1. Trang chủ
  2. » Luận Văn - Báo Cáo

Môđun đối cohen macaulay suy rộng luận văn thạc sĩ toán học

38 224 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 38
Dung lượng 1,63 MB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC VINH TRẦN HỒNG VÂN MÔĐUN ĐỐI COHEN-MACAULAY SUY RỘNG luËn v¨n th¹c sü to¸n häc  Nghệ An – 2012 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC VINH TRẦN HỒNG VÂN MÔĐUN ĐỐI COHEN-MACAULAY SUY RỘNG  CHUYÊN NGÀNHĐẠI SỐ VÀ LÝ THUYẾT SỐ Mã số: 60 46 05 luËn v¨n th¹c sü to¸n häc Người hướng dẫn khoa học TS. NGUYỄN THỊ HỒNG LOAN  Nghệ An – 2012 MỤC LỤC  Mục lục  Mở đầu  Chương 1. Kiến thức chuẩn bị     !" #$%&''  (")*+,-.'&* m- / 0 1 23)*+, 4 51&'61..$ 7 018 9 :;/<=>*  4?23)*+,  73%&'' !"#$8  Chương 2. 1 &'61..$ 7 1 &'61. 7 1 &'61..$@!")*+, 9 1 &'61..$@!"A>B) *+,  Kết luận 5 Tài liệu tham khảo 0  MỞ ĐẦU &*CD%&'' E*&'61. F!GH!">IIJ+K#BB$ AL!MN3O.BNL?C && +PHO.@, 23)*+,?JF3+E Q$E*&'61.&RE*E =SS!"!TGF3O>+,SE*&'6 1.F"E*;#E*&'61.. $E*&'61./J.E*&'61.. $/J.%RE*".JQ"RE*N'#B!" F3=/U&?C &&!"VWLC  &*CD8E*F!GNL +E*&'61.J+K3"&L@= "E* &'61. &XRm) "!"%&'')*+,!E@ C/.>" m !" A "$ R68!E3%&''%6/ A !"$$ Y/A.F%6/A ≥ Y/AA +KL"môđun đối Cohen –MacaulayB#>Z=@Q"Z=>I  &'61.J+K#BBNO>  /J. ON[*@.@ \AB23)*+, &]^%.<S+_%.<)`!"a@%" J  @  =  $  E*    Q  $    E*       &'6 1.!"LL"môđun đối Cohen-Macaulay suy rộng 5  % b /c d   a[ !e" W!3   &'6 1..$/S!"&ABNf@=%.<S+_ %.<)`!"a@%"&]^ %&"*-Q-AB[!""Af&[!e+K "+, +,B=g#)&+,".IW #".$ A?C &&hUO",Q& !W#".$/O[!eQ+,%&"I GO/T$ ABNfJF/+E/CR3h*U!U &=Q*- +,1 &'61..$&+,". IW#".R!>3H. 1 &'61. 1 &'61..$@!")*+, 1 &'61..$@!"A> B)*+,  a[!e+K&""C+_?CL(/+ES+E /TI*ij#f&[Wk%.<)V2a&l#". mGf,HLBD-.&&A&& *G"&C&kCL+_?CL(kQ&/U!"?"&C& j?2*+_?CL?2* ;+_ VPa>*(G#C#n2*!"WJC&3A[K &&NWL[*!"@=  d  o  H p V p (H 0 CHƯƠNG I KIẾN THỨC CHUẨN BỊ &+,".IW#".$ A?C &&hUO",Q&!W#".$/O a[!eQ+,%&"IGO/T$ ABNfJF /+E/CR3h*U!U&=Q*- 1.1. Giá của môđun &p "$@.@ !"R. qR p !"M p  +, =")*+,FR!"MCpLk*'R"[*>f@ .@ !"R. F[*& { } = ∈ ≠ Supp Spec 0M R M p p k*'R+KL"giá M. M "R- RCW { } = = ∈ ⊇ Supp (Ann ) Spec Ann . R R M V M R Mp p 1.2. Chiều Krull, hệ tham số và số bội của môđun Noether 1.2.1. Chiều Krull. 1$/J.f@.@  !"  R  9   n ⊃ ⊃ ⊃ p p p +KL"$xích nguyên tốF$/" n &p"$ @.@ !"R, [@>f$/"lO .@ !E 9 = p p +KL"độ cao của p Aq" ( )  p %r" ( )  p s*t$/"lO.@ !E 9 = p p u [@>f$/"lO.@ & R +K L"chiều Krull của vànhRAq" /R  &  M  "$  R − F  ( ) / v 8 R R M +KL" chiều Krull của môđunMAq"/M : 1.2.2. Hệ tham số.& R "$!"&&)*+,%&''!E @ C/.>"m; M "$ R 6RCF3    w9dim M d= 1$2 d *-x   X  y d x x x= m+K L"$hệ tham số M B  X vX  y y R d M x x M < ∞l X X y ∗ l "AO $/" R 6y kH."$ O>,#f  (i) 1L&!)$  M z"$  M (ii) %B    X  y d x x x=  "  $          M  W  !E  L i d= F  X vX  y y i dim M x x M d i= −  (iii) + ∉ i x p !E  X v X  y y∈ i Ass M x x Mp mJ v = −dim R d ip !E i d∀ = (iv) %B    X  y d x x x=  "  $            M  !"   X  y d n n n= "$#$2 d  .@/+,W   X y X  y d n n d x n x x= z"$  M 1.2.3. Số bội. & R "$!"&&)*+,%&''!E@ SC/.> m{  M "$|6RCF3 / 9= >M d   1$     *-  x     X   y t x x x x=   m &  &  X vX  y y t M x x M < ∞l +KL"$hệ bội {M QH.B 9t = W 3A".Fr" X y M < ∞l Iqh} z"$#$+3+KCF"AI F t d≥ FAq#$ X { ye x M  M  !E#$ x +K )rNC*'& t + fx 9t = ~ X { y X ye M M∅ = l (E 9t > ~   9 t 9u= ∈ = M x m M mx F  9 M x "$ &M (W  X vX  y y t M x x M < ∞l /</".    XX9 yvX  yX9  yy  M t M x x x x < ∞l 4 =  X  y t x x "#$&  9 M x ([.'&fBNC* W   X  { v y t e x x M x M !"   X  { 9 y t M e x x x J+Kl) F )r      X  { y X  { v y X  { 9 y t t t M e x x M e x x M x M e x x x= − kH."$O>,#f #$ X { ye x M  (i)   9 X  { y X vX  y y t t e x x M M x x M≤ ≤ l ?~#B2C i && 9 n i x M = !E n "$ S@"&F W  X  { y 9 t e x x M = (ii) &/J.AE*\ R 6 • € 9 9M M M→ → → → F x "#$ M A!"jA x "#$ • M !" € M V,R • € X { y X { y X { ye x M e x M e x M= + (iii)  X  { y 9 t e x x M = A!"jA t d> (iv)     X  { y  X  { y t n n t t t e x x M n n e x x M=  !E    t n n  "     .@/+, (v) fx   X  y= t x x Rq  "@#Q#$   X  y t x x F  X y X v y + = l n F n M M q q "$"'&#B n "".+KL"" Hilbert-Samuel. 1.3. Vành địa phương đầy đủ theo tôpô m- adic & ( )  mR "$!")*+,l•R+$!"*!E ,QH[*-x9"@ m t !Et = 0,1,2 .Iqh, QH[$*-x‚q ∈ r R 2E*•* + m t r !Et = 0, 1,2 .Fvành đầy đủ theo tôpô − m adicRAq#Q µ R +K )r#h+_'&R/J..+ 7 1$dãy Cauchy &R"$/J. ( ) n r *-xR&&!EL t > 02C S@ 9 n  − ∈ m t n m r r !EL 9   > n m n  `J. ( ) n r +KL"hội tụ về dãy khôngB!ELt > 02C S@ 9 n  9 − = ∈ m t n n r r !EL 9 > n n  V/J.. ( ) n r  !"  ( ) n s  +KL"/J. tương đươngAq " ( ) ( ) : n n r s B/J. ( ) − n n r s "/J.AFN∼@ [*/J.."N+,+,Aq µ R "[*E* +,+,/J.. IqhB ( ) n r !" ( ) n s "/J..W/J. ( ) + n n r s  ( ) n n r s z"/J..!"E*+,+,/J. ( ) + n n r s  ( ) n n r s "A*U$!"&!LC/E*+, +,/J. ( ) n r !" ( ) n s ="B ( ) ( )  : n n r r !" ( ) ( )  : n n s s W ( ) ( )   + + : n n n n r s r s !" ( ) ( )   : n n n n r s r s (WB µ R +K#)*•*& ƒ!"2_D!E*•*&"".  µ R [*"$ !"1}*-x ∈ r R F2>!EE*+,+,/J. .">f*-x&/J.3"r(WBF$,> S@R!" µ ( )      → a R R r r &F ( ) r "/J.">f*-xF3"r 9 ?)r+,S&M!E,QH[*-x9" { } t Mm F ¶ M "$ µ R 6!E*•*H!+E+ & ( ) µ = ∈ 1 2 , , .a a a R  ( ) µ = ∈ 1 2 , , .x x x M F ( ) µ = ∈ 1 1 2 2 , , .ax a x a x M  1.4. Môđun đối đồng điều địa phương 1.4.1. Định nghĩa.fBR"!"%&'')*+,m"@  C  /.  >   R !" M " R6 R  C   !E  3   .dim M d= (i) Đối đồng điều địa phương -  -  @  +K  )  r #Q 8&'/A&I "$@R(E}R6M~ { } ( ): (0: ) , 0 . n n I M n N M I x M n N xI ∈ Γ = = ∈ ∃ ∈ = U F ( ) I MΓ "$&M(E}R62> : ,f M N→  F ( ( )) ( ). I I f M NΓ ⊆ Γ `&F2C ( ): ( ) ( ) ( )( ) ( ), ( ) . I I I I I f M N x f x f x x M Γ Γ → Γ Γ = ∀ ∈ Γa F I Γ "$"x$O*#BAE*„*CDR6 !"&*CDR6 I Γ +KL""xl&\ (E} S@i"x/Tl>*f=i I Γ +KAO" i I H !"+KL""x 23)*+,=i!E"I. (E}R6M, AO ( ) i I H M "…f†MN $#Q"x . i I H F ( ) i I H M +KL"đối đồng điều địa phương thứ iM!E"I. (ii) %+_L ( ) d H M m X!E dim M d= y"đối đồng điều địa phương cấp cao nhất M. 

Ngày đăng: 19/12/2013, 15:08

TỪ KHÓA LIÊN QUAN

w