✶✮ ❱ỵ✐ ♠å✐ m, n, p ∈ I s❛♦ ❝❤♦ m > n ✈➔ n > p t❤➻ m > p❀ ✷✮ ❱ỵ✐ ♠å✐ m ∈ I t❤➻ m > m❀ ✸✮ ❱ỵ✐ ♠å✐ m, n I t tỗ t p I s❛♦ ❝❤♦ p > m, p > n✳ ❑❤✐ ✤â t I ữủ ữợ q > ỵ (I, >) ✈✐➳t t➢t ❧➔ I ✳ ❚❛ ❞➵ ❞➔♥❣ ❝â ♠➺♥❤ ✤➲ s❛✉✳ ✺ ✶✳✶✳✷ ▼➺♥❤ ✤➲✳ ❈❤♦ I ❧➔ ♠ët t số tý ỵ ỵ F(I) = J ⊂ I : /J/ ❤ú✉ ❤↕♥ ❚r➯♥ F(I) t❛ ✤à♥❤ ♥❣❤➽❛ ♠ët q✉❛♥ ❤➺ ❜❛♦ ❤➔♠ “ > ” ữ s ợ ộ J, K F(I) : J > K ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ K ⊂ J ❑❤✐ õ F(I) ợ q ữ tr ởt t ữợ ữủ sỷ I ởt t ữợ q > ”✳ ❑❤✐ ✤â ❤➔♠ S ①→❝ ✤à♥❤ tr➯♥ I ữủ ởt ữợ s rở ữủ ỵ (S, I, >) t tt ❧➔ S ✳ ◆➳✉ ♠✐➲♥ ❣✐→ trà ❝õ❛ S ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ tỉ♣ỉ t❤➻ ♥â ✤÷đ❝ ❣å✐ ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ tổổ ữợ tr sỷ I ởt t ữợ q > (X, τ ) ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ tæ♣æ✳ ❑❤✐ ✤â✱ ữợ (Sn , I, >) ữủ tử tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ tæ♣æ ✤➳♥ ✤✐➸♠ S ∈ X ✤è✐ ✈ỵ✐ tỉ♣ỉ τ, ♥➳✉ ✈ỵ✐ ♠å✐ ❧➙♥ ❝➟♥ U ❝õ❛ S tỗ t n0 I s ợ ♠å✐ n ∈ I ♠➔ n > no t❤➻ Sn U õ ỵ lim Sn = S ❤❛② Sn → S ✳ ✶✳✶✳✺ ✣à♥❤ ♥❣❤➽❛✳ ❈❤♦ E ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ t✉②➳♥ t➼♥❤ tr➯♥ tr÷í♥❣ K✳ ❍➔♠ : E → R ✤÷đ❝ ❣å✐ ❧➔ ♠ët ❝❤✉➞♥ tr➯♥ E ♥➳✉ t❤♦↔ ♠➣♥ ❝→❝ ✤✐➲✉ ❦✐➺♥ s❛✉✿ ✶✮ x 0✱ ✈ỵ✐ ♠å✐ x ∈ E ✈➔ x = ⇔ x = 0❀ ✷✮ λx = |λ| x ✱ ✈ỵ✐ ♠å✐ λ ∈ K ✈➔ ✈ỵ✐ ♠å✐ x ∈ E ❀ ✸✮ x + y x + y , ✈ỵ✐ ♠å✐ x, y ∈ E ✳ ❑❤✐ ✤â✱ (E, ) ✤÷đ❝ ❣å✐ ❧➔ ♠ët ❦❤ỉ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥✳ ❑❤ỉ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ♠➯tr✐❝ ✈ỵ✐ ♠➯tr✐❝ s✐♥❤ ❜ð✐ ❝❤✉➞♥ d(x, y) = x − y , ✈ỵ✐ ♠å✐ x, y ∈ E ✳ ❑❤ỉ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ E ✤÷đ❝ ❣å✐ ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ♥➳✉ E ✤➛② ✤õ ✈ỵ✐ ♠❡tr✐❝ s✐♥❤ ❜ð✐ ❝❤✉➞♥✳ ❱ỵ✐ ♠➯tr✐❝ ✻ s✐♥❤ ❜ð✐ ❝❤✉➞♥ ❝→❝ ♣❤➨♣ t♦→♥ ❝ë♥❣ ✈➔ ♥❤➙♥ ổ ữợ tr E tử E, F ổ ỵ L(E, F ) ❧➔ t➟♣ ❤ñ♣ ❝→❝ →♥❤ ①↕ t✉②➳♥ t➼♥❤ ❧✐➯♥ tö❝ tø E ✈➔♦ F ✳ ❚❛ ✤➣ ❜✐➳t L(E, F ) ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ ✈ỵ✐ ❝❤✉➞♥ f = sup f (x) , ✈ỵ✐ ♠å✐ f ∈ L(E, F ) x =1 ◆➳✉ F ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ t❤➻ L(E, F ) ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✳ ✣➦❝ ❜✐➺t✱ L(E, K) := E ∗ ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ❧✐➯♥ ❤đ♣ t❤ù ♥❤➜t ❝õ❛ E ❝ơ♥❣ ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✳ ❙❛✉ ✤➙② ❧➔ ❧ỵ♣ ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ q✉❡♥ t❤✉ë❝✳ ✶✳✶✳✻ ❱➼ ❞ư✳ ●✐↔ sû K ❧➔ tr÷í♥❣ ❝→❝ sè t❤ü❝ ❤♦➦❝ số ự ỵ l = x = {xn } ⊂ K : {xn } ❧➔ ❞➣② ❜à ❝❤➦♥ ; C = x = {xn } ⊂ K : {xn } ❧➔ ❞➣② ❤ë✐ tö ; C0 = x = {xn } ⊂ K : lim xn = ; n→∞ ✈➔ ∞ |xn |p < ∞ , p lp = x = {xn } ⊂ K : n=1 ❱ỵ✐ ❝→❝ ♣❤➨♣ t♦→♥ ❝ë♥❣ ❝→❝ ❞➣② ✈➔ ♥❤➙♥ ởt số ợ ởt tổ tữớ t õ l ❧➔ ❦❤æ♥❣ ❣✐❛♥ t✉②➳♥ t➼♥❤ ✈➔ C ✱ C0 ✈➔ lp ❧➔ ❝→❝ ❦❤ỉ♥❣ ❣✐❛♥ ❝♦♥ ❝õ❛ l∞ ✳ ❍ì♥ ♥ú❛ lp ⊂ C0 ⊂ C ⊂ l∞ ❚❛ ✤➣ ❜✐➳t l∞ ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ✈ỵ✐ ❝❤✉➞♥ ①→❝ ✤à♥❤ ❜ð✐ x = sup |xn |, ∀x ∈ l∞ n ✭✶✳✶✮ ✼ ✣➦❝ ❜✐➺t C0 , C ❧➔ ❝→❝ ❦❤æ♥❣ ❣✐❛♥ ❝♦♥ ✤â♥❣ ❝õ❛ l∞ ✳ ❱➻ t❤➳ ❝❤ó♥❣ ❝ơ♥❣ ❧➔ ❝→❝ ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ✈ỵ✐ ❝❤✉➞♥ tr➯♥✳ ❚✉② ♥❤✐➯♥✱ lp ❦❤æ♥❣ ✤â♥❣ tr♦♥❣ l∞ ✳ ✣è✐ ợ lp ữớ t t ❝æ♥❣ t❤ù❝ ∞ x p |xn |p = 1/p ✭✶✳✷✮ , ∀x ∈ lp n=1 ❑❤✐ ✤â✱ lp ❝ô♥❣ ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✳ ❚❛ ♥❤➢❝ ❧↕✐ r➡♥❣ ❦❤æ♥❣ ❣✐❛♥ ♠➯tr✐❝ X ✤÷đ❝ ❣å✐ ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ❦❤↔ ❧② ♥➳✉ tr♦♥❣ X ❝â t➟♣ ❝♦♥ ✤➳♠ ✤÷đ❝ trị ♠➟t tr♦♥❣ X ✳ ✶✳✶✳✼ ✣à♥❤ ♥❣❤➽❛✳ ❑❤ỉ♥❣ ❣✐❛♥ ✈➨❝tì tỉ♣ỉ ❧➔ ♠ët ❦❤ỉ♥❣ ❣✐❛♥ ✈➨❝tì ❝ị♥❣ ✈ỵ✐ ♠ët tỉ♣ỉ tr➯♥ ✤â s❛♦ ❝❤♦ ❝→❝ ♣❤➨♣ t♦→♥ ❝ë♥❣ ✈➔ ♥❤➙♥ ✈æ ữợ tử U tr ổ ✈➨❝tì X ✤÷đ❝ ❣å✐ ❧➔ ♠å✐ α ∈ K ✈➔ |α| < 1❀ t➟♣ U ✤÷đ❝ ❣å✐ ❧➔ ❝➙♥ ♥➳✉ αU ⊂ U ❤ót ♥➳✉ ✈ỵ✐ ♠å✐ x ∈ X ợ tỗ t > s x U ✈ỵ✐ ♠å✐ |α| < δ ❚r♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ ✈➨❝tì tổổ ổ tỗ t ỡ s U ỗ t út ợ U U tỗ t V U s V + V ⊂ U ✳ ✶✳✶✳✽ ✣à♥❤ ♥❣❤➽❛✳ ❚➟♣ ❝♦♥ U ổ tỡ X ữủ ỗ ♥➳✉ ✈ỵ✐ ♠å✐ x, y ∈ U ✱ ✈ỵ✐ ♠å✐ λ 1✱ t❤➻ λx + (1 − λ)y ∈ U ổ tỡ tổổ ữủ ỗ ✤à❛ ♣❤÷ì♥❣ ♥➳✉ ♥â ❝â ❝ì sð ❧➙♥ ❝➟♥ U ỗ t ỗ ❝♦♥ U ❝õ❛ ❦❤ỉ♥❣ ❣✐❛♥ ✈➨❝tì tỉ♣ỉ E ✤÷đ❝ ❣å✐ ❧➔ ❜à ❝❤➦♥ ♥➳✉ ✈ỵ✐ ♠å✐ ❧➙♥ ❝➟♥ V ❝õ❛ tỗ t s > s U tV ✈ỵ✐ ♠å✐ t > s✳ ❑❤ỉ♥❣ ❣✐❛♥ ✈➨❝tì tỉ♣ỉ ✤÷đ❝ ❣å✐ ❧➔ ❧➟♥ ❝➟♥ ❝õ❛ ❧➔ t➟♣ ❜à ữỡ õ tỗ t ▼é✐ ❦❤ỉ♥❣ ❣✐❛♥ ❜à ❝❤➦♥ ✤à❛ ♣❤÷ì♥❣ ❧✉ỉ♥ ❝â ❝ì sð ✤➳♠ ✤÷đ❝ ❝→❝ ❧➙♥ ❝➟♥ ❝õ❛ 0✳ ▼➦t ❦❤→❝✱ ♥➳✉ ❦❤ỉ♥❣ ❣✐❛♥ ✈➨❝tì tỉ♣ỉ ❝â ❝ì sð ❧➙♥ ❝➟♥ ❝õ❛ ❧➔ ✤➳♠ ✤÷đ❝ t❤➻ ♥â ❦❤↔ ♠➯tr✐❝✳ ❱➻ ✈➟②✱ ♠é✐ ❦❤ỉ♥❣ ❣✐❛♥ ❜à ❝❤➦♥ ✤à❛ ♣❤÷ì♥❣ ❧➔ ❦❤↔ ♠➯tr✐❝✳ ✶✳✶✳✶✵ ✣à♥❤ ♥❣❤➽❛✳ ❑❤ỉ♥❣ ❣✐❛♥ ✈➨❝tì tỉ♣ỉ E ✤÷đ❝ F ổ tỗ t tr d ❜➜t ❜✐➳♥ tr➯♥ E ✭tù❝ ❧➔ d(x, y) = d(x + z, y + z) ✈ỵ✐ ♠å✐ x, y, z ∈ E ✮ s❛♦ ❝❤♦ (E, d) ✤➛② ✤õ ✈➔ ♠➯tr✐❝ d s✐♥❤ r❛ tỉ♣ỉ ❝õ❛ E ✳ ◆❤÷ ✈➟②✱ ♠é✐ ❦❤ỉ♥❣ ❣✐❛♥ ❜à ❝❤➦♥ ✤à❛ ♣❤÷ì♥❣ ❧➔ F −❦❤ỉ♥❣ ộ F ổ ỗ ✤à❛ ♣❤÷ì♥❣ ✤÷đ❝ ❣å✐ ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ❋r❡❝❤❡t ✳ ❘ã r➔♥❣ ♠é✐ ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ ỗ ữỡ ữỡ ✈➻ Bn = {x ∈ E : x < }, n = 1, 2, ❧➔ ❝ì n sð ❧➙♥ ỗ t ỗ E ❍ì♥ ♥ú❛✱ ♥❣÷í✐ t❛ ❝❤ù♥❣ ♠✐♥❤ ✤÷đ❝ ❦➳t q✉↔ q✉❛♥ trồ s ỵ ổ tỡ tổổ õ ỗ ♣❤÷ì♥❣ ✈➔ ❜à ❝❤➦♥ ✤à❛ ♣❤÷ì♥❣✳ ❱➼ ❞ư s❛✉ ❝❤♦ t❤➜② ♠é✐ ❦❤ỉ♥❣ ❣✐❛♥ ❜à ❝❤➦♥ ✤à❛ ♣❤÷ì♥❣ ❝â t❤➸ ổ ỗ ữỡ t ổ lp = {x = {xn} ⊂ R : ∞ p n=1 |xn | < +∞} ✈ỵ✐ < p < 1✳ ❑❤✐ ✤â✱ lp ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ✈➨❝tì ✈ỵ✐ ❝→❝ t ổ ữợ t số t÷ì♥❣ ù♥❣ ❝õ❛ ❞➣②✳ ❍ì♥ ♥ú❛✱ lp ❧➔ F −❦❤ỉ♥❣ ❣✐❛♥ ✈ỵ✐ ♠➯tr✐❝ ❜➜t ❜✐➳♥ ①→❝ ✤à♥❤ ❜ð✐ ∞ |xn − yn |p d(x, y) = n=1 ✈ỵ✐ ♠å✐ x, y ∈ lp ✳ ❚✉② ♥❤✐➯♥ lp ❦❤æ♥❣ ♣❤↔✐ ❧➔ ổ ỗ ữỡ ổ ❞➣② ♥❤➟♥ ❣✐→ trà tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥ ❈→❝ ❦➳t q✉↔ ❝õ❛ ♠ư❝ ♥➔② ✤÷đ❝ ✤➲ ①✉➜t ✈➔ ❝❤ù♥❣ ♠✐♥❤ tr♦♥❣ ❬✷❪✳ ❈→❝ ❦➳t q✉↔ ❝õ❛ ▼ö❝ ✶✳✸ ❧➔ ❤➺ q✉↔ ❝õ❛ ♠ö❝ ♥➔② ❦❤✐ p = 1✳ ❚r♦♥❣ ❝↔ ♠ư❝ ♥➔②✱ t❛ ①➨t E ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ p✲✤à♥❤ ợ p ỵ l (E) = x = {xn } ⊂ E : { xn } : ❧➔ ❞➣② sè ❜à ❝❤➦♥ ❚❛ ❝â t q s ỵ l(E) ổ p ợ p ữủ x = sup xn , n ✭✶✳✼✮ ✈ỵ✐ ♠å✐ x ∈ l∞(E)✳ ❍ì♥ ♥ú❛✱ ♥➳✉ E ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤ t❤➻ l∞(E) ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤✳ ❚✐➳♣ t❤❡♦ t❛ ①➨t ❧ỵ♣ ❦❤ỉ♥❣ ❣✐❛♥ ❝→❝ ❞➣② ❤ë✐ tư tỵ✐ ✵ ♥❤➟♥ ❣✐→ tr tr ổ p ỵ C0 (E) = x = {xn } ⊂ E : {xn } tử tợ ; ỵ C0(E) ❝→❝ ❦❤æ♥❣ ❣✐❛♥ ❝♦♥ ✤â♥❣ ❝õ❛ l∞(E)✳ ✣➦❝ ❜✐➺t✱ ♥➳✉ E ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤ t❤➻ C0(E) ❧➔ ❦❤æ♥❣ ❣✐❛♥ p ỵ C(E) = x = {xn } ⊂ E : ❤ë✐ tö tr♦♥❣ E ✶✳✺✳✸ ✣à♥❤ ỵ C(E) ổ õ l(E) ✣➦❝ ❜✐➺t✱ ♥➳✉ E ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤ t❤➻ C(E) ổ p ỵ lq (E) = x = {xn } ⊂ E : xn q < ,q n=1 ỵ lq (E) ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥ ✈ỵ✐ p✲❝❤✉➞♥ ①→❝ ✤à♥❤ ❜ð✐ ∞ x q = xn q 1/q , ∀x ∈ lq (E) ✭✶✳✽✮ n=1 ❍ì♥ ♥ú❛✱ ♥➳✉ E ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤ t❤➻ lq (E) ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤✳ ỵ xn tử tr E l[E] = x = {xn } ⊂ E : n=1 ỵ l[E] ổ p ợ p✲❝❤✉➞♥ ①→❝ ✤à♥❤ ❜ð✐ x = sup xn , ∀x ∈ l[E] n ✭✶✳✾✮ ✷✵ ❈❍×❒◆● ✷ ❱➋ ❈⑩❈ ❍➴ ◆❍❾◆ ●■⑩ ❚❘➚ ❚❘❖◆● ❑❍➷◆● ●■❆◆ P ✲✣➚◆❍ ❈❍❯❽◆ ❚r♦♥❣ ❝❤÷ì♥❣ ♥➔②✱ ð ♠ư❝ t❤ù ♥❤➜t ❝❤ó♥❣ tỉ✐ ①➙② ❞ü♥❣ ❝→❝ ❤å tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥✱ p✲❇❛♥❛❝❤ ✤è✐ ✈ỵ✐ ❦❤ỉ♥❣ ❣✐❛♥ ❝→❝ ❤å ♥❤➟♥ ❣✐→ trà tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥✳ ❚r♦♥❣ ♠ư❝ t❤ù ❤❛✐✱ ❝❤ó♥❣ tỉ✐ ♥❣❤✐➯♥ ❝ù✉ ♠ët sè t➼♥❤ ❝❤➜t ✈➔ ✈➼ ❞ư ❝õ❛ ❧ỵ♣ ❦❤ỉ♥❣ ❣✐❛♥ ✤➣ ①➙② ❞ü♥❣✳ ❈→❝ ♥ë✐ ❞✉♥❣ ✤÷đ❝ tr➻♥❤ ❜➔② tr♦♥❣ ❝❤÷ì♥❣ ♥➔② ✤÷đ❝ ❝❤ó♥❣ tỉ✐ ✤➲ ①✉➜t ✈➔ ❝❤ù♥❣ ♠✐♥❤ ❞ü❛ tr➯♥ ♥❤ú♥❣ ❦➳t q✉↔ q✉❡♥ t❤✉ë❝ ❝õ❛ trữớ ủ ổ ổ ữợ ữủ t t❤➜② tr♦♥❣ ❬✺❪✱ ❬✼❪✱ ✳✳✳✳ ✷✳✶✳ ❈→❝ ❤å ❜à ❝❤➦♥ tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥ ❚r♦♥❣ ❝↔ ♠ư❝ ♥➔②✱ t❛ ①➨t E ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥ ✈ỵ✐ p✲❝❤✉➞♥ I t số tũ ỵ ỵ ❤✐➺✉ l∞ (E) = x = {xi }i∈I ⊂ E : { xi } ❧➔ ❤å sè ❜à ❝❤➦♥ ◆➳✉ I = N t❛ ♥❤➟♥ ✤÷đ❝ ❦❤ỉ♥❣ ❣✐❛♥ ❝→❝ ❤å ❜à ❝❤➦♥ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥ ✤➣ tr➻♥❤ tr ữỡ trữợ E = K t t ♥❤➟♥ ✤÷đ❝ ❦❤ỉ♥❣ ❣✐❛♥ ❝→❝ ❤å sè ❜à ❝❤➦♥ t❤ỉ♥❣ tữớ õ t q s ỵ l(E) ổ p ợ p ữủ ✤à♥❤ ❜ð✐ x = sup xi , ✭✷✳✶✮ i∈I ✈ỵ✐ ♠å✐ x ∈ l∞(E)✳ ❍ì♥ ♥ú❛✱ ♥➳✉ E ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤ t❤➻ l∞(E) ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤✳ ❈❤ù♥❣ ♠✐♥❤✳ ❚❛ ①➨t ❝→❝ ♣❤➨♣ t♦→♥ tr➯♥ l∞(E) ①→❝ ✤à♥❤ ❜ð✐ x + y = {xi + yi }, λx = {λxi } ✈ỵ✐ ♠å✐ x = {xi }, y = {yi } l (E) K rữợ ❤➳t✱ t❛ ♣❤↔✐ ❝❤➾ r❛ ❝→❝ ♣❤➨♣ t♦→♥ ❧➔ ①→❝ ✤à♥❤✳ ❚❤➟t ✈➟②✱ tø x, y ∈ l∞ (E) s✉② r❛ supi∈I xi < ∞✱ supi∈I yi < ∞✳ ❉♦ ✤â sup xi + yi sup xi + sup yi < ∞ i∈I i∈I i∈I ✈➔ ✈➻ t❤➳ x + y ∈ l∞ (E) ❱ỵ✐ ♠å✐ λ ∈ K t❛ ❝â sup λxi = sup |λ|p xi < ∞, i∈I i∈I tù❝ ❧➔ {λx} ∈ l∞ (E) ◆❤÷ ✈➟②✱ ❝→❝ ♣❤➨♣ t♦→♥ tr➯♥ ❧➔ ①→❝ ✤à♥❤✳ ❍ì♥ ♥ú❛✱ t❛ ❞➵ ❞➔♥❣ ❦✐➸♠ tr❛ ✤÷đ❝ l∞ (E) ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ t✉②➳♥ t➼♥❤ ✈ỵ✐ ❤❛✐ ♣❤➨♣ t♦→♥ tr➯♥ ✈➔ ♣❤➛♥ tû ❦❤ỉ♥❣ ❝õ❛ l∞ (E) ❧➔ θ✱ tr♦♥❣ ✤â θi = ✈ỵ✐ ♠å✐ i ∈ I ✈➔ ❧➔ ♣❤➛♥ tû ❦❤ỉ♥❣ ❝õ❛ E ✳ ❇➙② ❣✐í✱ t❛ ❝❤ù♥❣ ♠✐♥❤ ❝ỉ♥❣ t❤ù❝ x = sup xi ✭✷✳✷✮ i∈I ❧➔ p✲❝❤✉➞♥ tr➯♥ l∞ (E)✳ ❚❤➟t ✈➟②✱ t❛ ❦✐➸♠ tr❛ ❝→❝ ✤✐➲✉ ❦✐➺♥ ❝õ❛ p✲❝❤✉➞♥✳ ❘ã r➔♥❣ x = supi∈I xi ✈ỵ✐ ♠å✐ x = {xi } ∈ l∞ (E)✳ ❚❛ ❝â x = sup xi = ⇔ xi = 0, ∀i ⇔ xi = 0, ∀i, i∈I ✷✷ tù❝ ❧➔ ⇔ x = θ✳ ❱ỵ✐ λ ∈ K ✈➔ x = {xi } ∈ l∞ (E) t❛ ❝â λx = sup λxi = sup |λ|p xi = |λ|p sup xi = |λ|p x i i∈I i∈I ❱ỵ✐ x, y ∈ l∞ (E) t❛ ❝â x + y = sup xi + yi sup xi + sup yi = x + y i∈I i∈I i∈I ❱➟②✱ l∞ (E) ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥✳ ●✐↔ sû E ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤ ✈➔ {xk } ⊂ l∞ (E) ❧➔ ❞➣② õ ợ > tỗ t k0 s❛♦ ❝❤♦ xk − xl = sup xki − xli < ε, ∀k, l k0 ✭✷✳✸✮ i∈I ❙✉② r❛✱ ✈ỵ✐ ♠é✐ ∈ I t❛ ❝â xki − xli < ε ✈ỵ✐ ♠å✐ k, l k0 ✱ tù❝ ❧➔ ❞➣② {xki }∞ k=1 ❧➔ ❞➣② ❈❛✉❝❤② tr♦♥❣ E ✳ ❱➻ E ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤ ♥➯♥ lim xki = xi ∈ E ✱ ✈ỵ✐ ♠é✐ i ∈ I ✣➦t x = {xi }i∈I ✳ ❑❤✐ k→∞ ✤â✱ tø ✭✷✳✸✮ ❝è ✤à♥❤ k k0 ❝❤♦ l → ∞ t❛ ♥❤➟♥ ✤÷đ❝ sup xki − xi < ε, ∀k k0 , i tù❝ ❧➔ xk − x < ε ✈ỵ✐ ♠å✐ k ✭✷✳✹✮ k0 ✱ ❤❛② xk → x ❦❤✐ k → ∞✳ ❚ø ✭✷✳✹✮ s✉② r❛ xki − xi < ε ✈ỵ✐ ♠å✐ i✳ ❱➻ ✈➟② xi xki − xi + xki < c < ∞ ✈ỵ✐ ♠å✐ i ∈ I ✱ tù❝ ❧➔ x ∈ l∞ (E)✳ ◆❤÷ ✈➟② l∞ (E) ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤✳ ❑❤✐ E = K✱ t❛ ♥❤➟♥ ♥❣❛② ❝→❝ ❤➺ q✉↔ s❛✉ ✷✸ ✷✳✶✳✷ ❍➺ q✉↔✳ l∞(K) ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤ ✈ỵ✐ p✲❝❤✉➞♥ x = sup |xi |p i∈I ❑❤✐ p = t❛ ❝â ❤➺ q✉↔ s❛✉✳ ✷✳✶✳✸ ❍➺ q✉↔✳ ◆➳✉ E ❧➔ ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ t❤➻ l∞(E) ❧➔ ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥✳ ✣➦❝ ❜✐➺t✱ ♥➳✉ E ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ t❤➻ l∞(E) ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✳ ✷✳✷✳ ❈→❝ ❤å ❤ë✐ tư tỵ✐ ✈➔ ❝→❝ ❤å ❤ë✐ tư tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤ ❚✐➳♣ t❤❡♦ t❛ ①➨t ❧ỵ♣ ❦❤ỉ♥❣ ❣✐❛♥ ❝→❝ ❤å ❤ë✐ tư tỵ✐ ♥❤➟♥ ❣✐→ tr tr ổ p ỵ C0 (E) = x = {xi }i∈I ⊂ E : {xi } ❤ë✐ tư tỵ✐ ✵ ❚❛ ♥❤➢❝ ❧↕✐ r➡♥❣✱ ❤å {xi } ữủ tử tợ ợ > tỗ t J0 F(I) s❛♦ ❝❤♦ xi < ε ✈ỵ✐ ♠å✐ i ∈ I \ J0 ỵ C0(E) ổ ❝♦♥ ✤â♥❣ ❝õ❛ l∞(E)✳ ✣➦❝ ❜✐➺t✱ ♥➳✉ E ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤ t❤➻ C0(E) ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤✳ ❈❤ù♥❣ ♠✐♥❤✳ ❚❛ ❝❤➾ r❛ C0(E) ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❝♦♥ ❝õ❛ l∞(E)✳ ●✐↔ sû x = {xi }, y = {yi } ∈ C0 (E)✳ ❑❤✐ ✤â✱ ✈ỵ✐ ♠å✐ ε > tỗ t J1 , J2 F(I) s xi < ε ✈ỵ✐ ♠å✐ i ∈ I \ J1 ✈➔ ε ✈ỵ✐ ♠å✐ i ∈ I \ J2 ✳ ✣➦t J0 = J1 ∪ J2 ✳ ❑❤✐ ✤â✱ J0 ∈ F(I) ✈➔ yi < xi − yi xi + yi < ε ✷✹ ✈ỵ✐ ♠å✐ i ∈ I \ J0 ❱➻ ✈➟② x − y ∈ C0 (E)✳ ❚❛ ❝❤ù♥❣ ♠✐♥❤ C0 (E) ✤â♥❣ tr♦♥❣ l∞ (E)✳ ●✐↔ sû {xk } ⊂ C0 (E) ✈➔ xk → x tr♦♥❣ l∞ (E)✳ ❑❤✐ ✤â✱ ✈ỵ✐ ♠é✐ ε > tỗ t k0 s xk x = sup xki − xi < ε, ∀k k0 ✭✷✳✺✮ iI xk0 C0 (E) tỗ t J0 s❛♦ ❝❤♦ xki < ε, ∀i ∈ I \ J0 ✭✷✳✻✮ ❚ø ✭✷✳✺✮ ✈➔ ✭✷✳✻✮ t❛ ♥❤➟♥ ✤÷đ❝ xi xki − xi + xki < 2ε ✈ỵ✐ ♠å✐ i ∈ I \ J0 ✱ tù❝ ❧➔ x ∈ C0 (E)✳ ❱➻ t❤➳ C0 (E) ✤â♥❣ tr♦♥❣ l∞ (E)✳ ◆➳✉ E ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤ t❤➻ l∞ (E) ❝ơ♥❣ ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤✳ ❉♦ ✤â✱ ❦❤ỉ♥❣ ❣✐❛♥ ❝♦♥ ✤â♥❣ C0 (E) ❝õ❛ ♥â ❝ơ♥❣ ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤✳ ❑❤✐ E = K✱ t❛ ♥❤➟♥ ♥❣❛② ❝→❝ ❤➺ q✉↔ s❛✉✳ ✷✳✷✳✷ ❍➺ q✉↔✳ C0(K) ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤ ✈ỵ✐ p✲❝❤✉➞♥ x = sup |xi |p i∈I ❑❤✐ p = t❛ ❝â ❤➺ q✉↔ s❛✉✳ ✷✳✷✳✸ ❍➺ q✉↔✳ ◆➳✉ E ❧➔ ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ t❤➻ C0(E) ❧➔ ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥✳ ✣➦❝ ❜✐➺t✱ ♥➳✉ E ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ t❤➻ C0(E) ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✳ ❚❛ ỵ C(E) = x = {xi } E : ❤ë✐ tö tr♦♥❣ E ❚❛ ♥❤➢❝ ❧↕✐ r➡♥❣✱ {xi } ữủ tử tợ x ợ > tỗ t J0 F(I) s❛♦ ❝❤♦ xi − x < ε ✈ỵ✐ ♠å✐ i I \ J0 ỵ C(E) ❧➔ ❝→❝ ❦❤æ♥❣ ❣✐❛♥ ❝♦♥ ❝õ❛ l∞(E)✳ ✣➦❝ ❜✐➺t✱ ♥➳✉ E ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤ t❤➻ C(E) ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤✳ ❈❤ù♥❣ ♠✐♥❤✳ ❉➵ ❞➔♥❣ ❦✐➸♠ tr❛ ✤÷đ❝ C(E) ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❝♦♥ ❝õ❛ l∞(E)✳ ●✐↔ sû E ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤ ✈➔ {xk } ⊂ C(E)✱ ❤ë✐ tư tỵ✐ x ∈ l∞ (E)✳ ❚❛ s➩ ❝❤➾ r❛ x ∈ C(E)✳ ❚❤➟t ✈➟②✱ ✈ỵ✐ ♠å✐ ε > tø lim xk = x s r tỗ k t k0 s❛♦ ❝❤♦ xk − x = sup xki − xi < i∈I ❙✉② r❛ xki − xi < ✈ỵ✐ ♠å✐ k ε ε ✭✷✳✼✮ ✭✷✳✽✮ k0 ✈➔ ✈ỵ✐ ♠å✐ n = 1, 2, ✳ ▼➦t ❦❤→❝✱ ✈➻ {xki } ❤ë✐ tö tr♦♥❣ E ♥➯♥ ♥â ❧➔ ❞➣② tự tỗ t J0 F(I) s xki − xkj < ε ✭✷✳✾✮ ✈ỵ✐ ♠å✐ i, j ∈ / I \ J0 ✳ ❇➙② ❣✐í✱ ✈ỵ✐ i, j ∈ / I \ J0 t❛ ❝â xi − xj xi − xki + xki − xkj + xkj − xj < ε ❱➻ ✈➟② {xi } ❧➔ ❞➣② ❈❛✉❝❤② tr♦♥❣ E ✳ ❉♦ E ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤ ♥➯♥ x = {xi } ❤ë✐ tö tr♦♥❣ E ✳ ❱➻ ✈➟②✱ x ∈ C(E)✳ ◆❤÷ ✈➟②✱ C(E) ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ❝♦♥ ✤â♥❣ ❝õ❛ l∞ (E)✳ ❱➻ E ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲ ❇❛♥❛❝❤ ♥➯♥ l∞ (E) ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤✱ ✈➔ ✈➻ t❤➳ C(E) ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤✳ ❑❤✐ E = K✱ t❛ ♥❤➟♥ ♥❣❛② ❝→❝ ❤➺ q✉↔ s❛✉✳ ✷✳✷✳✺ ❍➺ q✉↔✳ C(E) ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤ ✈ỵ✐ p✲❝❤✉➞♥ x = sup |xi |p i∈I ❑❤✐ p = t❛ ❝â ❤➺ q✉↔ s❛✉✳ ✷✻ ✷✳✷✳✻ ❍➺ q✉↔✳ ◆➳✉ E ❧➔ ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ t❤➻ C(E) ❧➔ ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥✳ ✣➦❝ ❜✐➺t✱ ♥➳✉ E ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ t❤➻ C(E) ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✳ ✷✳✸✳ ❈→❝ ❤å ❦❤↔ tê♥❣ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥ ✣➸ t✐➺♥ ❝❤♦ ✈✐➺❝ ❝❤ù♥❣ ♠✐♥❤ ỵ t ỵ lq (E) = x = {xi } ⊂ E : xi q < ∞ ,q iI ỵ lq (E) ổ p✲✤à♥❤ ❝❤✉➞♥ ✈ỵ✐ p✲❝❤✉➞♥ ①→❝ ✤à♥❤ ❜ð✐ x q xi = q 1/q , ∀x ∈ lq (E) ✭✷✳✶✵✮ i∈I ❍ì♥ ♥ú❛✱ ♥➳✉ E ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤ t❤➻ lq (E) ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤✳ ❈❤ù♥❣ ♠✐♥❤✳ ✣➛✉ t✐➯♥✱ lq (E) ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❝♦♥ ❝õ❛ l∞(E)✳ ●✐↔ sû x {xi }, y = {yi } ∈ lq (E)✳ ❑❤✐ õ iI xi = < , tự tỗ t C1 , C2 ❧➔ q ❝→❝ ❤➡♥❣ sè ❞÷ì♥❣ s❛♦ ❝❤♦ ❝→❝ ❞➣② s✉② rë♥❣ SJ1 = xi q , SJ2 = i∈J yi q i∈J ❤ë✐ tư tỵ✐ C1 , C2 t÷ì♥❣ ù♥❣✱ tr♦♥❣ ✤â J ∈ F(I)✳ ❚❤➳ t ợ > tỗ t J1 , J2 ∈ F(I) s❛♦ ❝❤♦ |SJ1 − C1 | < ε ✈ỵ✐ ♠å✐ J ⊃ J1 ✈➔ |SJ2 − C2 | < ε ✈ỵ✐ ♠å✐ J ⊃ J2 ✳ ❙✉② r❛ |(SJ1 + SJ2 ) − (C1 + C2 )| |SJ1 − C1 | + |SJ2 − C2 | < ε + ε = 2ε ✷✼ ✈ỵ✐ ♠å✐ J ⊃ J0 = J1 ∪ J2 ✳ ❱➻ ✈➟② (SJ1 + SJ2 ) ❤ë✐ tư tỵ✐ C1 + C2 ✱ tù❝ ❧➔ q xi + i∈I q xi = C1 + C2 < ∞ i∈I ❚❛ ❝â x − y = {xi − yi }i∈I ✳ ❚❤➳ t❤➻✱ tø q xi − yi 2q xi i∈I q + 2q i∈I yi q i∈I s✉② r❛ q x i − yi 2q (C1 + C2 ) i∈I ❱➻ ✈➟② x−y ∈ lq (E)✳ ❚✐➳♣ t❤❡♦✱ t❛ ❝❤ù♥❣ ♠✐♥❤ ✭✷✳✶✵✮ ❧➔ p✲❝❤✉➞♥ tr➯♥ lp (E)✳ ❘ã r➔♥❣ x q = xi q 1/q 0, ∀x ∈ lq (E) i∈I ❚❛ ❝â x q = xi q 1/q = ⇔ xi = 0, ∀i ⇔ xi = 0, ∀i, i∈I tù❝ ❧➔ ⇔ x = θ✳ ❱ỵ✐ λ ∈ K ✈➔ x = {xi } ∈ lq (E) t❛ ❝â λx q λxi = q 1/q i∈I i∈I p q 1/q i∈I |λ|pq xi = |λ|p xi = q 1/q = |λpq | xi i∈I = |λ| x q ❱ỵ✐ x, y ∈ l∞ (E)✱ ♥❤í ❜➜t ✤➥♥❣ t❤ù❝ ❍☎ ♦❧❞❡r t❛ ❝â q 1/q ✷✽ ∞ x+y q = 1/q q xi + yi = lim J i∈I lim xi J J q + lim = xi q + q q 1/q i∈J 1/q yi i∈I = x yi J 1/q i∈J 1/q i∈J 1/q ( xi + yi )q = lim i∈I q i∈J 1/q q x i + yi x i + yi q 1/q i∈I + y q ❱➟② lq (E) ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥✳ ●✐↔ sû E ❧➔ ❦❤æ♥❣ ❣✐❛♥ p✲❇❛♥❛❝❤ ✈➔ {xk } ⊂ lq (E) ❧➔ ❞➣② ❈❛✉❝❤②✳ ❑❤✐ ✤â✱ ✈ỵ✐ ♠å✐ ε > tỗ t k0 s xk xl xki − xli = q q 1/q < ε, ∀k, l k0 ✭✷✳✶✶✮ i∈I ❙✉② r❛✱ ✈ỵ✐ ♠é✐ i ∈ I t❛ ❝â xki − xli ✈ỵ✐ ♠å✐ k, l q tỗ t J1 , J2 F(I) s❛♦ ❝❤♦ SJ1 − u < ε ✈ỵ✐ ♠å✐ J ⊃ J1 ✈➔ SJ2 − v < ε ✈ỵ✐ ♠å✐ J ⊃ J2 ✳ ❚❤➳ t❤➻ (SJ1 + SJ2 ) − (u + v) SJ1 − u + SJ2 − v < 2ε ✈ỵ✐ ♠å✐ J ⊃ J1 ∪ J2 ❙✉② r❛ lim(SJ1 + SJ2 ) = u + v J ❉♦ ✤â i∈I (xi + yi ) = u + v ∈ E ❈❤ù♥❣ ♠✐♥❤ t÷ì♥❣ tü t❛ ❝â λx ∈ l[E] ✈ỵ✐ ♠å✐ λ ∈ K ✈➔ x ∈ E ✳ ❙✉② r❛ l[E] ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❝♦♥ ❝õ❛ l∞ (E)✳ ❱➻ ✈➟②✱ ♥â ❧➔ p✲✤à♥❤ ❝❤✉➞♥ ✈ỵ✐ p✲❝❤✉➞♥ ①→❝ ✤à♥❤ ❜ð✐ x = sup xi , ∀x ∈ l[E] i∈I ✭✷✳✶✹✮ ✸✵ ❑❤✐ p = t❛ ❝â ❤➺ q✉↔ s❛✉✳ ✷✳✸✳✸ ❍➺ q✉↔✳ ◆➳✉ E ❧➔ ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ t❤➻ l[E] ❧➔ ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥✳ ✸✶ ❑➳t ❧✉➟♥ ▲✉➟♥ ✈➠♥ ✤➣ t❤✉ ✤÷đ❝ ❝→❝ ❦➳t q✉↔ ❝❤➼♥❤ s❛✉✿ ✶✳ ❚r➻♥❤ ❜➔② ♠ët sè ❦➳t q✉↔ ✤➣ ❜✐➳t ✈➲ ❝→❝ ❤å sè ♥❤÷ ❤å sè ❜à ❝❤➦♥✱ ❤å sè ❦❤↔ tê♥❣✱ ❤å ❤ë✐ tö tợ ổ tữỡ ự tr tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥✳ ✷✳ ❳➙② ❞ü♥❣ ❝➜✉ tró❝ ❝→❝ ❤å ♥❤➟♥ ❣✐→ trà tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥ t ỵ ỵ ỵ ữ r ởt số t t ❝✉↔ ❦❤æ♥❣ ❣✐❛♥ ❝→❝ ❤å ♥❤➟♥ ❣✐→ trà tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ p✲✤à♥❤ ❝❤✉➞♥✱ t❤➸ ❤✐➺♥ ð ❝→❝ ❤➺ q✉↔ ✷✳✶✳✷✱ ❤➺ q✉↔ ✷✳✶✳✸✱ ❤➺ q✉↔ ✷✳✷✳✷✱ ✳✳✳ ✸✷ ❚⑨■ ▲■➏❯ ❚❍❆▼ ❑❍❷❖ ❬✶❪ ◆❣✉②➵♥ ❱➠♥ ❑❤✉➯ ✈➔ ▲➯ ▼➟✉ ❍↔✐ ✭✷✵✵✷✮✱ ❈ì t➼❝❤ ❤➔♠✱ ❚➟♣ ■ ✈➔ ❚➟♣ ■■✱ ◆❳❇ s ỵ tt ó ❍ú✉ ❍➔ ✭✷✵✶✺✮✱ ❱➲ ❦❤æ♥❣ ❣✐❛♥ ❝→❝ ❞➣② ♥❤➟♥ ❣✐→ trà tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ p ✲ ✤à♥❤ ❝❤✉➞♥✱ ▲✉➟♥ ✈➠♥ ❚❤↕❝ s➽ ❚♦→♥ ❤å❝✱ ❚r÷í♥❣ ✣↕✐ ❤å❝ ❱✐♥❤✳ ❬✸❪ ◆❣✉②➵♥ ❚❤à P❤÷ì♥❣ ▲♦❛♥ ✭✷✵✵✶✮✱ ❑❤ỉ♥❣ ❣✐❛♥ ✈➠♥ ❚❤↕❝ s➽ ❚♦→♥ ❤å❝✱ ❚r÷í♥❣ ✣↕✐ ❤å❝ ❱✐♥❤✳ ❝→❝ ❞➣② ❑♦t❤❡✱ ▲✉➟♥ ❋♦✉♥❞❛t✐♦♥s ♦❢ ❝♦♠♣❧❡① ❛♥❛❧②s✐s ✐♥ ♥♦♥ ❧♦❝❛❧❧② ❝♦♥✈❡① s♣❛❝❡s✳ ❋✉♥❝t✐♦♥ t❤❡♦r② ✇✐t❤♦✉t ❝♦♥✈❡①✐t② ❝♦♥❞✐t✐♦♥ ◆♦rt❤✲ ❬✹❪ ❆✳ ❇❛②♦✉♠✐✱ ✭✷✵✵✸✮✱ ❍♦❧❧❛♥❞ ▼❛t❤❡♠❛t✐❝s ❙t✉❞✐❡s✱ ✶✾✸✳ ❊❧s❡✈✐❡r ❙❝✐❡♥❝❡ ❇✳❱✳✱ ❆♠st❡r✲ ❞❛♠✳ ❚♦♣♦❧♦❣✐❝❛❧ ✈❡❝t♦r s♣❛❝❡s ■✱ ❙♣r✐♥❣❡r ❱❡r❧❛❣✳ ❬✻❪ ❏✳ ▲✐♥❞❡♥str❛✉ss ❛♥❞ ▲✳ ❚③❛❢r✐r✐ ✭✶✾✼✼✮✱ ❈❧❛ss✐❝❛❧ ❇❛♥❛❝❤ s♣❛❝❡s✳ ■✳ ❙❡q✉❡♥❝❡ s♣❛❝❡s✱ ❙♣r✐♥❣❡r✲❱❡r❧❛❣✱ ❇❡r❧✐♥✲◆❡✇ ❨♦r❦✳ ❬✼❪ ❘✳ ▼❡✐s❡ ❛♥❞ ❉✳ ❱♦❣t ✭✶✾✾✼✮✱ ■♥tr♦❞✉❝t✐♦♥ t♦ ❋✉♥❝t✐♦♥❛❧ ❆♥❛❧②s✐s✱ ❬✺❪ ●✳ ❑☎♦t❤❡✱ ✭✶✾✻✾✮✱ ❈❧❛❞❡r♦♥ Pr❡ss✱ ❖①❢♦r❞✳ ❬✽❪ ❆✳ P✐❡ts❝❤ ✭✶✾✼✷✮✱ ◆✉❝❧❡❛r ▲♦❝❛❧❧② ❈♦♥✈❡① ❙♣❛❝❡s✱ ❙♣r✐♥❣❡r✲ ❱❡r❧❛❣✳ ... (E) t❛ ❝â λx = sup λxi = sup |λ |p xi = |λ |p sup xi = |λ |p x i i∈I i∈I ❱ỵ✐ x, y ∈ l∞ (E) t❛ ❝â x + y = sup xi + yi sup xi + sup yi = x + y i∈I i∈I i∈I ❱➟②✱ l∞ (E) ❧➔ ❦❤æ♥❣ ❣✐❛♥ p? ??✤à♥❤ ❝❤✉➞♥✳ ●✐↔... tø x, y ∈ l∞ (E) s✉② r❛ supi∈I xi < ∞✱ supi∈I yi < ∞✳ ❉♦ ✤â sup xi + yi sup xi + sup yi < ∞ i∈I i∈I i∈I ✈➔ ✈➻ t❤➳ x + y ∈ l∞ (E) ❱ỵ✐ ♠å✐ λ ∈ K t❛ ❝â sup λxi = sup |λ |p xi < ∞, i∈I i∈I tù❝ ❧➔ {λx}... C0(E) ụ ỵ lp(E) ổ ✤à♥❤ ❝❤✉➞♥ ✈ỵ✐ ❝❤✉➞♥ ①→❝ ✤à♥❤ ❜ð✐ ∞ x p = xn p 1 /p , ∀x ∈ lp (E) ✭✶✳✹✮ n=1 ❍ì♥ ♥ú❛✱ ♥➳✉ E ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ t❤➻ lp(E) ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✳ ✶✳✹✳ ❑❤æ♥❣ ❣✐❛♥ p? ??✤à♥❤ ❝❤✉➞♥

Ngày đăng: 27/08/2021, 09:23

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w