1. Trang chủ
  2. » Nông - Lâm - Ngư

Bài giảng Toán cao cấp cho các nhà kinh tế 2: Bài 3 - ThS. Đoàn Trọng Tuyến

10 12 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 616,12 KB

Nội dung

ĐẠO HÀM VÀ XU HƯỚNG BIẾN THIÊN CỦA HÀM SỐ 1.1.[r]

(1)

BÀI 3

NG DNG CA ĐẠO HÀM

TRONG TOÁN HC

VÀ TRONG PHÂN TÍCH KINH T

ThS Đồn Trọng Tuyến

(2)

v1.0014105206 TÌNH HUỐNG KHỞI ĐỘNG

Cho biết hàm lợi nhuận nhà sản xuất sau:

Trong đó:

  lợi nhuận nhà sản xuất

• Q mức sản lượng cho lợi nhuận 

Hãy chọn mức sản lượng cho lợi nhuận tối đa?

3

1

Q 14Q 60Q 54

3

(3)

MỤC TIÊU

• Trình bày ứng dụng đạo hàm để tìm khoảng tăng, giảm cực trị hàm số;

• Đưa phương án tìm giá trị lớn nhất, giá trị nhỏ hàm số [a, b]; • Tính nêu ý nghĩa kinh tế y’(x0);

• Tính nêu ý nghĩa kinh tế hệ số co dãn cung, cầu theo giá;

• Giải toán tối ưu lợi nhuận (theo mức sản lượng tối ưu sử

(4)

v1.0014105206 NỘI DUNG

Đạo hàm xu hướng biến thiên hàm số

Tìm điểm cực trị hàm số

Ý nghĩa đạo hàm kinh tế

Tính hệ số co dãn cung cầu theo giá

(5)

1.2 Xác định khoảng tăng, giảm hàm số

(6)

v1.0014105206 1.1 LIÊN HỆ GIỮA ĐẠO HÀM VÀ XU HƯỚNG BIẾN THIÊN CỦA HÀM SỐ

Định lý 1: (Điều kiện cần)

Giả sử hàm số f(x) có đạo hàm điểm thuộc khoảng (a;b)  f(x) đơn điệu tăng (a;b)  f ’(x)  0, x(a;b)

 f(x) đơn điệu giảm (a;b)  f ’(x)  0, x(a;b) • Định lý 2: (Điều kiện đủ)

Giả sử hàm số f(x) có đạo hàm điểm thuộc khoảng (a;b)  f ’(x) > 0, x(a;b)  f(x) đơn điệu tăng (a;b)

 f ’(x) < 0, x(a;b)  f(x) đơn điệu giảm (a;b)

(7)

1.2 XÁC ĐỊNH CÁC KHOẢNG TĂNG, GIẢM CỦA HÀM SỐ

Để xác định khoảng tăng, giảm hàm số y = f(x) ta thực bước sau: • Bước 1: Tìm miền xác định hàm số;

• Bước 2: Tính đạo hàm y’;

• Bước 3: Xét dấu đạo hàm y’;

(8)

v1.0014105206

Xác định khoảng tăng, giảm hàm số y = (2x – 3).e–2x

TXĐ: D = R Tính đạo hàm:

y = (2x – 3)’.e–2x + (2x – 3).(e–2x)’

= e–2x– 2(2x – 3).e–2x = 4e–2x(2 – x)

Dấu y’ dấu nhị thức – x, bảng biến thiên:

Vậy hàm số tăng (–, 2) hàm số giảm (2, +) VÍ DỤ 1

x – 2 +

y’ + 0 –

(9)

VÍ DỤ 2

Xác định khoảng tăng, giảm hàm số y = (3x2 – 8x + 7)ex

TXĐ: D = R Tính đạo hàm:

y’ = (3x2 – 8x + 7)’.ex + (3x2 – 8x + 7).(ex)’

= (6x – 8).ex + (3x2 – 8x + 7).ex = ex(3x2 – 2x – 1)

Dấu y’ dấu tam thức 3x2 – 2x – 1, bảng biến thiên:

x – –1/3 1 +

y’ + 0 – 0 +

(10)

v1.0014105206 10 2.2 Điều kiện cần cực trị

2 TÌM CÁC ĐIỂM CỰC TRỊ CỦA HÀM SỐ 2.1 Khái niệm cực trị địa phương

2.3 Điều kiện đủ

2.4 Tìm điểm cực trị hàm số

Ngày đăng: 01/04/2021, 00:15

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w