1. Trang chủ
  2. » Trung học cơ sở - phổ thông

cach giai phuong trinh bac 4

4 22 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 45,84 KB

Nội dung

Ta tìm giá trị y sao cho vế phải là biểu thức chính phương (trường hợp vế phải của (*) đã là biểu thức chính phương thì việc đưa vào biến phụ y là không cần thiết).. Tuy nhiên, do (1[r]

(1)

.Phương trình trùng phương: Nếu a=0 pt trở thanh` Nếu a đặt

Pt trở thành

Giải t vào x 2.Phương trình hồi quy:

với không phải nghiệm

x 0, chia hai vế pt cho , ta được:

Đặt Được pt:

Tìm y, suy x

3.Phương trình phản thương:

Đây phương trình hồi quy với , Cách giải đặt ẩn phụ tương tự.

4.Phương trình dạng Đặt

pt trở thành Đặt

Ta pt:

Đây phương trình trùng phương

5.Phương trình dạng :

trong hệ số a,b,c,d thỏa mãn tổng hệ số tổng hệ số lại.

Giả sử:

pt viết lại:

Đặt với

pt trở thành

đây pt bậc theo y, giải y suy x

(2)

(*)

Ta đưa vào phương trình ẩn phụ y sau:

Cộng hai vế phương trình (*) cho Ta có:

(**)

Ta tìm giá trị y cho vế phải biểu thức phương (trường hợp vế phải (*) biểu thức phương việc đưa vào biến phụ y khơng cần thiết) Muốn vậy, vế phải phải có nghiệm kép theo biến x.

Hay:

Nghĩa là, ta tìm y nghiệm phương trình:

(***) Với giá trị vừa tìm vế phải (**) có dạng

Do đó, vào phương trình (**) ta có:

(****) Từ (****) ta có phương trình bậc hai:

(a) (b)

Từ đây, giải phương trình (a), (b) ta có nghiệm phương trình bậc tổng quát ban đầu

(3)

trị x tương ứng với y0 phải trùng lại với giá trị x tương ứng với y1 y2 Vì vậy, từ (***) ta cần tìm giá trị yo đủ

(*)

Ta đưa vào phương trình ẩn phụ y sau:

Cộng hai vế phương trình (*) cho Ta có:

(**)

Ta tìm giá trị y cho vế phải biểu thức phương (trường hợp vế phải (*) biểu thức phương việc đưa vào biến phụ y không cần thiết) Muốn vậy, vế phải phải có nghiệm kép theo biến x.

Hay:

Nghĩa là, ta tìm y nghiệm phương trình:

(***) Với giá trị vừa tìm vế phải (**) có dạng

Do đó, vào phương trình (**) ta có:

(****) Từ (****) ta có phương trình bậc hai:

(a) (b)

(4)

P/s: từ phương trình (***) ta có giá trị y, với giá trị y có ta có giá trị x Như vậy, tổng cộng ta có 12 giá trị x nghiệm phương trình (1) Tuy nhiên, (1) phương trình bậc bốn nên có nghiệm (thực phức) Do đó, giá trị x tương ứng với y0 phải trùng lại với giá trị x tương ứng với y1 y2 Vì vậy, từ (***) ta cần tìm giá trị yo đủ

1 Ví dụ cách làm cho dễ hiểu nha: x^4 = ( x+2 )( 2x^2 + 3x + )

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ ¯¯¯¯¯¯¯¯¯¯ x^4 – 2x^3 = 7x^2 + 12x + 12

( x^2 – x)^2 = 8x^2 + 12x +12

( x^2 – x + y/2)^2 = 8x^2 +12x +12+ ( x^2-x)y + 1/4y^2 (*) ( cộng hai vế cho ( x^2-x)y + 1/4y^2 )

Ta tìm giá trị y cho vế phải biểu thức chính phương , muốn vậy, vế phải phải có nghiệm kép theo biến x

VP: = ( y+8)x^2 – ( y-12)x + 1/4y^2 + 12

Delta’ = – ( y^3 + 7y^2 + 72x +240) = => y = -4 Thế y= -4 vào (*) ta có:

( x^2 – x -2)^2 = [ 2( x+2)]^2

Ngày đăng: 18/04/2021, 04:39

TỪ KHÓA LIÊN QUAN

w