Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 27 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
27
Dung lượng
600,05 KB
Nội dung
1.MỞ ĐẦU 1.1 Lý chọn đề tài Trong giảng dạy mơn Tốn, ngồi việc giúp học sinh nắm kiến thức việc hỗ trợ học sinh tiếp cận dạng tập mức độ khó nhiệm vụ quan trọng giáo viên Việc làm giúp học sinh có tư tốt phát triển khả Như biết toán “ bất đẳng thức ” hay “ Tìm giá trị lớn nhất, giá trị nhỏ biểu thức ” dạng tập khó nhất, mà học sinh nghĩ đến gần “ đầu hàng ”, học sinh giỏi Bởi học sinh thật phương hướng gặp tập dạng Thiết nghĩ em có hướng giải mẫu mực cho dạng tốn cụ thể em tự tin gặp Để giải tốn “Tìm giá trị lớn nhất, giá trị nhỏ biểu thức” có nhiều phương pháp: sử dụng phương pháp bất dẳng thức, phương pháp véc tơ, phương pháp hàm số, phương pháp hình học, phương pháp lượng giác, phương pháp tập giá trị, sử dụng nhiều phương pháp toán… Có nhiều phương pháp tìm giá trị lớn nhất, giá trị nhỏ biểu thức có từ biến trở lên Với mong muốn có thêm cho học sinh kiến thức để giải tốn tìm giá trị lớn nhất, giá trị nhỏ biểu thức, đề tài xin trao đổi số tốn “Sử dụng phương pháp tập giá trị tìm giá trị lớn nhất, giá trị nhỏ biểu thức hai biến”, hai biến bị ràng buộc điều kiện cho trước Đối tượng học sinh tiếp cận đề tài ít, học sinh có lực học cứng học sinh giỏi Đây đề tài với nội dung khó, hy vọng sau tiếp nhận đề tài học sinh có cách nhìn khác loại tập Các em có kỹ xử lý tốn, có hướng cụ thể, có phương pháp để xử lý Ta biết tốn giúp em học sinh lớp 12 chinh phục điểm 9, điểm 10 đề thi THPTQG Trong đề thi học sinh giỏi tỉnh Thanh Hóa năm vừa qua, câu bất đẳng thức hay giá trị lớn nhất, giá trị nhỏ biểu thức câu hóc búa Tuy nhiên học sinh nắm phương pháp giải bổ ích giúp em phát triển tư toán học, sáng tạo định hướng cho học sinh biết cách khái qt hóa dạng tốn khác 1.2 Mục đích nghiên cứu Nhằm giúp học sinh có thêm kỹ niềm tin để giải toán bất đẳng thức giá trị lớn nhất, giá trị nhỏ biểu thức Hy vọng em tiếp cận tốt đến dạng toán kỳ thi HSG tỉnh THPT Quốc gia 1.3 Đối tượng nghiên cứu Học sinh lớp 12A4 lớp 12A2 ôn thi HSG tỉnh Thanh Hóa ôn thi THPT Quốc gia 1.4 Phương pháp nghiên cứu - Nghiên cứu lý luận - Nghiên cứu tài liệu - Nghiên cứu đề thi HSG, THPT Quốc gia 1.5 Những điểm sáng kiến Để khắc phục khó khăn mà học sinh thường gặp phải, xin đưa số giải pháp sau: - Đưa hệ thống kiến thức liên quan - Các phương pháp bổ trợ để giải toán phát sinh sử dụng “phương pháp tập giá trị” - Lựa chọn số tập minh họa Trong tốn có gợi ý để em có hướng suy nghĩ, có lời giải chi tiết để học sinh tham khảo - Hệ thống tốn minh họa xếp theo trình tự hợp lý kiến thức, tư giúp học sinh nắm bắt dễ dàng hứng thú - Có tập áp dụng để học sinh luyện tập thêm Trong phần tập áp dụng có đáp án trắc nghiệm để học sinh kiểm tra lại kết - Thực nghiệm sư phạm 2 NỘI DUNG 2.1 Cơ sở khoa học 2.1.1 Nội dung chuyên đề giá trị lớn nhất, giá trị nhỏ biểu thức hai biến chương trình tốn THPT Bài tốn tìm “Tìm giá trị lớn nhất, giá trị nhỏ biểu thức hai biến” chương trình lớp 10, giải hai công cụ điều kiện có nghiệm phương trình bậc hai phương pháp hình học (cụ thể phương trình đường thẳng phương trình đường trịn) Trong chương trình lớp 11 sử dụng kiến thức phần lượng giác để lượng giác hóa số tốn đăc biệt Đối với lớp 12 cơng cụ mở rộng tính đơn điệu hàm số Ta dùng để tìm mối quan hệ hai ẩn, tồn nghiệm Sự kết hợp kiến thức khối lớp giúp em có kỹ tốt để giải toán dạng Việc nhận dạng toán để xác định phương pháp giải việc làm đứng trước tốn khó Tuy nhiên ta cần xử lý tốt toán phát sinh Đó linh hoạt người làm tốn, để có điều ta cần có đầy đủ kiến thức liên quan dạng toán mà ta giải 2.1.2 Một số phần kiến thức liên quan - Điều kiện có nghiệm phương trình bậc hai hệ thức Viet - Nắm phương trình đường trịn, phương trình đường thẳng Vẽ đồng thời loại đường hệ trục để quan sát rõ miền nghiệm hệ chứa đường - Những toán đại số đặc biệt lượng giác hóa nó, việc giải dễ dàng nhờ biến đổi lượng giác Chẳng hạn có x2 + y = cos x + sin x = dấu hiệu , ta liên tưởng đến hệ thức - Tính đơn điệu hàm số: f(x) đơn điệu miền D f ( u ) = f ( v) ⇔ u = v Kết luận giúp ta tìm mối quan hệ x y Nói chung ứng dụng hàm rộng, nội dung đề tài áp dụng góc nhỏ tính chất 2.2 Thực trạng vấn đề trước áp dụng sáng kiến Khi học sinh gặp tốn tìm giá trị lớn nhất, giá trị nhỏ biểu thức hai biến số, em gặp phải số khó khăn sau: - Khơng có hướng đi, cảm giác tốn khó khơng dám đụng đến khơng khó đến mức Ví dụ câu 45 đề thi THPT Quốc gia mơn tốn năm 2020, hay câu 47 đề thi khảo sát toán tỉnh Thanh Hóa năm 2021 - Khó xử lý tốn phát sinh sử dụng phương pháp cụ thể - Khơng nắm vững dấu hiệu tốn tổng quát để sử dụng phương pháp phù hợp 2.3 Giải pháp cụ thể Bài toán tổng quát: Cho số thực x, y thỏa mãn điều kiện: G ( x, y ) ≥ , G ( x, y ) ≤ G ( x, y ) = (hoặc ) Tìm giá trị lớn nhất, giá trị nhỏ (nếu có) biểu thức P = F ( x, y ) Phương pháp giải chung: Gọi T tập giá trị P Khi m giá trị T hệ sau có nghiệm: G ( x, y) = F ( x, y ) = m ( G ( x, y ) ≥ F ( x, y) = m G ( x, y ) ≤ F ( x, y ) = m ) Sau tìm giá trị tham số m để hệ có nghiệm Cụ thể: Phương pháp 1: Điều kiện có nghiệm phương trình bậc hai Qua biến đổi ta đưa tốn tìm điều kiện tham số để hệ có nghiệm quy tìm điều kiện tham số để phương trình bậc hai có nghiệm Phương trình: Ax + Bx + C = ( A ≠ ) có nghiệm ∆ = B − 4AC ≥ Phương pháp 2: Sử dụng tính đơn điệu hàm số y = f ( x) Xét hàm số đơn điệu tập K Khi ta có: f ( u) = f ( v) ⇔ u = v +) f ( x) = m +) : m ∈T - Nếu (T tập giá trị f(x) tập K) phương trình có nghiệm - Nếu m ∉T phương trình f ( x) = m f ( x) = m vô nghiệm Phương pháp 3: Sử dụng hình học Vẽ đường có phương trình bất phương trình liên quan đến hệ Thơng thường vẽ đường thẳng đường trịn Khi quan sát tương giao đường hình vẽ, kết hợp yêu cầu đề ta tìm điều kiện cụ thể Từ suy tập giá trị T P, suy GTLN, GTNN (nếu có) P MỘT SỐ BÀI TOÁN MINH HỌA Bài toán 1: Cho hai số thực x,y thỏa mãn điều kiện: x ( x − 1) + y ( y − 1) = xy GTLN, GTNN biểu thức A max F = 8, F = F = x + y + xy là: B max F = 6, F = C max F = 6, F = D max F = 8, F = Gợi ý: Nhận thấy vai trò x, y có vai trị nên ta biến đổi để xuất dạng tổng tích x, y Sau sử dụng điều kiện có nghiệm phương trình bậc hai Giải Gọi T miền giá trị F Ta có nghiệm: m ∈T hệ phương trình sau có x ( x − 1) + y ( y − 1) = xy 3 x + y + xy = m Đặt: S = x + y P = xy ta có (I) ∃ x, y ⇔ ∃ S , P : S ≥ P Khi hệ (I) trở thành: S − S − 3P = S + 2S = 3m ⇔ S + P = m p = m−S S ≥ 4P ⇔ S ≥ Ta có: 4(S2 − S ) ⇔ S − 4S ≤ ⇔ ≤ S ≤ Hệ phương trình (I) có nghiệm f ( S ) = S + S = 3m S ∈ [ 0; 4] Vì hàm số nghiệm f ( S ) = S + 2S đồng biến [ 0; 4] nên phương trình S ∈ [ 0; 4] ⇔ f (0) ≤ 3m ≤ f (4) ⇔ ≤ 3m ≤ 24 ⇔ ≤ m ≤ có nghiệm f ( S ) = 3m có Do T = [ 0;8] Vậy F = 0, max F = Bài toán 2: Cho số thực x,y thỏa mãn: GTNN biểu thức − A 49 100 P = x( x + 1) + y ( y + 1) − B Chọn A 9x + 16x + 6x + y ≤ 3(1 − 8xy) bằng: 50 100 − C 51 100 − D 52 100 1 1 P = x ( x + 1) + y ( y + 1) ⇔ x + ÷ + y + ÷ = P + 2 2 Gợi ý: Ta có: (phương trình đường trịn), nên nghĩ đến việc biến đổi biểu thức cho dạng phương trình đường để ta sử dụng tương giao Giải Gọi T tập giá trị P, ta có m ∈T hệ sau có nghiệm: ( 3x + y ) + 2(3x + y) ≤ 9x + 16 y + 6x + y ≤ 3(1 − 3xy ) 2 ⇔ 1 1 x + + y + x( x + 1) + y(y + 1) = m ÷ ÷ = m+ 2 2 2 −3 ≤ 3x + y ≤ 1( 1) 2 ⇔ (I) 1 1 x + ÷ + y + ÷ = m + ( ) 2 2 m≤− Dễ thấy: m>− Với hệ vơ , xét mặt tọa độ Oxy ta có tập nghiệm (1) miền mặt ( d1 ) : 3x + y + = phẳng (H) nằm hai đường thẳng song song ( d ) : 3x + y − = có chứa biên đường thẳng nghiệm (2) đường tròn ( C) 1 I − ;− ÷ 2 có tâm Như hệ (I) có nghiệm d ( I ; d1 ) ≤ R ⇔ khi: Do Bài ( 2) nghiệm 1 49 ≤ m+ ⇔ m≥ − 10 100 49 T = − ; +∞ ÷ 100 toán 2cos x + 2cos y + 3: P = − Vậy Cho 49 100 ( H) ( d1 ) , tập hợp R = m+ , bán kính ( C) có điểm chung, xảy m>− (thỏa mãn ( d2 ) ) Chọn A số thực x,y thỏa mãn: + cos x +cos y +1 −4cos x + cos y ≥ ( 1) GTLN, GTNN biểu thức: A C K = cos 2x + cos y K = − , max K = là: B K = − , max K = K = −1, max K = K = −1, max K = D Gợi ý: Quan sát ( 1) ta thấy bất phương trình mũ bậc hai, số nên đưa dạng bất phương trình ẩn cos x, cos y Từ biểu thức K, áp dụng cơng thức nhân đơi để đưa phương trình ẩn cos x, cos y Giải Gọi T tập giá trị K, ta có m ∈T hệ sau có nghiệm: ( ) 2cos x + 2cos y +3 + cos x +cos y +1 −4cos x + cos y ≥ ( I) cos 2x + cos y = m Ta có: ) ( ) 2cos x + cos y − 2 + 2cos x + cos y + ≤ 2 ≤ 2cos x +cos y ≤ 2 ≤ cos x + cos y ≤ ⇔ ( I) ⇔ m+2 ⇔ m+2 2 cos x + cos y = cos x + cos y = cos x + cos y = m + 2 ( Đặt v = cos y u = cos x ta có hệ: Hệ (I) có nghiệm Dễ thấy ⇔ ≤ u + v ≤ ( 1) ( II ) u ≤ 1, v ≤ 1( ) u + v = m + ( 3) hệ (II) có nghiệm m ≤ −2 hệ (II) vô nghiệm m > −2 : Với Xét mặt phẳng Ouv tập nghiệm (1), (2) hình thang ABCD (gồm điểm nằm hình thang điểm nằm cạnh hình thang) Tập hợp nghiệm (3) đường trịn tâm O(0;0), bán kính R= m+2 10 max K = + 15; K = C + 21 max K = + 15; K = D − 21 Gợi ý: Từ x − x +1 = y + − y x +1 , nhận thấy biến đổi để xuất đối xứng y+2 Giải Điều kiện: x ≥ −1 ( 1) y ≥ −2 Gọi T tập giá trị K Ta có m ∈T hệ sau có nghiệm: x − x + = y + − y 3( x + + y + 2) = m ⇔ ( I) x + y = m x + y = m Đặt t2 − u = x + ( u ≥ ) v = y + ( v ≥ ) Hệ (I) trở thành nghiệm hai m u+v = 3 ( u + v ) = m ⇔ ⇒ u, v 2 u + v = m + uv = m − m − ÷ 2 phương trình: m m2 t+ − m − ÷ = ⇔ 18t − mt + m − 9m − 27 = ( ) 2 Hệ (I) có nghiệm x, y thỏa mãn (1) (2) có hai nghiệm khơng âm Điều kiện là: ' ∆ t = −9 m − 18m − 54 ≥ m + 21 ⇔ ≤ m ≤ + 15 St = ≥ m − 9m − 27 ≥0 Pt = 18 ( ) 13 Do + 21 T = 2 ;9 + 15 max K = + 15; K = Vậy + 21 Chọn C Bài toán 5: Cho hai số x, y thay đổi thỏa mãn Biểu thức A C B = x − xy − y x + xy + y ≤ có tập giá trị là: T = −4 − 3; − 3 B T = −4 3; D T = −4 − 2; − T = −4 − 1; − 1 Gợi ý: x + xy + y ≤ P = x − xy − y Từ biểu thức: dạng hệ đẳng cấp bậc hai hai ẩn x, y ta nghĩ đến việc đưa toán Giải Đặt A = x + xy + y ; B = x − xy − y Gọi T tập giá trị B, m ∈T hệ sau có nghiệm: 2 x + xy + y ≤ ( I) 2 x − xy − y = m +) Nếu y=0 A = x2 ≤ , đó: −4 − < ≤ m = x ≤ < − (đpcm) +) Nếu y≠0 đặt x = ty , y y2 A=x+ ÷ + >0 2 nên: m x − xy − y t − t − a= = = ⇔ ( a − 1) t + ( a + 1) t + a + = ( *) A x + xy + y t + t +1 Hệ (I) có nghiệm phương trình (*) có nghiệm ⇔ ∆ = ( a + 1) − 4(a − 1)(a + 3) ≥ ⇔ −4 − −3 ≤a≤ 3 14 Do −4 − m − ≤ ≤ A Vậy tập giá trị B Măt khác 0< A≤3 T = −4 − 3; − 3 nên −4 − ≤ m ≤ − Chọn A Bài toán 6: Cho hai số thực x, y thỏa mãn: Khẳng định sau đúng: x2 + y = P= Đặt x + 6xy + 2xy + y A GTLN P B Không tồn GTLN P C GTNN P -3 D Không tồn GTNN P Gợi ý: Từ x2 + y = , ta liên tưởng đến hệ thức lượng giác bản: cos t + sin t = Vì ta đặt ẩn phụ, đưa toán dạng lượng giác Giải Gọi T tập giá trị P, m ∈T hệ sau có nghiệm: x2 + y = ( I) x + 6xy 1 + 2xy + y = m x = sin t y = cos t Đặt Hệ (I) trở thành: sin t + cos t = ⇔ ( 2m − ) sin 2t + ( 2m + 1) cos 2t = − 4m ( *) sin 2t − cos 2t + = m 2sin 2t + cos 2t + Hệ (I) ( 2m − 1) Vậy có nghiệm phương trình + ( 2m + 1) ≥ ( − 4m ) ⇔ 2m2 + 3m − = ⇔ −3 ≤ m ≤ P = −3 2 (*) có nghiệm: Chọn C 15 Bài toán 7: Xét số thực x, y thỏa mãn: P = 2x + y Khi biểu thức A M = 20 B đạt GTNN là: M =7 log ( x − 1) + log ( y − 1) = a+b C ( a, b ∈ ¢ M = −10 ) Tính M = ab D M = 12 Gợi ý: Ta có: log ( x − 1) + log ( y − 1) = , đưa phương trình đại số x,y Kết hợp với biểu thức K đưa đối xứng tổng, tích biểu thức x − 1, y − Giải: Điều kiện: x, y > log ( x − 1) + log ( y − 1) = : ⇔ ( x − 1) ( y − 1) = ⇔ ( x − 1) ( y − 1) = 12 Ta có: Đặt P = 2x + y = ( x − 1) + ( y − 1) + u = x − 1( u > ) v = y − 1( v > ) Gọi T tập giá trị P, m ∈T hệ sau có nghiệm: m > uv = 12 m − > u + v + = m ⇔ m ≥ + ⇔ m ≥ + u , v > ( m − ) ≥ 4.8 m ≤ − Do P = + Do a = 5, b = ⇒ ab = 20 Bài toán 8: Cho số thực x, y thỏa mãn: GTNN, GTLN biểu thức Chọn A x − xy + y = G = x + xy − y là: 16 A.- − 7; −1 + −1 − 7; −1 + B C −3 7;3 D − 7;1 + Gợi ý: x − xy + y = Từ ẩn x,y G = x + xy − y , ta nghĩ đến hệ đẳng cấp bậc hai hai Giải Gọi T tập giá trị G Ta có m ∈T hệ sau có nghiệm: x − xy + y = 2 x + xy − y = m ( I ) Nếu Nếu y=0 y≠0 hệ (I) trở thành: x = ty ta đặt x = x = ± ⇔ m = x = m ta có hệ: y2 t − t +1 = y = t − t +1 y = ± ⇔ ⇔ t − t +1 ( II ) 2 t + t − y t + t − = m ( m − ) t − ( m + ) t + m + = t − t + = m ( ( ) ) ( ) Hệ (I) có nghiệm hệ (II) có nghiệm ( m − 3) t +) Vớ +) − ( m + 3) t + m + = x2 + y2 = ( x + y ) + i phương trình: (*) có nghiệm m=3 m≠3 Với y≠0⇔ t= phương trình (*) có nghiệm phương trình (*) có nghiệm ⇔ ∆ t = −3m − 6m + 81 ≥ ⇔ −1 − ≤ m ≤ −1 + Kết hợp điều kiện ta được: T = −1 − 7; −1 + Vậy G = −1 − 7; max G = −1 + 17 Chọn B Bài toán 9: (Đề thi khảo sát tỉnh Thanh Hóa năm 2021) log Cho hai số thực dương x,y thỏa mãn P= GTLN biểu thức A (800;900) B ( ln y + 2021 ( x−2 = y− x−2 100 y )( y+ ) x − +1 − ) x thuộc khoảng sau đây? ( 500;600 ) C ( 700;800 ) D ( 600;700 ) Gợi ý: log ( x−2 = y− x−2 100 y )( y+ ) x − +1 − Ta biến đổi phương pháp hàm phương trình đại số P= ( ln y + 2021 Sử dụng quan hệ tìm vào x ) Áp dụng phương pháp tập giá trị để tìm GTLN P Giải Điều kiện: log x > ( 1) y > x−2 = y− x−2 100 y ( )( y+ ) x − + − ⇔ ( x − ) + x − + log x − = y + y + log y ( ) f ( t ) = t + t + log t ⇒ f ' ( t ) = 2t + + Xét hàm > 0, ∀t > t ln10 18 Suy hàm f ( f (t ) đồng biến khoảng ) ( 0; +∞ ) Từ ( 2) ta có x − = f ( y) ⇔ x − = y ⇔ x = y2 + Bài toán trở cho ( ln y + P= 2021 x x > y > thỏa mãn x = y2 + Tìm GTLN biểu thức ) Gọi T tập giá trị P, m∈ P hệ sau có nghiệm: x > 2, y > ln x ⇒ m = 2021 ( x > ) x = y + x ln y + 2021 x = m ( ) m( x) = Xét ln x ( x > 2) 2021 x Bảng biến thiên , ta có x = m' ( x ) = ⇔ 2021x − x ln x = ⇔ 2021 x = e m ( x) 19 m≤ Do phương trình có nghiệm max P = Hay 2021 ≈ 743, 48 ∈ ( 700;800 ) e 2021 e Chọn C Bình luận: Ưu điểm phương pháp quy tốn tìm giá trị lớn nhất, giá trị nhỏ biểu thức tốn tìm tham số để hệ có nghiệm, khơng cần rõ giá trị biến số để biểu thức đạt giá trị lớn nhất, giá trị nhỏ Các bạn mở rộng phương pháp cho biểu thức nhiều hai biến số Cuối vận dụng phương pháp giải số tập sau: BÀI TẬP ÁP DỤNG 20 Bài tập 1: (Đề thi THPTQG năm 2020) x, y Xét số thực không âm p = x + y + 2x + y biểu thức A thỏa mãn B bằng: C Bài tập 2: Cho hai số thực x, y C minP = B 15 23 , max P = 4 minP = D x, y Bài tập 3: cho hai số thực ( A=3 x + y +x y biểu thức A = A P = −2x + y + 15 25 , max P = 4 minP = 16 4 2 thỏa mãn ) − 2( x A = B Tìm GTNN biểu thức: A B 114 11 D 36x + 16 x = +y 16 ) +1 41 Giá trị lớn là: 15 25 , max P = 2 13 23 , max P = 4 ( x + y) + 4xy ≥ Giá trị nhỏ bằng: A = C Bài tập 4: Cho x, y số thực thỏa mãn: P= 21 thay đổi thỏa mãn nhất, giá trị nhỏ biểu thức A Giá trị nhỏ 33 minP = 2x + y.4 x + y −1 ≥ ( x − 3) 17 A = D 17 + ( y − 1) = y + 4xy + 7x + y − x + y +1 C Bài tập 5: Cho hai số thực dương a, b thỏa mãn biểu thức -3 82 D : 9a + a = 3b + b +1 Giá trị lớn 21 S = 6a − b A là: 11 B 17 C 89 12 x + y + xy = x + y + 1, x + y ≠ −1 Bài tập 6: Cho x, y số thực thỏa mãn: P= M,m GTLN, GTNN biểu thức A 26 − B D 82 13 xy x + y +1 Tính C Gọi S = M + 5m D -3 Đáp án tập vận dụng D A B D A D 22 2.4 Hiệu việc triển khai SKKN Với nội dung khó nên không phổ biến với đối tượng học sinh rộng rãi, thực học sinh ôn thi HSG học sinh phấn đấu điểm 9, điểm 10 kỳ thi THPT Quốc gia tiếp cận vấn đề Vì giảng dạy hai lớp 12A2 12A4, tơi chọn hai nhóm đầu, lớp 10 học sinh có trình độ ngang để kiểm tra Kết thực nghiệm khả quan Để đánh giá xác khả học sinh tơi u cầu em trình bày hình thức tự luận thời gian 30 phút, cụ thể đề sau: Bài 1: Cho số thực x, y thỏa mãn 4x − 3xy + y ≤ F = x + xy − y trị nhỏ biểu thức Bài 2: Cho x, y số thực thỏa mãn x y k= lớn giá trị Tìm giá trị lớn nhất, giá ( ) log 3x + y x + y ≤ Khi 3x + y bao nhiêu? ( ln x + ln y ≥ ln x + y Bài 3: Cho hai số thực dương x, y thỏa mãn nhỏ P = x+ y đạt giá trị ) Tìm giá trị Số liệu thống kê kết thể qua bảng sau đây: Bảng: Kết kiểm tra cụ thể sau: Điểm Lớp TN (12A4) Số 10 lượng 10 23 ĐC (12A2) 0 2 0 10 Lớp thực nghiệm (TN) có 90% điểm từ trung bình trở lên, có 70% giỏi, đặc biệt có hai em đạt điểm tuyệt đối Lớp đối chứng (ĐC) có 60% đạt điểm từ trung bình trở lên, có 40% đạt giỏi khơng có em đạt điểm tuyệt đối Kết kiểm tra cho thấy, kết lớp thực nghiệm cao lớp đối chứng, giỏi Như chứng tỏ phương pháp đưa hiệu Học sinh tiếp thu biết cách vận dụng vào giải toán Hy vọng tài liệu bổ ích cho học sinh ôn thi HSG ôn thi THPT Quốc gia Nội dung đề tài tiếp tục áp dụng cho khóa học sau, mong đạt kết tốt kết thực nghiệm KẾT QUẢ 3.1 Kết nghiên cứu Dạng tốn tìm giá trị lớn nhất, giá trị nhỏ biểu thức dạng tập khó Ngay ta xác định phương pháp giải việc giải cần nhiều kỹ kiến thức Vì nghiên cứu đề tài này, tơi cố gắng tìm tốn hợp lý để giải học sinh rút cho kỹ xử lý tình phát sinh Hy vọng cách để học sinh tư cho việc học tốn nói chung Qua kiểm tra thưc nghiệm ta nhận thấy kết khả quan Học sinh tiếp thu phương pháp có hứng thú với dạng tập Đó thành cơng bước đầu đề tài 3.2 Kiến nghị, đề xuất Nội dung lựa chọn cho đề tài nội dung khó, nhiên có cách giải rõ ràng Vì tơi hy vọng đóng góp bổ ích cho học sinh lớp 12 ơn thi Theo tôi, giáo viên giảng dạy dạng tập nên đưa phương pháp cụ thể, chi tiết giúp học sinh hiểu kỹ dễ áp dụng vào q trình giải tốn Trong q trình biên soạn chắn cịn nhiều thiếu sót, mong Thầy em học sinh đóng góp ý kiến để đề tài tơi hồn thiện áp dụng rộng rãi Tơi xin chân thành cảm ơn! 24 XÁC NHẬN CỦA THỦ TRƯỞNG Thanh hóa, ngày 15 tháng 05 năm 2021 ĐƠN VỊ Tơi xin cam đoan SKKN viết, khơng chép nội dung người khác Lê Thị Liên TÀI LIỆU THAM KHẢO Sách giáo khoa 10, 11, 12 bản, nâng cao, NXB Giáo dục Một số đề thi HSG tỉnh đề thi THPT Quốc gia Đề thi khảo sát THPT Quốc gia tỉnh Thanh Hóa Báo tốn học tuổi trẻ Các toán max, vận dụng cao hướng tới kì thi THPT quốc gia 2021 25 DANH MỤC CÁC ĐỀ TÀI SÁNG KIẾN KINH NGHIỆM ĐÃ ĐƯỢC HỘI ĐỒNG ĐÁNH GIÁ XẾP LOẠI CẤP SỞ GD&ĐT XẾP LOẠI TỪ C TRỞ LÊN Họ tên tác giả: Lê Thị Liên Chức vụ đơn vị công tác: Giáo viên trường THPT Thọ Xuân TT Tên đề tài SKKN Giải tập hình học nhiều phương pháp Cấp đánh giá xếp loại Kết đánh giá xếp loại Năm học đánh giá xếp loại Sở C 2010 - 2011 Sở C 2012 - 2013 Sở C 2013 - 2014 Sử dụng phương pháp tọa độ mặt phẳng vào giải tốn hình học Sử dụng phương pháp hàm số tìm giá trị lớn nhất, giá trị nhỏ diện tích, thể tích chương trình hình học khơng gian lớp 12 26 Sử dụng định lý Talet mặt phẳng tính khoảng cách Sở C 2014 - 2015 không gian 27 ... phương pháp quy tốn tìm giá trị lớn nhất, giá trị nhỏ biểu thức tốn tìm tham số để hệ có nghiệm, không cần rõ giá trị biến số để biểu thức đạt giá trị lớn nhất, giá trị nhỏ Các bạn mở rộng phương pháp. .. dung chuyên đề giá trị lớn nhất, giá trị nhỏ biểu thức hai biến chương trình tốn THPT Bài tốn tìm ? ?Tìm giá trị lớn nhất, giá trị nhỏ biểu thức hai biến? ?? chương trình lớp 10, giải hai công cụ điều... G ( x, y ) ≤ G ( x, y ) = (hoặc ) Tìm giá trị lớn nhất, giá trị nhỏ (nếu có) biểu thức P = F ( x, y ) Phương pháp giải chung: Gọi T tập giá trị P Khi m giá trị T hệ sau có nghiệm: G ( x, y)