BÀI2: PHƯƠNG TRÌNHMẶTPHẲNG Tiết 30, 31, 32, 33 I . Mục tiêu: 1. Kiến thức: Học sinh nắm vững - Khái niệm vectơ pháp tuyến (VTPT) của mặtphẳng (mp). - Phươngtrình tổng quát (PTTQ) của mp, điều kiện để hai mp song song, vuông góc, khoảng cách từ một điểm đến một mp. 2. Kỹ năng: - Biết tìm toạ độ của VTPT của mp, và viết thành thạo PTTQ của mp. - Biết chứng minh hai mp song song, hai mp vuông góc, và tính chính xác khoảng cách từ một điểm đến một mp. 3. Tư duy và thái độ: Biết tự hệ thống các kiến thức cần nhớ, cẩn thận chính xác trong tính toán, vẽ hình, tư duy các vấn đề toán học logic trực quan độc lập, sáng tạo trong quá trình tiếp cận và tích lũy kinh nghiệm trong giải toán, biết quy lạ về quen. II. Chuẩn bị của giáo viên và học sinh: 1. Giáo viên: Bảng phụ, thước kẻ, phấn màu, phiếu học tập, hệ thống ví dụ, … 2. Học sinh: Xem lại các kiến thức về vectơ trong phẳng, và xem trước bài học theo sự hướng dẫn của giáo viên. III. Tiến trìnhbài dạy: 1. Kiểm tra bài cũ: 5 phút ?1: Công thức tích vô hướng của hai ( ) ( ) 3 1 2 1 2 3 ; ; ; ; ;a a a a b b b b r r . Hai vectơ vuông góc khi nào ? ?2: Cho ( ) 2 3 3 2 3 1 1 3 1 2 2 1 ; ;n a b a b a b a b a b a b= − − − r ; và hai ( ) ( ) 1 2 3 1 2 3 ; ; , ; ;a a a a b b b b= = r r không cùng phương có giá song song hoặc nằm trong mp (α). Tính .a n r r Áp dụng: Cho ( ) 3 4 5; ;a = r và ( ) 1 2 1; ;n = − r . Tính .a n r r và rút ra nhận xét. 2. Bài mới: Trong không gian ta đã biết một số cách xác định mặtphẳng chẳng han như xác định mp bằng ba điểm không thẳng hàng, bằng hai đường thẳng cắt nhau, … Bây giờ ta sẽ xác định mp bằng pp tọa độ. Hoạt động 1: Vectơ pháp tuyến của mặt phẳng. 3 phút Hoạt động của giáo viên Hoạt động của học sinh ?1: Nêu khái niệm VTPT của đường thẳng. Dùng hình ảnh trực quan: bút và sách, bảng phụ giới thiệu vectơ n r là VTPT của mp (α). ?2: Định nghĩa vectơ pháp tuyến của mp. ?3: Vectơ 0,kn k ≠ r có phải là VTPT của mp không. Vì sao ? Phát biểu định nghĩa VTPT của đường thẳng. 0V T PT n ≠ r r , giá n r vuông góc với mp. Là VTPT vì 0kn ≠ r và cùng phương vuông góc mp với vectơ n r . Hoạt động 2:Bài toán xác định VTPT của mặt phẳng. 10 phút Hoạt động của giáo viên Hoạt động của học sinh ?1: Tính .b n r r và kết luận về giá của vectơ n r với giá của hai vectơ ,a b r r . Trao đổi thảo luận nhóm Theo kết quả phần trả bài cũ ta có: 0.a n = r r ?2: So sánh vectơ n r và vectơ 0 r ?3: Kết luận mối quan hệ giữa n r và mp (α). Vì sao ? Giới thiệu khái niệm “ Tích có hướng ” ?4: Công thức tính tích có hướng của hai vectơ ( ) ( ) 1 2 3 1 2 3 ; ; , ; ;a a a a b b b b= = r r . Thực hiện hoạt động 1 ?5: Từ ba điểm A, B, C. Tìm tọa độ hai vectơ không cùng phương nằm trong mặtphẳng (ABC). ?6: Xác định tọa độ VTPT n r của mp (ABC). ( ) ( ) ( ) 2 3 1 3 2 1 3 1 2 1 3 2 1 2 3 2 1 3 0.b n a bb a bb a bb a bb a b b a bb= − + − + − = r r Do đó: ;a n b n⊥ ⊥ r r r r Suy ra vectơ n r có giá vuông góc với giá ,a b r r Vì ,a b r r không cùng phương nên 0n ≠ r r Vậy: vectơ n r là VTPT của mp (α). Vì giá n r vuông góc với hai đt cắt nhau của mp (α) Kí hiệu: n a b= ∧ r r r hoặc [ ],n a b= r r r Công thức: 2 3 3 2 3 1 2 3 1 2 2 1 [ (, ] ; ; ) − − −= r r a b a b a b a b a b a ba b Hay 2 3 3 2 1 2 2 3 3 1 1 2 ; ; ∧ = ÷ = r r r a a a a a a b b b b b b n a b Thảo luận giải quyết vấn đề Ta có: ( ), ( )⊂ ⊂ uuur uuur AB ABC AC ABC không cùng phương (2;1; 2); ( 12;6;0)= − = − uuur uuur AB AC Vậy: VTPT [AB,AC] = (12;24;24)= r uuur uuur n Hoạt động 3: Tiếp cận PTTQ của mặt phẳng. 12 phút Hoạt động của giáo viên Hoạt động của học sinh Bài toán 1: Định hướng chứng minh, vẽ hình ?1: Nhận xét mối quan hệ giữa r n và 0 M M uuuuuur . ?2: Tính tọa độ vectơ 0 M M uuuuuur . ?3: Tính tích vô hướng của r n và 0 M M uuuuuur . Bài toán 2: Dạng PTTQ của mặt phẳng. ?4: Có tồn tại hay không điểm ( ) 0 0 0 0 ; ;M x y z nghiệm đúng pt 0+ + + =Ax By Cz D . Gọi (α) là mp đi qua M 0 và nhận ( ) ; ;= r n A B C làm VTPT ?5: Khi ( ) ( ) ; ;M x y z α ∈ ta có điều gì. ?6: Xác định D từ giả thiết ( ) 0 0 0 0 ; ;M x y z . ?7: Kết luận vấn đề. Vẽ hình minh họa Ta có: giá r n ⊥ ( α ) suy ra r n ⊥ 0 M M uuuuuur Mà ( ) 0 0 0 0 ; ;= − − − uuuuuur M M x x y y z z Khi đó: 0 . 0= uuuuuur r n M M Suy ra: ( ) ( ) ( ) 0 0 0 0− + − + − =A x x B y y C z z (đpcm) Tiếp nhận kiến thức Tồn tại điểm ( ) 0 0 0 0 ; ;M x y z thỏa pt 0+ + + =Ax By Cz D Ví dụ: Nếu 0A ≠ ta chọn ( ) 0 0 0; ; D M A − . Ta có: ( ) ( ) ( ) ( ) 0 0 0 0 α ∈ ⇔ − + − + − =M A x x B y y C z z ⇔ Ax+ By +Cz – (Ax 0 +By 0 + Cz 0 ) = 0 Mà D = - (Ax 0 +By 0 + Cz 0 ). Vậy: ( ) 0 α ∈ ⇔ + + + =M Ax By Cz D (đpcm) Hoạt động 4: PTTQ của mặtphẳng và vận dụng. 10 phút Hoạt động của giáo viên Hoạt động của học sinh ?1: Từ 2 bài toán trên định nghĩa PTTQ của mp. ?2: Xác định một VTPT của mp có pttq là 0+ + + =A B Cx y z D . ?3: Pt mp đi qua ( ) 0 0 0 0 ; ;M x y z và nhận ( ) ; ;= r n A B C làm VTPT có dạng. ?4: Tìm một VTPT của mp 4 2 6 0− − + =x y z D ?5: Xác định thêm một số VTPT của mp. Hướng dẫn thực hiện hoạt động 3 ?6: Từ 3 điểm M, N, P. Tìm tọa độ hai vectơ không cùng phương nằm trong mp (MNP). ?7: Xác định tọa độ VTPT n r của mp (ABC). PTTQ có dạng: ( ) 2 2 2 0 0+ + + + ≠= +Ax B By A CCz D VTPT ( ) ; ;= r n A B C Phươngtrình là: ( ) ( ) ( ) 0 0 0 0− + − + − =x y C zA zyBx Có một VTPT là ( ) 4; 2; 6= − − r n Các VTPT của mp là: ( ) ( ) 2; 1; 3 ; 2;1;3= − − = − r r a c Trao đổi thảo luận nhóm Ta có: ( ), ( )⊂ ⊂ uuur uuuur MP MNP MN MNP không cùng phương (3;2;1); (4;1;0)= = uuuur uuur MN MP ?8: Viết PTTQ của mp (MNP). ?9: Kết luận. Khi đó: VTPT [ , ] = (-1;4; 5)= − r uuuur uuur n MN MP Pttq có dạng: ( ) ( ) ( ) 0 0 0 0− + − + − =x y C zA zyBx Hay: -1(x - 1) + 4(y - 1) - 5(z - 1) = 0 Vậy: (MNP) : x - 4y + 5z - 2 = 0 3. Củng cố và dặn dò: 5 phút ?1: Công thức tích có hướng của hai vectơ ( ) ( ) 3 1 2 1 2 3 ; ; ; ; ;a a a a b b b b r r . ?2: Phương pháp tìm VTPT của mặt phẳng. ?3: PTTQ của mặtphẳng và ptmp khi biết mp đi qua một điểm và có VTPT. - Làm các bài tập 1a, b SGK trang 80. - Xem tiếp phần còn lại của bài “ Phương trìnhmặtphẳng ” trả lời các câu hỏi sau. ?1: Dạng của pt mp trong một số trường hợp đặc biệt. ?2: Điều kiện để hai mp song song hay vuông góc. ?3: Công thức tính khoảng cách từ điểm đến mp. . BÀI 2: PHƯƠNG TRÌNH MẶT PHẲNG Tiết 30, 31, 32, 33 I . Mục tiêu: 1. Kiến thức: Học sinh nắm vững - Khái niệm vectơ pháp tuyến (VTPT) của mặt phẳng. b b b b r r . ?2: Phương pháp tìm VTPT của mặt phẳng. ?3: PTTQ của mặt phẳng và ptmp khi biết mp đi qua một điểm và có VTPT. - Làm các bài tập 1a, b SGK