1. Trang chủ
  2. » Cao đẳng - Đại học

Bài tập Tích phân hay

20 9 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 264,9 KB

Nội dung

Tính nguyên hàm bằng phương pháp từng phần ðịnh lý : Nếu u, v là hai hàm số liên tục trên K thì... Nguyễn Phú Khánh Ờ đà Lạt.[r]

(1)Nguyễn Phú Khánh Ờ đà Lạt lại ∫ ( ) P x (x − a )(x − b )(x − c ) A = P( x) + c + D ⇒ A, B,C dx P (x ) ðặt : (x − a )(x − b ) ∫ (x − α )(x − β ) ∫ x − a dx = = dx = A B C + + x −a x −b x −b ( ∫ (x − a )(x + a ) dx = x − 2dx = ∫ (x − 2)2 d (x − 2) = ⇒ A, B,C , D  1   x −a  ln − dx =   2a ∫  x − a x + a  2a  x + a    +C   (x − 2)2 + C ( x ∫ xe dx = ) (x − b )  1  x −α − +C ln  dx = ∫ α − β x −α x − β  α −β x −β dx −2 ∫ (x + 3)2 = ∫ (x + 3) d(x + 3) = − x + ∫ B + (x − a )(x − b )(x − c ) (x − a ) (x − b ) (x − c ) ∫ (x − a )(x − b ) ∫ dx P (x ) ðặt : http://www.maths.vn ) −1 +C x2 x2 e d x = e +C ( ) 2∫ − +1 1 (1 + x ) = ∫ (1 + x ) d(1 + x ) = 3 1 + x3 − +1 x dx − 3 + C = (1 + x ) + C 2  −  2 3 x + dx = x dx + x dx = x + x + C = x + 33 x + C 2  ∫  ∫ ∫  3 x    1 ∫  cos x - sin x - 2x + x  dx = 3∫ cos x dx + 2∫ - sin x dx − ∫ 2x dx + ∫ x dx = sin x + cos x − x + ln x + C ( ) ( ) ( ) cos 8x cos 2x + ) +C   sin x dx ∫ cos2 x dx = ∫  cos2 x + cos x −  dx = tan x − 2x + ∫ + ∫ cos 2xd 2x = tan x − x + sin 2x + C cos xdx ∫ cotx − sin 2x +  dx = ∫ sin x − ∫ sin 2x + d 2x + d sin x 3 =∫ − ∫ sin 2x + d 2x + = ln | sin x | + cos(2x + 1) + C sin x 2 ∫ sin 3x cos 5xdx = ∫ (sin 8x − sin 2x )dx = (− ( ) ( ) ( ( ) ( ) Lop12.net ) ( ) (2) Nguyễn Phú Khánh Ờ đà Lạt ∫ (3 cos x − ∫ x −1 dx = + ex http://www.maths.vn x 3 dx = sin x − + C = sin x − +C ∫ 3 ln ln d + ex  = x − ln + e x + C dx = ∫ dx − ∫ x +e  )dx = ∫ cos xdx −  ex −  + ex  ∫ x −1 x ( ) Tính nguyên hàm các hàm số sau : f (x ) = x − ( ) f x = ( x + 1)(x − x + 1) x ( ) f x =( f (x ) = 2x + 3x 1 − )(x − x ) x x ( ) ( ) f x = cos 2x + sin 3x + x ( ) f x = sin x + cos x + x + x Tìm nguyên hàm F ( x ) hàm số π  f x = cos 2x + sin 3x + x biết F   = −3 3 x3 − x2 − biết F −3 = 10 f x = x2 ( ) ( ) ( ) Tính nguyên hàm phương pháp ñổi biến số ðịnh lý : Cho hàm số u = u ( x ) có ñạo hàm liên tục trên K và hàm số y = f (u ) liên tục cho f u (x )  xác ñịnh trên K Khi ñó F là nguyên hàm f , tức là ∫ f (u )du = F (u ) + C thì ∫ f u (x )dx = F u (x ) + C I = ∫x ðặt : t = I = ∫x dx x2 + x + ⇒ t = x + ⇒ td t = x d x dx xdx td t = ∫ = ∫ = t −1 t x2 + x2 x2 + ( I = 1 t −1   x2 + −   +C ln ln  + C =    t +   x2 + + 1   I = ∫ xdx + x2 + (1 + x ) ) ∫ Lop12.net dt = 2 t −1  1  −  ∫  t − t +  d t (3) Nguyễn Phú Khánh Ờ đà Lạt ðặt : t = http://www.maths.vn xdx + x ⇒ t = x + ⇒ tdt = xdx ⇒ = + x2 + + x2 I = ∫ dt 1+t tdt t 1+t = = + t + C = + + x2 + C Tính nguyên hàm các hàm số sau ∫ (5x + 3) dx ∫ (2x + 1) dx 20 2 ∫ (1 + x ) xdx 9x ∫ 1-x ∫ x (1 + x )2 ∫ dx − 4x + ∫ x − 6x + 9dx dx ∫ 2x + ∫x ∫x ( ∫x ) dx ∫ x ln5 x − x dx 34 − x dx dx (8x + 27) 3 3x + dx + 6x + 2x + ∫ x + x − 2x dx 3x + x + ∫ x + dx x + 4x + ∫ x + dx x3 ∫ x + 2x + dx 3x + 3x + ∫ x − 3x + dx 3x + ∫ x − 2x − 5x + dx dx − 5x + ln x + ∫ x dx dx ∫ x ln x ln(ln x ) x 2dx x + 4x ∫1 x dx ∫x ∫x dx ∫x − x2 dx π ∫ e x + 1dx e 2x ∫ e 2x + dx ex ∫ − e 2x dx dx ∫ ∫ sin x sin 4x dx ∫e ∫e cosx sin xdx s inx cos xdx ∫e + e 2x Lop12.net cos x sin xdx dt 1+t (4) Nguyễn Phú Khánh Ờ đà Lạt ( ) dx ln ex http://www.maths.vn ∫e ∫ + x ln x x cos x dx − 4e −x ∫ sin x dx ∫ cos xdx ∫ ( tan x + tan x )dx 4 ∫ e x + e −x + 2dx + sin x ∫ − cos xdx ∫ sin ∫ cos ∫ sin ∫ sin ∫ sin x cos2 xdx x cos5 xdx x cos2 xdx x x ∫ sin 3cos dx ∫ sin x cos xdx sin x ∫ cos4 x dx sin x ∫ cos6 x dx ∫ t anxdx ∫ cot xdx ∫ (tan x + t anx )dx ∫ (cot x + cot x )dx dx ∫ sin x ± cos x cos 2x ∫ + sin x cos xdx tan x ∫ cos x dx ∫ cot x ∫ + sin2 x dx sin x + cos x dx x sin x  ∫  tan x + dx ∫ cos ∫ cos  dx 2x + + 2x −  x dx x x dx Tính nguyên hàm phương pháp phần ðịnh lý : Nếu u, v là hai hàm số liên tục trên K thì ∫ xdx sin x ∫ cos5 x dx I = ∫ sin ∫ xdx ∫ + cos x dx sinx ∫ cos4 x dx I = ∫ u(x )v '(x )dx x ln(x + x + 1) dx x2 + x ln(x + x + 1) dx = x2 + ∫ ln(x + x + 1) x x2 + Lop12.net dx = u(x )v(x ) − ∫ v(x )u '(x )du (5) Nguyễn Phú Khánh Ờ đà Lạt http://www.maths.vn  x u = ln x + x + 1+   x + dx = du = ðặt :  ⇒  x x + x2 + dx dv =  x2 + v = x +   ) ( ( I = x + ln x + ) ∫ xdx x2 + − = dx x2 + ( x + ln x + ) x2 + − x +C Tính nguyên hàm các hàm số sau ∫ x s inxdx ∫ (2x + 1) sin xdx ∫ xe -x ∫ (x + 1)e dx ∫e s inxdx x x dx ∫ x ln xdx ∫e ∫e x ∫x x ∫ x sin 3dx cos x + ∫ x + dx sin 2xdx ln xdx x +1 dx ∫ x tan xdx ∫ x tan xdx ∫ ln(x + x )dx ∫ x ln 1−x dx 1+x Tích Phân Ví dụ : Lop12.net ∫ x 2dx (1 − x ) (6) Nguyễn Phú Khánh Ờ đà Lạt ∫2 ) ∫d( dx = x x = x = 42−43 ∫ ∫ x − 3dx = 2  = 16 ( x − 3) x −  3  x − 3d (x − 3) = ∫ 25 − 3x d (25 − 3x ) dx = http://www.maths.vn ∫ −3 = 25 − 3x −2 −2 25 − 3x = ( 13 − 5) 3 ( ) d x2 + x + 1 2x + ln dx = = x + x + = ln ∫0 x + x + ∫0 x + x + 1 5xdx ∫ (1 − x ) 1+x =− d 1−x ∫0 − x ( ∫ 1−x dx = ∫ (−1 + ( 2 dx ∫3 x − 3x + = ) ) = − (1 − x ) −2 2 − x2 = −2 ( 5 ) = 35 36 ( (x − 1) − (x − ) dx =  −1 +  dx = ln x − ∫ (x − 1)(x − ) ∫  x −1 x −  x −1   3 π π π 4 sin x dx = tan xdx = ∫ cos x −π ∫π − −d (cos x ) = − ln cosx cosx π   ∫π cot xdx = π∫  sin2 x −  dx = −cotx − x ( ) ln + 20 ln − 10 ln ) π π =1− = π −π =0 π π  3 − cot 2x  dx = ∫π cos2 x ∫π  cos2 x − sin2 x  dx = tan x + 2cotx ( π π  dx  ∫π sin2 x cos2 x = π∫  sin2 x + cos2 x  dx = tan x − cotx ( ) ) π π π π = 6 −x ∫ x e dx = 4 π = ln ( − π = − − ln 2 dx  1  x −3 = ∫ − = ln  dx = ln x − −1 2 − 4x + −1  x − x −  −1 1 2xdx dx dx = + = ln x + + ln x − = ln ∫0 x − ∫0 x + ∫0 x − 1 20dx  3x +  dx ∫0 x − 5x − dx =  ∫0 x + + ∫0 x −  = ln x + + 20 ln x − ∫π 4 ∫x ) 1 )dx = − ∫ dx + ∫ dx = − ∫ dx − ∫ d − x = −x − ln − x 1−x 1−x 1−x 2 2 −1 − x −x 2 e d ( x ) e − = = (1 − e −9 ) ∫ −2 2 Lop12.net = 11 −5 3 ( ) (7) Nguyễn Phú Khánh Ờ đà Lạt 2 e xdx ∫ x= −1 + e −1 e2 e2 ∫ d (e + 2) x + ex = ln (2 + e x ) = ln −1 dx d (ln x ) ∫e x ln x = ∫e ln x = ln ln x e http://www.maths.vn e2 e e −1 −2 −2 −1 −5 − 2x + x ∫ x + dx = ∫ ( −x − 1) dx + ∫ ( ∫ 1−x −1 ∫ ∫ ∫ dx = = 1 Ngoài , ta có thể ñặt t = ln x −1 ) −5 dx = 1−x −1 e  x2   x2  x + dx =  − − x  +  + x  =   −2   −1 (1 − x )2 −5 2e + = ln ln x (ln x )5 = (ln ) (ln ) = dx x d x ∫1 x ∫1 2e + e 1−x −5 ∫ 1−x 1−x ∫ − x dx = x dx = −1 −1 −1 −5 =4  x3  x3 x − 1dx = ∫ (1 − x )dx + ∫ (x − 1)dx =  x −  + ( − x ) =   1 2 2 2 π π π ∫ cos x dx = ∫ cos xdx + π∫ ( − cos x ) dx = sin x 0 π − sin x π π =2 2 2π ∫ 2π − cos 2xdx = ∫ 2π π  sin x dx =  ∫ sin xdx − ∫ sin xdx  =   π 0  π π ∫  x3 x2   x3 x2  49 x − x − dx = ∫ (−x + x + 6)dx + ∫ (x − x − 6)dx =  − + + 6x  +  − − 6x  = 2 3  0  3 + cos 2x dx = π 0 π ∫ cos x dx = ∫ cos xdx − π∫ cos xdx = 2 I = ∫π − sin 2x (2 + sin x ) dx ðặt : t = sin x ⇒ dt = cos xdx x = ⇒ t =  ðổi cận  π x = − ⇒ t = −1  Lop12.net (8) Nguyễn Phú Khánh Ờ đà Lạt http://www.maths.vn  + t) − ( I = 2∫ = 2∫ dt = ∫  − 2 + t (2 + t ) (2 + t ) (2 + t )  0 tdt  d + t 2  2 −1 −1 −1 ( )   I =  ln + t +  = ln − 2 + t  −1  ( ∫x ) dx x2 + x ðặt : t = x + ⇒ dt = x2 + dx = xdx tdt ⇒ dx = t x  x = ⇒ t = ðổi cận  x = ⇒ t = dx x x2 + = tdt x2 x2 + = (t tdt ) −1 t = 1 1  dt = −   dt t2 −  t − t +   1  ∫ x x + ∫2  t − − t +  dt = ln t − − ln t + ∫x ( dx ) 3 1 t −1 =  ln  = ln 2 t + 12 2 dx +x +1  1 x + x + = x +  + 2  ðặt x + =    π π  1 3 dt = tan t  t ∈  − ;   ⇒ dx = d  tan t −  = + tan2 t dt   2 cos t  2    (  π ⇒t = x = ⇒ tan t = ðổi cận  x = ⇒ tan t = ⇒ t = π  Lop12.net ) (9) Nguyễn Phú Khánh Ờ đà Lạt ( ( Vậy dx ∫0 x + x + = ∫ π ∫x ) ) π + tan2 t dt 3 dt = = π ∫ 3 π + tan t π http://www.maths.vn dx + 4x + 1 1 1  = = −    x2 + x2 +  x + 4x + x2 + x2 + ( )( ) 1 dx  dx dx  = −  ∫0 x + 4x +  ∫0 x + ∫0 x +  = A + B   1 A= dx ∫0 x + ( ) + tan2 t dt −π dx π < t < ⇒ dx = + tan t dt ⇒ = = dt ðặt : x = tan t, 2 x +1 + tan2 t ( ) x = ⇒ t =  ðổi cận  π x = ⇒ t =  π A = ∫ dt = t π = π B= dx ∫0 x + ðặt : x = ( ) x = ⇒ t =  ðổi cận  π x = ⇒ t =  π B= ∫x ( ) + tan t dt −π π dx 1 dt tan t, < t < ⇒ dx = + tan2 t dt ⇒ = = 2 x +1 tan t + 3 ∫ dt = π t = π dx 1π π  = −   + 4x +   Lop12.net (10) Nguyễn Phú Khánh Ờ đà Lạt http://www.maths.vn I = ∫ x x − a dx , a > 0 −x ax + •a ≥ ñó I = − ∫ x (x − a )dx = = a − a  −x ax   x ax  + − •0 < a < ñó I = − ∫ x (x − a )dx + ∫ x (x − a )dx =   +    a   a a a3 a3 a a3 a3 a3 a + + − − + = − + 3 3 I =− Cho ( ) ∫ f x dx = −2 và ( ) ( ) ∫ g x dx = Hãy tính ( ) ( ) ( ) ( ) ( ) ∫ 3f x − g x  dx, ∫ 5 − f x  dx 1 ( ) ( ) ( ) I = ∫ 3 f x − g x  dx = ∫ f x dx − ∫ g x dx = ∫ f x dx − ∫ g x dx = −9   1 3 ( ) ( ) J = ∫ 5 − f x  dx = ∫ 5dx − ∫ f x dx = 5x   1 1 + = 23 5 Cho ∫ f (x )dx = −4, ∫ f (x )dx = 6, ∫ g(x )dx = Hãy tính : ∫ f (x )dx , ∫ 4 f (x ) − g(x ) dx 1 5 ∫ f (x )dx + ∫ f (x )dx = ∫ f (x )dx ⇔ 5 2 1 ∫ f (x )dx = ∫ f (x )dx − ∫ f (x )dx ⇔ 5 1 ∫ f (x )dx = 10 ∫ 4 f (x ) − g(x ) dx = ∫ f (x )dx − ∫ g(x )dx = 16 1 ∫ (x + x + 1)dx ∫ (x + x x )dx ∫ 0 x +1 ∫2 x dx x +1 ∫1 x dx ∫( 2 x3 ∫0 x + 1dx ∫x −1 e ∫−2 (11 + 5x )3 dx (1 + x + 1dx x + 1)(x − x + 1)dx 1 )dx x ∫( x − 1)(x + x + 1)dx 1 ∫1 (x + x + x + x )dx ∫ (x + x x + x )dx ∫ Lop12.net dx x +1 + x −1 (11) Nguyễn Phú Khánh Ờ đà Lạt dx ∫−1 x − 3x + 2 ∫ (x ) + 2x − dx x3 + 1 http://www.maths.vn x dx ∫2 (1 − x )9 (2x − 10x + 16x − 1).dx ∫ x − 5x + −1 (x − 3x + x + 6).dx ∫ x − 5x + 6x −1 x 3dx ∫2 (x − 1)10 dx ∫ x ( x + 1) −1 ∫x −1 (7x − 4)dx − 3x + ∫x dx − 4x + dx ∫ (x + 3) (x + 1) 2 ∫ 1 ∫ dx x + x2 5 dx ∫x x x2 + 4 ∫ x 2 dx ∫ x x +9 2 dx x2 − dx x2 − ∫x 2dx 4x − dx 3 ∫ x − dx ∫0 x − 3x + 2dx ∫ x − x dx ∫ ∫( 1 ∫0 x x − dx x − 6x + dx x +1 x ∫x −1 dx − x − 12 ∫ ∫π − sin x dx π ∫ cos x sin xdx x − 2x + xdx ∫ ) x + − x − dx −3 π 4x − x − 2x − 1dx π ∫ cos x e ∫ ln x dx e Lop12.net sin xdx (12) Nguyễn Phú Khánh Ờ đà Lạt http://www.maths.vn π ∫x + x − 2dx ∫ π −3 tan2 x + cot2 x − 2dx π ∫ sin x − cos x dx ∫x ( ) − a + x + a dx − 2x + m dx ∫x 1 ∫ (e + x )dx x ∫e e x ln ∫ (e + x + 1)dx x ∫ 0 ex ex − dx ex + x −1 dx π π ∫ (2 sin x − cos x ).dx π ∫ sin 2x (1 + sin x ) −π dx π ∫ sin 2x cos 3x dx π 2 ∫π (3 sin x + 2cosx + x )dx ∫ sin x sin 2x sin 3xdx π π ∫ ( sin 2x ) + cos 2x dx π π ∫ ( sin ) ∫ π sin x x + cos x dx cos x dx x ∫ π sin Tính tích phân phương pháp ñổi biến số b Công thức dổi biến số ∫ f [u(x )]u ' (x ) dx = a u (b ) ∫ f (u )du u (a ) Lop12.net dx + cos x (13) Nguyễn Phú Khánh Ờ đà Lạt e ∫x I = dx − ln2 x ðặt t = ln x ⇒ dt = dt ∫ I = − t2 = dx x = ⇒ t = 0, x = e ⇒ t = x π 1 x dx ∫0 − x ( http://www.maths.vn ∫ ) ∫ x x + dx ∫ x − x dx ∫ x + x dx x dx 1 + x2 x2 ∫ x3 + dx 1 ∫ x x + 1dx x + 1.dx 0 ∫x x + 1dx x + 1dx ∫x − x dx ∫x 15 + 3x dx ∫ x − xdx 1 ∫ x ∫ 2x + x dx ∫ dx ∫ 2x + ∫ ( x + 1) x + 2x + 4.dx 0 x + dx x −1 x +1 −3 ∫x −8 dx ∫x dx (1 + x ) dx 1−x 2a − x dx (a > 0) Lop12.net x2 + ∫3 ∫ x3 + x + 2x 3 x3 + dx dx x5 + ∫ x4 ∫ x3 + 2a ∫ x −1 xdx ∫ −1 − x dx ∫x ∫x 2 ∫ ∫x dx x −3 dx x +1 +x +3 (x − 1).dx x +1 (14) Nguyễn Phú Khánh Ờ đà Lạt http://www.maths.vn a ∫x a − x dx (a > 0) ∫ xdx ( x + 1) ∫1+ 10 x x −1 ∫ dx ∫x −2 ∫ x −1 −1 ∫ 1 ∫ ∫ ∫ x − 4x x +1 + x ∫ dx ∫ dx 1+x −1 −1 x +5 +4 −1 dx ∫ x (1 + x +1 − x dx dx x + + x +1 dx ∫ 2x + + x −4 + x +2 xdx ∫ 2+x + 2−x ∫3 x +1 −1 π π 4 x −3 dx x +1 +x +3 π ∫ tan xdx ∫ tan π π π 2 ∫ x dx + sin xcosxdx ∫ cotxdx π ∫π sin2 x cos2 x dx ∫ π sin x 6 π π sin x ∫0 + cos xdx 2 ∫ cos 2x ( sin ) x − cos4 x dx sin2008 x ∫π cos2012 xdx π dx ∫ cos + cos x π dx π ∫ sin 2x (1 − sin x )dx π 4x + 2 dx x) x +1 dx x ∫ dx ∫1+x + 2dx ∫ dx dx x +1 x x + 1dx x +2 1 ∫x dx x dx ∫1+ 2x + 1 dx x ∫ x Lop12.net cos x ( + sin x ) dx (15) Nguyễn Phú Khánh Ờ đà Lạt http://www.maths.vn π π π 2 ∫ sin xcos xdx sin x π ∫ sin xcos xdx π ∫ + 3cosx dx 3 π π π − sin x ∫π sin2 x dx − sin2 x ∫0 + sin 2x dx π π π 4 0 π π π π π π 2 ∫ sin x cos2 2x dx ∫ cos x sin x dx sin 2x ∫ + sin π π tan x ∫0 + cos xdx cot x ∫π sin2 x + 1dx π cos 2x ∫ + sin 2xdx sin x cos x ∫0 + cos2 x dx sin 2x ∫ + cos x dx sin 4x ∫0 + cos2 xdx xdx cos x ∫ + sin xdx ∫ cos 0 ∫ sin sin 3x ∫ + cos xdx 4 x .dx dx x + cos4 x π π π sin 2x cos x ∫0 + cos x dx − sin2 x ∫0 + sin 2x dx π π π 2 ∫ ∫ sin 2x + sin x + cos x cos x + cos x dx dx ∫ cos 2 ∫ x cos 4xdx 0 π π π cos 2x dx ∫0 + cos x sin x cos3 x ∫0 cos2 x + dx ∫ π π π 2 2 sin 2x dx ∫0 cos4 x + ∫ cos x cos 2xdx π π sin 2x dx x ∫ + sin sin x ∫0 sin x + cos x dx π ∫ π ∫ sin x cos x (1 + cos x ) dx sin x − cosx + sin 2x dx dx ∫π sin x + cos x .dx sin 2x cos2 x + sin2 x ∫ π − + cos x x cos3 xdx sin 2x + sin x ∫ sin π − cos3 x sin x cos5 xdx π π ∫ π π sin xdx ∫0 sin x + cos x sin 2x cos2 x + sin2 x + π ∫ π cos x cos xdx ∫0 sin x − cos x Lop12.net dx tan x + cos2 x dx dx (16) Nguyễn Phú Khánh Ờ đà Lạt http://www.maths.vn π  π sin  x −  dx 4  ∫0 sin 2x + 2(1 + sin x + cos x ) π + sin 2x + cos 2x ∫π sin x + cos x dx π π 2 ∫π e sin x cosxdx ∫π e cosx ∫e sin xdx x +2 xdx ln ∫ e x − 1dx dx ∫ 2 ∫ 1+x dx 1−x ∫ − x dx −1 2 ∫ x2 + x + dx ∫ − 4x dx (x + 1)(x + 2) ∫x ∫x − x dx 2 0 ∫ 2 ∫ 1 ∫ x −1 dx x 1 − − x2 ∫0 + x dx x dx x2 + dx 4x + 8x )dx 1 ∫−1 x + 2x + 2dx (4x + 11).dx + 5x + ∫x 1 ∫0 + x 2dx + 2x + + x + ∫x + 2 (x + 2) ∫2 (x + 1)2 dx 1 − x2 dx x2 ∫ (x ( x + − 2)dx 1 ∫ (1 + 3x 2 ) x ∫ (1 + 2x ) dx 3x ∫0 x + 2x + dx .dx Lop12.net x + 3x + 10 ∫0 x + 2x + dx (17) Nguyễn Phú Khánh Ờ đà Lạt ∫ http://www.maths.vn dx + x2 ∫ ∫ x dx ∫0 x + ∫ (x + 2x + 10x + 1).dx ∫0 x + 2x + dx x2 + x dx ∫0 x + x + 2x − dx + x2 ∫x 3 − x + 2x + 10x + ∫0 x + 2x + dx 3x + dx + x2 1 dx +x +1 x ∫ (x − 1) (x + 1) dx 1+ dx x − 2x + 10 ∫ 1+ ∫ x2 + dx x4 − x2 + x7 ∫2 + x − 2x 4dx ∫x (1 − x ).dx x (x + 1) ∫x 2 ∫ 4 dx ∫1 x (x + 1)2 ∫x 1 dx + 4x + dx + 4x + dx + 2x + x x dx ∫0 (x − 4)2 3.dx ∫0 x + (x − x − 4x − 1).dx ∫1 x4 + x3 2x + 2x + 13 ∫0 (x − 2)(x + 1)2 dx x 5dx ∫ x6 − x3 − 3 e + ln x ∫1 x dx e ∫ e + ln x dx x ∫x e ∫ − ln2 x +1 x ) dx e2 ∫ e + ln x ln x dx x ∫x 1 ∫ cos (1 + ln x ) dx e e dx (2 ln x − ln x + ln x dx Lop12.net (18) Nguyễn Phú Khánh Ờ đà Lạt e ∫ ln x + ln x dx x e ∫x ln x ln x ∫x dx ln x + 1 (x + 1).dx + x ln x ∫x dx ( ln x + 1) http://www.maths.vn e3 e e ln x +1 ∫1 x dx e sin(ln x ) ∫1 x dx e2 ln 1 + ln2 x ∫e x ln x dx dx ∫ln e x + 2e −x − ∫0 + 2x dx ln 1 ∫ e x + 1.e 2xdx ln dx ∫0 e 2x + e x dx ∫0 + e x ∫e e −x ∫0 e −x + dx ln ln ln ∫e x +e x ∫ ∫ e x − 1.dx e (1 + e x )2 ∫0 + e 2x dx e 2x dx ex + ln ln ex ∫ (e x dx ex + ∫ dx dx +3 2x +1 ) dx π π π cos x ∫0 − sin x + sin2 x dx dx ∫0 + sin 2x ∫ + cos x dx π π π 2 cos x ∫0 − sin x − cos2 xdx ∫0 + sin x + cos x dx ∫ cos 2x ( sin π π π dx ∫π sin x cos x ∫ π π 4 sin x ( sin x + cos x ) ∫e π π 0 ( sin x + cos x + ) ) x + sin x dx ∫ cos 2x ( sin x − cos x + ) Lop12.net dx cos x π cos 2x sin2 x ∫ sin x + dx dx cos2 x ∫ sin x + 5π π π ∫ ( cos sin x cos xdx cos 2x ∫0 sin x + cos x + 2dx ∫ sin2 x π sin 2x ∫0 + cos4 xdx tan x dx ∫π cos2 x − sin x cos x ) x + cos x dx dx cos 2x ∫π cos x − dx cos x sin x dx (19) Nguyễn Phú Khánh Ờ đà Lạt http://www.maths.vn π π π + sin 2x + cos 2x ∫π sin x + cos x dx sin x + cos x + ∫0 sin x + cos x + dx 3 ∫ π 6 π ∫ cos 2x (cos dx  π sin x sin  x +  6  x + sin x ).dx π ∫ ( cos ) x + sin10 x − cos4 x sin x dx 10 Tính tích phân phương pháp phần b b b Công thức tích phân phần : ∫ u(x )v '(x )dx = u(x )v(x ) a − ∫ v(x )u '(x )dx a Dạng u = f (x ) du = f '(x )dx   sin ax  sin ax      ⇒    dv = cos ax  dx v = ∫ cosax  dx eax  e ax           dx u = ln(ax ) du = ðặt  ⇒ x dv = f (x )dx v = ∫ f (x )dx   sin ax  β   f x cosax ( )  dx ðặt ∫ α e ax    β Dạng 2: a ∫ f (x )ln(ax )dx α Ví dụ : e A = ∫ x ln xdx I = ∫ x ln xdx 1 π B = ∫ x e dx x J = ∫ x sin xdx 0 e A = ∫ x ln xdx  dx du = u = ln x  x ðặt:  ⇒ dv x dx x =  v =  e e e x3 e3 x ln x − ∫ x 2dx = − A = ∫ x ln xdx = 31 1 e = e e − 2e + − = 9 B = ∫ x 2e xdx Lop12.net (20) Nguyễn Phú Khánh Ờ đà Lạt u = x ðặt  http://www.maths.vn du = 2xdx ⇒  x x v = e dv = e dx B = ∫ x 2e xdx = x 2e x u = x ðặt  1 0 − ∫ xe xdx = e − 2C ,C = ∫ xe xdx du = dx ⇒ dv = e dx v = ex    x1 x  B = e −  xe − ∫ e dx  = −e + e x   0   x =e −2 I = ∫ x ln xdx  du = dx x ⇒ x v =  u = ln x ðặt:  dv = x 4dx  5  x5  x5 1 x5 I =  ln x  − ∫ dx = 625 ln − ∫ x 4dx = 625 ln − 51 5  1 x = 625 ln − 3124 25 π J = ∫ x sin xdx u = x ðặt:  du = dx ⇒ v = − cos x  dv = sin xdx  π J = −x cos x π π 2 ( ) − ∫ − cos x dx = ∫ cos xdx = sin x 0 π =1 ln I = ∫ xe −x ( ) J = ∫ x ln + x dx dx 0 ln I = ∫ xe −x dx u = x ðặt:  −x dv = e dx  I = −xe −x ln ( du = dx ⇒ v = −e −x  ln − ∫ ( −e ) dx = − ln 2.e −x ln − ln − ( ) −x ∫ e d −x ( ) = − ln − e −x ) J = ∫ x ln + x dx Lop12.net ln = 1 − ln 2 2 (21)

Ngày đăng: 09/06/2021, 07:09

w