1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đáp án đề thi tuyển sinh đại học môn Toán (năm 2012): Khối B

4 16 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 250,26 KB

Nội dung

Xin giới thiệu tới các bạn học sinh, sinh viên Đáp án đề thi tuyển sinh đại học môn Toán (năm 2012): Khối B của Bộ giáo dục và đào tạo. Đáp án và thang điểm gồm có 4. Mời các bạn cùng tìm hiểu và tham khảo nội dung thông tin tài liệu.

BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 Mơn: TỐN; Khối B (Đáp án - thang điểm gồm 04 trang) Câu Đáp án Điểm a) (1,0 điểm) (2,0 điểm) Khi m = 1, ta có: y = x3 − 3x + • Tập xác định: D = \ • Sự biến thiên: 0,25 − Chiều biến thiên: y ' = x − x; y ' = ⇔ x = x = Các khoảng đồng biến: (− ∞; 0) (2; + ∞) , khoảng nghịch biến: (0; 2) − Cực trị: Hàm số đạt cực đại x = 0, yCĐ = 3; đạt cực tiểu x = 2, yCT = −1 − Giới hạn: lim y = −∞ lim y = + ∞ x→−∞ − Bảng biến thiên: 0,25 x→+ ∞ x −∞ y' + +∞ – + +∞ 0,25 y −∞ • Đồ thị: –1 y 0,25 O x −1 b) (1,0 điểm) y ' = x − 6mx; y ' = ⇔ x = x = 2m Đồ thị hàm số có điểm cực trị m ≠ (*) Các điểm cực trị đồ thị A(0; 3m3 ) B (2m; − m3 ) Suy OA = | m3 | d ( B, (OA)) = | m | 0,25 0,25 S ∆OAB = 48 ⇔ 3m4 = 48 0,25 ⇔ m = ± 2, thỏa mãn (*) 0,25 Trang 1/4 Phương trình cho tương đương với: cos x + sin x = cos x − sin x (1,0 điểm) π π ⇔ cos x − = cos x + 3 ) ( ) 0,25 ( ) 0,25 ( π π ⇔ x − = ± x + + k 2π (k ∈]) 3 ⇔ x= 0,25 2π 2π + k 2π x = k (k ∈]) 3 0,25 Điều kiện: ≤ x ≤ − x ≥ + (*) (1,0 điểm) Nhận xét: x = nghiệm bất phương trình cho Với x > 0, bất phương trình cho tương đương với: x+ + x + − ≥ (1) x x x+ Đặt t = x + (2), bất phương trình (1) trở thành x ⇔ t ≥ Thay vào (2) ta ⎡3 − t < t − ≥ − t ⇔ ⎢⎢⎧3 − t ≥ ⎢⎣⎩⎨t − ≥ (3 − t ) 2 ≥ ⇔ x ≥ x x≤ 0,25 0,25 0,25 x ≥ Kết hợp (*) nghiệm x = 0, ta tập nghiệm bất phương trình cho là: ⎡⎢0; ⎤⎥ ∪ [4; +∞) ⎣ 4⎦ ⇔0< x≤ (1,0 điểm) Đặt t = x , suy dt = xdx Với x = t = 0; với x =1 t =1 Khi I = = ∫ ∫( ∫ ) ( 0,25 ) 1 dt = ln|t + 2| − ln|t +1| − t + t +1 = ln3 − (1,0 điểm) 0,25 x 2 xdx td t = ( x +1)( x + 2) (t +1)(t + 2) 0 0,25 ln2 0,25 Gọi D trung điểm cạnh AB O tâm ∆ABC Ta có AB ⊥ CD AB ⊥ SO nên AB ⊥ ( SCD ), AB ⊥ SC S Mặt khác SC ⊥ AH , suy SC ⊥ ( ABH ) Ta có: CD = H C A D 0,25 a a a 33 nên SO = SC −OC = , OC = 3 SO.CD a 11 11a Do DH = = Suy S ∆ABH = AB.DH = SC Ta có SH = SC − HC = SC − CD − DH = O B Do VS ABH 11a = SH S ∆ABH = 96 Trang 2/4 7a 0,25 0,25 0,25 0,25 Với x + y + z = x + y + z = 1, ta có: (1,0 điểm) = ( x + y + z ) = x + y + z + x( y + z ) + yz =1− x + yz , nên yz = x − 2 y + z − x2 − 1 x 6 Mặt khác yz ≤ = (*) , suy ra: x − ≤ , − ≤ x≤ 2 2 3 0,25 Khi đó: P = x5 + ( y + z )( y + z ) − y z ( y + z ) ( ) 12 x 1 x = (2 x3 − x) = x5 + (1− x )⎡− x(1− x ) + x x − ⎤ + x − ⎣⎢ ⎦⎥ ⎡ 6 6⎤ Xét hàm f ( x) = x3 − x ⎢ − ; ⎥ , suy f '( x) = x − 1; f '( x) = ⇔ x = ± ⎦⎥ ⎢⎣ ⎛ 6⎞ ⎛ 6⎞ ⎛ 6⎞ ⎛ 6⎞ 6 , f ⎜ ⎟ = f ⎜− Ta có f ⎜ − ⎟= f ⎜ ⎟=− ⎟ = Do f ( x) ≤ 9 ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ = x5 + (1− x ) ⎡⎣( y + z )( y + z ) − yz ( y + z )⎤⎦ + x − 0,25 ( ) ( ) Suy P ≤ Khi x = 36 6 dấu xảy Vậy giá trị lớn P , y = z =− 36 7.a (1,0 điểm) (C) A 0,25 d I (C1) có tâm gốc tọa độ O Gọi I tâm đường trịn (C) cần viết phương trình, ta có AB ⊥ OI Mà AB ⊥ d O ∉ d nên OI//d, OI có phương trình y = x 0,25 0,25 Mặt khác I ∈ (C2 ), nên tọa độ I thỏa mãn hệ: ⎧⎪ y = x ⎧x = ⇔⎨ ⇒ I (3;3) ⎨ 2 ⎪⎩x + y −12 x +18 = ⎩ y = 0,25 Do (C) tiếp xúc với d nên (C) có bán kính R = d ( I , d ) = 2 0,25 Vậy phương trình (C) ( x − 3) + ( y − 3) = 0,25 B (C1) (C2) 8.a (1,0 điểm) Gọi (S) mặt cầu cần viết phương trình I tâm (S) Do I ∈ d nên tọa độ điểm I có dạng I (1+ 2t ; t ; − 2t ) 0,25 Do A, B∈( S ) nên AI = BI , suy (2t −1) + (t −1) + 4t = (2t + 3) + (t −3) + (2t + 2) ⇒ t =−1 0,25 Do I (−1; − 1; 2) bán kính mặt cầu IA = 17 0,25 Vậy, phương trình mặt cầu (S) cần tìm ( x + 1) + ( y + 1) + ( z − 2) = 17 0,25 9.a (1,0 điểm) Số cách chọn học sinh lớp C25 =12650 0,25 1 Số cách chọn học sinh có nam nữ C15 C103 + C152 C102 + C153 C10 0,25 = 11075 0,25 Xác suất cần tính P = 11075 443 = 12650 506 Trang 3/4 0,25 7.b (1,0 điểm) y B H A C O D x2 + y2 =1( a > b > 0) Hình thoi ABCD có a b2 AC = BD A, B, C, D thuộc (E) suy OA = 2OB Giả sử ( E ): 0,25 Khơng tính tổng qt, ta xem A(a;0) x B 0; a Gọi H hình chiếu vng góc O AB, suy OH bán kính đường trịn (C ) : x + y = 0,25 1 1 = = + = + 2 2 OH OA OB a a2 0,25 ( ) Ta có: x2 y + = Suy a = 20, b2 = Vậy phương trình tắc (E) 20 8.b Do B ∈ Ox, C ∈ Oy nên tọa độ B C có dạng: B(b; 0; 0) C (0; c; 0) (1,0 điểm) b c Gọi G trọng tâm tam giác ABC, suy ra: G ; ; 3 JJJJG x y z−3 Ta có AM = (1;2; −3) nên đường thẳng AM có phương trình = = −3 b c −2 Do G thuộc đường thẳng AM nên = = Suy b = c = −3 ( Do phương trình mặt phẳng (P) ) x y z + + = 1, nghĩa ( P) : x + y + z − 12 = 9.b Phương trình bậc hai z − i z − = có biệt thức ∆ = (1,0 điểm) Suy phương trình có hai nghiệm: z1 = + i z2 = −1 + 3i 0,25 0,25 0,25 0,25 0,25 0,25 0,25 π π • Dạng lượng giác z1 z1 = 2⎛⎜cos + isin ⎞⎟ 3⎠ ⎝ 0,25 2π 2π • Dạng lượng giác z2 z2 = 2⎛⎜cos + isin ⎞⎟ 3⎠ ⎝ 0,25 HẾT Trang 4/4 ... =1( a > b > 0) Hình thoi ABCD có a b2 AC = BD A, B, C, D thuộc (E) suy OA = 2OB Giả sử ( E ): 0,25 Không tính tổng qt, ta xem A(a;0) x B 0; a Gọi H hình chiếu vng góc O AB, suy OH b? ?n kính đường... OA OB a a2 0,25 ( ) Ta có: x2 y + = Suy a = 20, b2 = Vậy phương trình tắc (E) 20 8 .b Do B ∈ Ox, C ∈ Oy nên tọa độ B C có dạng: B( b; 0; 0) C (0; c; 0) (1,0 điểm) b c Gọi G trọng tâm tam giác ABC,... +1)(t + 2) 0 0,25 ln2 0,25 Gọi D trung điểm cạnh AB O tâm ∆ABC Ta có AB ⊥ CD AB ⊥ SO nên AB ⊥ ( SCD ), AB ⊥ SC S Mặt khác SC ⊥ AH , suy SC ⊥ ( ABH ) Ta có: CD = H C A D 0,25 a a a 33 nên SO =

Ngày đăng: 29/04/2021, 11:34

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w