Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 64 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
64
Dung lượng
4,25 MB
Nội dung
Hoàng Xuân Nhàn thayxuannhan@gmail.com 1 PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ §1 TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ Định nghĩa tính đơn điệu: Cho hàm số xác định tập Hàm số đồng biến (tăng) Hàm số nghịch biến (giảm) Hàm số đồng biến nghịch biến gọi đơn điệu Nhận xét: Trong chương trình lớp 10, để xét đồng biến, nghịch biến hàm : • Nếu hàm đồng biến • Nếu hàm nghịch biến Định lí (tính đơn điệu dấu đạo hàm): Cho hàm số Cụ thể là: (Tức (Tức dấu với ) trái dấu với ) có đạo hàm Nếu với hàm đồng biến Nếu Chú ý: với hàm nghịch biến • , ta hay dùng tỉ số Định lí mở rộng với (hay ) trường hợp hạn điểm; kết luận hàm số đồng biến (hay nghịch biến) số hữu Hoàng Xuân Nhàn thayxuannhan@gmail.com PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ • Nếu hàm số liên tục có đạo hàm (Tương tự cho trường hợp hàm số nghịch biến hàm số đồng biến ) Dạng tốn Sử dụng đạo hàm để xét tính đơn điệu hàm số Bài tốn 1: Tính đạo hàm, lập bảng biến thiên suy tính đơn điệu hàm số Phương pháp: o Bước 1: Tìm tập xác định hàm số o Bước 2: Tính ; cho (nếu có) o Bước 3: Lập bảng biến thiên o Bước 4: Dựa vào bảng biến thiên để kết luận hàm số đồng biến (hoặc nghịch biến) khoảng tập xác định Lưu ý: o Khi lập bảng biến thiên, việc xét dấu cho đạo hàm bước định, nên học sinh phải tuyệt đối xác o Ở lớp 10, em xét dấu cho tam thức bậc hai, học sinh quen với thuật ngữ “trong trái cùng” Nghĩa là: Khu vực bên hai nghiệm biểu thức trái dấu , khu vực ngồi hai nghiệm biểu thức dấu Tuy nhiên đạo hàm khơng có dạng bậc hai, thuật ngữ “trong trái ngồi cùng” khơng thể áp dụng Vậy có quy tắc chung cho việc xét dấu toán? Quy tắc chung để xét dấu đạo hàm: o Để xét dấu đạo hàm khoảng đó, ta chọn giá trị thay vào , từ suy dấu o Với quy tắc này, hàm số có đạo hàm phức tạp ta xét dấu xác sau ta tìm nghiệm đạo hàm Ví dụ Cho hàm số A Hàm số nghịch biến khoảng Khẳng định sau khẳng định sai? B Hàm số đồng biến Hoàng Xuân Nhàn thayxuannhan@gmail.com PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ C Hàm số đồng biến Tập xác định: D Hàm số đồng biến Lời giải: Ta có Bảng biến thiên: ; 0 42 10 Kết luận: Hàm số đồng biến khoảng: khoảng Hàm số nghịch biến Ví dụ Các khoảng nghịch biến hàm số A B C D Lời giải: Tập xác định: Ta có: Bảng biến thiên: ; và 0 0 Hoàng Xuân Nhàn thayxuannhan@gmail.com PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ Kết luận: Hàm số đồng biến khoảng: Hàm số nghịch biến khoảng: Ví dụ Chọn mệnh đề hàm số A Hàm số nghịch biến khoảng xác định B Hàm số đồng biến tập xác định C Hàm số đồng biến khoảng xác định D Hàm số nghịch biến tập xác định Lời giải: Tập xác định: Ta có: Bảng biến thiên: Nên hàm số đồng biến khoảng xác định Ví dụ Cho hàm số A Hàm số đồng biến khoảng nào? B C Lời giải: D Hoàng Xuân Nhàn thayxuannhan@gmail.com PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ Tập xác định: Ta có: Bảng biến thiên: ; (nhận) 0 Kết luận: Hàm số đồng biến Ví dụ Cho hàm số , nghịch biến Khẳng định sau khẳng đúng? A Hàm số đồng biến khoảng nghịch biến khoảng B Hàm số đồng biến khoảng nghịch biến khoảng C Hàm số nghịch biến khoảng đồng biến khoảng D Hàm số nghịch biến khoảng Tập xác định: đồng biến khoảng Lời giải: Đạo hàm: Bảng biến thiên: ; Hoàng Xuân Nhàn thayxuannhan@gmail.com PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ Vậy ta hàm số cho đồng biến khoảng Ví dụ Cho hàm số với A Hàm số đồng biến D Hàm số nghịch biến Lời giải: Đạo hàm: ; Do Bảng biến thiên: + Mệnh đề sau đúng? B Hàm số nghịch biến C Hàm số nghịch biến Tập xác định: nghịch biến khoảng Ta thấy mệnh đề là: Hàm số cho nghịch biến + Hoàng Xuân Nhàn thayxuannhan@gmail.com PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ Ví dụ Hàm số A C đồng biến khoảng ? B D Lời giải: Tập xác định: Áp dụng cơng thức , ta có: Xét Ta thấy hàm số đồng biến khoảng: Bài toán 2: Xét dấu đạo hàm cho sẵn để kết luận tính đơn điệu hàm số MỘT SỐ TÍNH CHẤT CẦN LƯU Ý: Cho hàm số với k số có đạo hàm tập D Khi đó: Hồng Xn Nhàn thayxuannhan@gmail.com PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ Ví dụ Cho hàm số khoảng: A có đạo hàm B Hàm số cho đồng biến C Lời giải: D Cách 1: Sử dụng bảng xét dấu: Ta có Bảng biến thiên: 0 Ta thấy hàm số đồng biến khoảng Cách 2: Giải bất phương trình (cách thuận lợi trắc nghiệm) Ta có: (do Vậy hàm số đồng biến khoảng Ví dụ Cho hàm ) số liên tục có Khẳng định sau đúng? A Hàm số đạt cực đại điểm đạt cực tiểu điểm B Hàm số đồng biến khoảng C Hàm số có ba điểm cực trị D Hàm số nghịch biến khoảng Lời giải: đạo hàm Hoàng Xuân Nhàn thayxuannhan@gmail.com PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ Ta có Xét (do Vậy hàm số đồng biến khoảng ) ; hàm số nghịch biến khoảng Ví dụ 10 Cho có đạo hàm biến khoảng nào? A C Hàm số B nghịch D Lời giải: Đặt Ta có mà nên ; Xét Do hàm số Ví dụ 11 Cho hàm số nghịch biến có đạo hàm Hỏi hàm số đồng biến khoảng khoảng ? A B C Lời giải: D Hoàng Xuân Nhàn thayxuannhan@gmail.com 10 PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ Ta có: ; Bảng biến thiên: 0 Ta thấy hàm số đồng biến khoảng Ví dụ 12 Cho hàm số xác định có đạo hàm thỏa mãn Hàm số A nghịch biến khoảng nào? B C Lời giải: D Đặt Theo đề Thay x – x Do Mặt khác Do Hoàng Xuân Nhàn thayxuannhan@gmail.com 50 PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ Vậy tập nghiệm phương trình Tổng nghiệm phương trình: Ví dụ 55 Cho phương trình: nhiêu nghiệm thực? A Hỏi phương trình cho có bao B Điều kiện: Ta nhận thấy Xét vế trái: Hàm Dó hàm C Lời giải: D nghiệm phương trình (1) ; đồng biến (2) Xét vế phải: Hàm Do hàm số nghịch biến (3) Từ (1), (2), (3) suy tập nghiệm phương trình BÀI TẬP RÈN LUYỆN Câu Cho hàm số Mệnh đề đúng? Hoàng Xuân Nhàn thayxuannhan@gmail.com 51 PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ A Hàm số đồng biến khoảng nghịch biến khoảng B Hàm số đồng biến khoảng C Hàm số nghịch biến khoảng đồng biến khoảng D Hàm số nghịch biến khoảng Câu Câu A Câu B C B Hàm số C D D đồng biến khoảng ? B C Các khoảng nghịch biến hàm số B C D Cho hàm số A Hàm số đồng biến và Mệnh đề sau mệnh đề đúng? B Hàm số nghịch biến khoảng xác định C Hàm số đồng biến D A Câu ? Hàm số sau nghịch biến tập số thực A Câu Trong hàm số sau, hàm số đồng biến A Hoàng Xuân Nhàn thayxuannhan@gmail.com 52 PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ D Hàm số đồng biến khoảng miền xác định Câu Cho hàm số Khẳng định sau đúng? A Hàm số nghịch biến B Hàm số nghịch biến khoảng C Hàm số nghịch biến D Hàm số đồng biến khoảng Câu và nghịch biến khoảng Cho hàm số Khẳng định sau đúng? A Hàm số nghịch biến khoảng B Hàm số đồng biến khoảng C Hàm số nghịch biến khoảng D Hàm số nghịch biến khoảng Câu Cho hàm số A B C có đạo hàm B D C B C Hàm số cho đồng biến D Câu 11 Cho hàm số có đạo hàm khoảng nào, khoảng đây? A Hàm số đồng biến khoảng nào? Câu 10 Cho hàm số khoảng A Hàm số D đồng biến Hoàng Xuân Nhàn thayxuannhan@gmail.com 53 PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ Câu 12 Cho hàm số xác định khoảng Tìm khẳng định khẳng định sau: A Hàm số đồng biến khoảng B Hàm số có giá trị khơng đổi khoảng C Hàm số đồng biến khoảng D Hàm số đồng biến khoảng Câu 13 có tính chất Cho hàm số liên tục có đạo Khẳng định sau đúng? A Hàm số đạt cực đại điểm đạt cực tiểu điểm B Hàm số đồng biến khoảng C Hàm số có ba điểm cực trị D Hàm số nghịch biến khoảng Câu 14 A Câu 15 A Câu 16 Hàm số đồng biến khoảng sau đây? B C Hàm số Cho hàm số D đồng biến B C Mệnh đề đúng? D hàm Hoàng Xuân Nhàn thayxuannhan@gmail.com 54 PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ A Hàm số đồng biến khoảng B Hàm số nghịch biến khoảng C Hàm số đồng biến khoảng D Hàm số đồng biến khoảng Câu 17 Hàm số A nghịch biến khoảng Câu 18 B C Cho hàm số B để hàm số C B Vô số C Câu 21 Tìm giá trị tham số định A B Câu 22 Biết hàm số đúng? A D C đồng biến D C đồng biến khoảng xác D đồng biến B để hàm số để hàm số nghịch biến khoảng Câu 20 Có giá trị nguyên tham số khoảng xác định nó? D Hàm số nghịch biến Câu 19 Tìm tất giá trị thực tham số mà xác định? A B Hàm số đồng biến C Hàm số nghịch biến D Khẳng định sau ? A Hàm số đồng biến A , mệnh đề D Hoàng Xuân Nhàn thayxuannhan@gmail.com 55 PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ Câu 23 Cho hàm số có bảng biến thiên hình vẽ sau Mệnh đề đúng? A Hàm số đồng biến khoảng C Hàm số nghịch biến khoảng Câu 24 Cho hàm số B Hàm số đồng biến khoảng D Hàm số nghịch biến khoảng có bảng biến thiên sau: 0 Hàm số A Câu 25 A 0 đồng biến khoảng đây? B C D Bảng biến thiên hàm số nào? B C D Hoàng Xuân Nhàn thayxuannhan@gmail.com 56 PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ Câu 26 Cho hàm số có bảng biến thiên hình bên.Hàm số biến khoảng đây? A B Câu 27 Câu 28 Tìm A Tìm A C để hàm số để hàm số C nghịch biến B C (với để hàm số nghịch biến B Cho hàm số nguyên D nghịch biến B Câu 30 có bảng biến thiên sau B Câu 29 D đồng biến khoảng A A C Cho hàm số Hàm số đồng D D tham số) Có giá trị ? C D Hoàng Xuân Nhàn thayxuannhan@gmail.com 57 PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ Câu 31 Tìm tất giá trị thực tham số Câu 32 B C Tìm tất giá trị thực tham số D để hàm số đồng biến A Câu 33 B Có số nguyên C D để hàm số nghịch biến ? A B Câu 34 Gọi C Câu 35 D tập hợp giá trị tham số nghịch biến đoạn có độ dài B để hàm số Tính tổng tất phần tử S C D Biết hàm số dài A nhận giá trị Tính tổng C D Có giá trị nguyên tham số khoảng nghịch biến đoạn có độ B Câu 36 A đồng biến A A để hàm số để hàm số nghịch biến ? B C D Hoàng Xuân Nhàn thayxuannhan@gmail.com 58 PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ Câu 37 Có tất giá trị nguyên khoảng B Tìm D đồng biến khoảng C Cho hàm số , B tập hợp tất giá trị nguyên Tìm số phần tử C A D Có tất giá trị nguyên m để hàm số khoảng D tham số thực Gọi để hàm số nghịch biến khoảng A Câu 41 C vô số B tham số Câu 40 để hàm số A Câu 39 nghịch biến A Câu 38 để hàm số nghịch biến ? B C Vô số Tập hợp giá trị thực để hàm số D đồng biến khoảng A Câu 42 B C Tìm tât giá trị tham số m để hàm số D đồng biến khoảng Hoàng Xuân Nhàn thayxuannhan@gmail.com 59 PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ A C Câu 43 Câu 45 B Vô số A Câu 47 khoảng B Câu 48 để hàm số nghịch biến Tìm B để hàm số B D để hàm số Tìm tất giá trị đồng biến C D đồng biến C D D để hàm số nghịch biến Tìm tất giá trị B D để hàm số nghịch biến khoảng C để hàm số Tìm tất giá trị thực tham số A C C Tìm tất giá trị tham số A Câu 46 D ? A A Có giá trị nguyên tham số khoảng Câu 44 B đồng biến Hoàng Xuân Nhàn thayxuannhan@gmail.com 60 PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ A C Câu 49 Câu 50 A Câu 51 B C Tìm giá trị tham số B Giá trị Tìm đồng B C D đồng biến C D D đồng biến khoảng C để hàm số D nghịch biến để hàm số A C B Tìm để hàm số để hàm số để hàm số B A Câu 53 D A Câu 52 Có giá trị nguyên tham số biến khoảng A B D đồng biến khoảng ? Hoàng Xuân Nhàn thayxuannhan@gmail.com 61 PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ Câu 54 Tìm tất giá trị tham số m để hàm số đồng biến A Câu 55 B Tìm tất C giá trị thực D tham số để nghịch biến khoảng A C Câu 56 Tìm tất giá trị tham số A B D để hàm sơ B C Tìm tất giá trị tham số khoảng để hàm số C Tìm giá trị thực tham số A A đồng biến khoảng Câu 58 số D đồng biến khoảng Câu 57 B hàm D để hàm số đồng biến B C D Hoàng Xuân Nhàn thayxuannhan@gmail.com 62 PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ Câu 59 Tập hợp tất giá trị tham số nghịch biến khoảng A B Câu 60 Tính tổng tất giá trị B C D Câu 61 Cho có đạo hàm biến khoảng nào? A Câu 62 số D Cho hàm số hàm là: C nguyên dương m để hàm số nghịch biến khoảng A để Hàm số B Cho hàm số nghịch C D có đạo hàm Hỏi hàm số đồng biến khoảng khoảng ? A Câu 63 Cho hàm số sau? C Cho hàm số D có đạo hàm liên tục Hàm số A Câu 64 B B đồng biến khoảng khoảng C xác định D có đạo hàm Hàm số nghịch biến khoảng nào? thỏa mãn Hoàng Xuân Nhàn thayxuannhan@gmail.com 63 PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ A Câu 65 B Cho hàm số Câu 66 C Hàm số Hàm số A D có bảng xét dấu sau nghịch biến khoảng đây? B Cho hàm số C D có đồ thị hình vẽ Hàm số A Câu 67 đồng biến khoảng B Cho hàm số C Biết đồ thị hàm số số D có đồ thị hình vẽ bên Hàm đồng biến khoảng đây? A Câu 68 0 B Cho hàm số C Đồ thị hàm số D hình bên Hàm số đồng biến khoảng khoảng sau? 0 Hoàng Xuân Nhàn thayxuannhan@gmail.com 64 PHƯƠNG PHÁP TRẮC NGHIỆM VẬN DỤNG & VẬN DỤNG CAO ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT HÀM SỐ A Câu 69 B Cho hàm số hình vẽ Gọi C có đạo hàm liên tục Hỏi 0 Câu 70 D B Cho hàm số Biết hàm số tập hợp giá trị nguyên nghịch biến khoảng A có đồ thị để hàm số có phần tử? C D có bảng xét dấu đạo hàm sau 0 0 Hàm số đồng biến khoảng đây? A B C D ĐÁP ÁN BÀI TẬP RÈN LUYỆN 1D 11B 21C 31A 41C 51A 61A 2C 12B 22C 32B 42A 52C 62C 3D 13D 23D 33B 43C 53B 63A 4A 14B 24C 34D 44B 54B 64A 5A 15A 25A 35C 45C 55B 65B 6D 16C 26B 36D 46C 56D 66B 7B 17C 27B 37A 47A 57D 67A 8C 18B 28B 38D 48B 58D 68D 9A 19D 29A 39C 49C 59D 69D 10A 20A 30D 40A 50C 60C 70C ... cho trường hợp hàm số nghịch biến hàm số đồng biến ) Dạng tốn Sử dụng đạo hàm để xét tính đơn điệu hàm số Bài tốn 1: Tính đạo hàm, lập bảng biến thiên suy tính đơn điệu hàm số Phương pháp:... HÀM ĐỂ KHẢO SÁT HÀM SỐ Kết luận: Hàm số đồng biến khoảng: Hàm số nghịch biến khoảng: Ví dụ Chọn mệnh đề hàm số A Hàm số nghịch biến khoảng xác định B Hàm số đồng biến tập xác định C Hàm số. .. hàm số B C D Cho hàm số A Hàm số đồng biến và Mệnh đề sau mệnh đề đúng? B Hàm số nghịch biến khoảng xác định C Hàm số đồng biến D A Câu ? Hàm số sau nghịch biến tập số thực A Câu Trong hàm số