1. Trang chủ
  2. » Mẫu Slide

Các chuyên đề bồi dưỡng học sinh giỏi Đại số 7

12 48 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 322,49 KB

Nội dung

HS cần nắm vững những kiến thức sau trước khi nghiên cứu nội dung chuyên đề : +Các phép toán : cộng ;trừ ;nhân ;chia ;luỹ thừa trong Q; +Quy tắc dấu ngoặc; +Quy tắc chuyển vế; +Tính chất[r]

(1)Sưu tầm và biên soạn nội dung : Trần Văn Quang _ DĐ : 0914.866.590 CÁC CHUYÊN ĐỀ BỒI DƯỠNG HSG ĐẠI SỐ Tác giả : Trần Văn Quang -*** CHUYÊN ĐỀ CÁC PHÉP TOÁN TRONG Q I KIẾN THỨC CẦN NHỚ : HS cần nắm vững kiến thức sau trước nghiên cứu nội dung chuyên đề : +Các phép toán : cộng ;trừ ;nhân ;chia ;luỹ thừa Q; +Quy tắc dấu ngoặc; +Quy tắc chuyển vế; +Tính chất các phép toán : giao hoán; kết hợp; phân phối phép nhân phép cộng … Từ các tính chất phép toán ta chứng suy các “Công thức ” sau : a) a2 + 2a.b + b2 = (a + b)2 ; b) a2 - 2a.b + b2 = (a - b)2 ; c) (a - b).(a + b) = a2 - b2 Thật : a) a2 + 2ab + b2 = (a.a + a.b) + (a.b + b.b) = a.(a + b) + b.(a + b) ( T/C phân phối phép nhân với phép cộng) = (a + b)(a + b) ( T/C phân phối phép nhân với phép cộng) = (a + b)2 * Các Công thức b)c) HS tự chứng minh Ta gọi các công thức trên là các đẳng thức đáng nhớ II DẠNG TOÁN : Dạng Các phép toán : + Khi cộng hay trừ phân số bước đầu tiên phải đưa các phân số cùng mẫu số cách : quy đồng ( mà thực chất chính là nhân tử và mẫu phân số với giá trị thích hợp ) rút gọn phân số , đây là bước quan trọng và đòi hỏi tư cao Qua số bài tập sau đây chúng ta tìm hiểu kĩ giải vấn đề này cách làm “đặc biệt “ Câu Cho các số x,y,z,t thoả mãn điều kiện : xyzt = 1 1    Tính tổng : P   x  xy  xyz  y  yz  yzt  z  zt  ztx  t  tx  txy (HSG T.p HP – 1997) + Hướng dẫn giải : 1 1    - Ta có : P   x  xy  xyz  y  yz  yzt  z  zt  ztx  t  tx  txy x xy xyz     ( nhân vào tử và  x  xy  xyz x  xy  xyz  xy  xyz   x xyz   x  xy mẫu phân số với 1;x;xy;xyz và nhớ xyzt = )  x  xy  xyz  = 1  x  xy  xyz * Có thể làm theo cách khác sau : a b c d - Vì xyzt = nên ta có thể đặt x  ; y  ; z  ; t  với a,b,c,d là các số thực khác Khi b c d a đó ta có : Biểu thức P biến đổi thành : Tài liệu sử dụng cho ôn luyệnLop8.net học sinh giỏi các lớp 6- – – THCS (2) Sưu tầm và biên soạn nội dung : Trần Văn Quang _ DĐ : 0914.866.590 1 1    a a b a b c b b c b c d c c d c d a d d a d a b 1   1   1   1   b b c b c d c c d c d a d d a d a b a a b a b c 1 1     a a a b b b c c c d d d 1   1   1   1   b c d c d a d a b a b c bcd acd abd abc     bcd  acd  abd  abc acd  abd  abc  bcd abd  abc  bcd  acd abc  bcd  acd  abd bcd  acd  abd  abc  bcd  acd  abd  abc  Vậy P = * Chú ý : bài toán mà giả thiết cho các biến số có tích , ta có thể biến đổi a b c d cách làm trên (đặt x  ; y  ; z  ; t  ) b c d a A.B B  + Khi nhân ; chia các phân số ta luôn phải chú ý rút gọn “tử - mẫu “ ( ) Kĩ A.C C tưởng đơn giản này giúp ích lớn việc giải nhiều bài toán khó Thật vây :      Câu Tính : A  1  (BD HSG toán 8- T.77)  1   1               1986  + Hướng dẫn giải : n n  1 - Ta có : ( nhớ     n  )      A  1   1   1               1986            1  1   1   1    2  1   3  1   1986 1986  1                  1   1   1    2.3   3.4   1986.1987  1987.1986   10 1987.1986 10 27 1987.1986   ;(1) 12 20 1987.1986 Mặt khác : 1986.1987 – = 1986(1988 – 1) + 1986 – 1988 = 1986.1988 – 1988 = 1988.(1986 – 1) = 1988.1985 ;(2) Từ (1) và (2) ta có : 4.1 5.2 6.3 1988.1985 A 2.3 3.4 4.5 1986.1987 4.5.6 1988 (1.2.3 1985)  (2.3.4 1986) (3.4.5 1987) Tài liệu sử dụng cho ôn luyệnLop8.net học sinh giỏi các lớp 6- – – THCS (3) Sưu tầm và biên soạn nội dung : Trần Văn Quang _ DĐ : 0914.866.590 1987.1988 1.2  2.3 1986.1987 1988 994   1986.3 2979 * Lưu ý : Bài toán tổng quát là :      A  1   1   1   với n là số tự nhiên lớn             n  + Với bài toán có chứa luỹ thừa , cần chú ý số công thức sau : 0) am = a.a.a…a (m thừa số );a0 = ; a1 = a 1) am.an = am + n am m n m – n 2) a : a = a ( hay : n  a m  n ) a 3) (am)n = am.n 4) (a.b)n = an.bn n an a 5)    n b b 6) a-n = n a ( Với các điều kiện tương ứng có nghĩa ) 219.27  15.49.94 Câu Rút gọn : ( HSG quốc gia – 1971) 69.210  1210 + Hướng dẫn giải : 18 219.27  15.49.94 219.33  5.218.39 2.1  5.1.3   5.36 734 367 - Ta có :  19 10 20  18    10 10  12  2 2.1  3.2  2  3.4  10206 5103 Câu Rút gọn : A = + + 52 + 53 + … + 550 (NC&PT toán 7/T11) + Hướng dẫn giải : - Ta có : 5.A = + 52 + 53 + 54 + … + 551 551  Do đó : 5.A - A = 551 - Vậy A = * NX : Với biểu thức A trên người ta còn thường bài toán : Chứng minh A là số chẵn hay chứng minh A chia hết cho chứng minh A không là số nguyên Các em hãy thử tìm lời ? Dạng Chứng minh đẳng thức hữu tỉ : a b c    Câu Cho ba số a , b ,c đôi khác và thoả mãn hệ thức : bc c a a b a b c   0 Chứng minh : ( HSG toán – 1999 – A ) 2 (b  c) (c  a ) (a  b) + Hướng dẫn giải : a b c ab  b  ac  c - Từ giả thiết suy : , nhân hai vế với ta :    bc bc a c a b a  c a  b  a ab  b  ac  c  (b  c) a  c a  b b  c  Tương tự : c  a   cb  c  ab  a a  c b  c a  b  Tài liệu sử dụng cho ôn luyệnLop8.net học sinh giỏi các lớp 6- – – THCS (4) Sưu tầm và biên soạn nội dung : Trần Văn Quang _ DĐ : 0914.866.590 ca  a  cb  b  a  b  a  c b  c a  b  Cộng theo cột hai vế ba đẳng thức trên ta có ĐPCM Câu Chứng minh a,b,c khác thì : bc ca a b 2      a  b a  c  b  c b  a  c  a c  b  a  b b  c c  a + Hướng dẫn giải : - Ta có : a  c   b  a    ; bc  a  b a  c  a  b a  c  a  b a  c (Các bài toán chọn lọc …) a b 1 ca 1     ; c  a c  b  c  a c  b b  c b  a  b  c b  a Cộng theo vế các kết vừa tìm , suy ĐPCM Tương tự : Dạng Toán tìm x : Câu Tìm số hữu tỉ x , biết : x  x  x  x 1    2000 2001 2002 2003 ( NC&PT toán -tập 1) + Hướng dẫn giải : - Ta cộng vào hai vế đẳng thức với cùng giá trị là , : x  x  x  x 1    2000 2001 2002 2003 x4 x3 x2 x 1 1 1  1 1 2000 2001 2002 2003 x  2004 x  2004 x  2004 x  2004    0 2000 2001 2002 2003 1 1     x  2004  0  2000 2001 2002 2003  1 1     ( hiển nhiên) nên x + 2004 = hay x = -2004 Vì 2000 2001 2002 2003 * Nhận xét : Với hệ thức chứa các phân số có quy luật trên ( + 2000 = + 2001 = + 2002 = + 2003 = 2004 ) thì kĩ biến đổi trên là công cụ hữu hiệu để giải bài toán x-ab x  ac x  bc    a  b  c với a  b; b  c; c   a Câu Tìm x , biết : a+b a  c bc + Hướng dẫn giải : Đẳng thức đã cho tương đương với :  x-ab   x  ac   x  bc   a b   c    a+b   ac   bc  Quy đồng mẫu số dấu ngoặc đặt thừa số chung ta : 1    x-ab-ac-bc  0  ab bc ca  1    thì x = ab + bc + ca ; Từ đó ab bc ca Tài liệu sử dụng cho ôn luyệnLop8.net học sinh giỏi các lớp 6- – – THCS (5) Sưu tầm và biên soạn nội dung : Trần Văn Quang _ DĐ : 0914.866.590 1    thì có vô số giá trị x thoả mãn bài toán Nếu ab bc ca III BÀI TẬP ĐỀ NGHỊ : * Các bài :1;2;3;5;9;10;11;14;16;20;22;23;24;25;26;27;29;30;31;33;34;38;39;40;41;42;44;45;47 NC&PT toán 8 207207  1) Tính : 201201 1999 199 99 2) Rút gọn phân số : ( TQ : ) (BD HSG toán 8- trang 73) 9995 99 995 1    2002 3) Tính : M  (HSG toán T.p HP– 2002 – A) 2001 2000 1999     2001 1 1     4) Rút gọn : A = 1.2 2.3 3.4 2009.2010 1 1     5) Rút gọn : B = ( HSG toán T.p HP– 1999 – A) 1.2.3 2.3.4 3.4.5 1998.1999.2000 1 1     6) Rút gọn : N  2.4 4.6 6.8 2006.2008 7) Biết xyz = Hãy tính tổng : 5   A= ;( KQ = 5) (HSG toán – 2001 – A) x  xy  y  yz  z  zx  8*) Cho ba số x ,y ,z thoả mãn xyz = 1992 Chứng minh : 1992 x y z   1 ( BD HSG toán – trang 77) xy  1992 x  1992 yz  y  1992 xz  z    1 3  1    1  9) Tính : a) 6       1 :   1         b) 63  3.62  33 :13 1 1 1 1          ( HSG quận Ba Đình HN – 2005) 10 90 72 56 42 30 20 12 315  x 313  x 311  x 309  x      ( HSG q Hoàn Kiếm HN – 2004) 10) Tìm x,biết : 101 103 105 107 11) Tìm x , biết : a ) x  x  10  12 c)      b)  x          ( HSG Quận - T.p HCM – 2003)      a b c c) x    bc ca ab 12) TÍnh : a ) A           1999  2000  2001  2002  2003        b) B    1   1   1   1   1      16   25   121  Tài liệu sử dụng cho ôn luyệnLop8.net học sinh giỏi các lớp 6- – – THCS (6) Sưu tầm và biên soạn nội dung : Trần Văn Quang _ DĐ : 0914.866.590 ( HSG Quận - T.p HCM – 2003) 1 2     13) a)Tính : 2003 2004 2005  2002 2003 2004 5 3     2003 2004 2005 2002 2003 2004 b) Biết : + 23 + 33 + … + 103 = 3025 TÍnh : S = 23 + 43 + 63 + … + 203 x  x  0, 25 xy  c) Cho A  TÌm giá trị A , biết x = và y là số nguyên âm lớn x y ( HSG - quận Tân Phú – T.p HCM – 2004 ) x x +1 x + 14) Tìm x , biết : + +3 = 117 ( HSG - quận Tân Phú – T.p HCM – 2004 ) 15) Thực phép tính : 111  2  1,5   14  31  19   1:   1 1 93    12   6 3 ( HSG – Hà Tây – 2003 ) 1   a (a  b) a  c  b b  a b  c  c c  b c  a  ( HSG quốc gia – 1963) 17) Gọi n là số tự nhiên , tính tích sau đay theo n :       ( HSG quốc gia – 1978) 1   1   1   1          n 1 18) Cho a,b,c là các số thực có tích Chứng minh : 1    1; a)  a  ab  b  bc  c  ca   1    1  b)  a     b     c      a     b     c    ( Toán tuổi thơ 2- số 51) b  c  a  b  c  a  19) TÌm tất các số thực dương a,b,c thoả mãn đẳng thức : b c a    ( Toán tuổi thơ 2- số 51) ab bc ca ab x ac x bc x 4x    1 20) Cho abc  và a + b + c  TÌm x , biết : c b a abc 1 21) Cho x,y,z là các số khác không và x   y   z  Chứng minh : y z x 2 Hoặc x = y = z x y z = 16) Thực phép tính : Tài liệu sử dụng cho ôn luyệnLop8.net học sinh giỏi các lớp 6- – – THCS (7) Sưu tầm và biên soạn nội dung : Trần Văn Quang _ DĐ : 0914.866.590 IV HƯỚNG DẪN GIẢI : 8 207207 8 207 8 69       201201 201 67 1  103   1999 2.10  2      2)  10 9995 10   10 103   2  1    2002 3) M  2001 2000 1999     2001 1 Đặt A =    ; 2002 2001 2000 1999     B= , ta có : 2001 2000 1999 2002 B(  1)  (  1)   (  1)  2001 2002 2002 2002 2002 2002      2001 2002  1  2002      2002  2 A Vậy M   B 2002 * Tương tự ta có bài toán sau : Bài toán : Tính giá trị biểu thức: 1 1 1     97 99 a) A  1 1      1.99 3.97 5.99 97.3 99.1 1 1      99 100 b) B  99 98 97     99 Hướng dẫn: a) Biến đổi số bị chia: 1 1 1 100 100 100 100 (1  )  (  )  (  )    (  )      99 97 95 49 51 1.99 3.97 5.95 49.51 Biểu thức này gấp 50 lần số chia Vậy A = 50 1) Tài liệu sử dụng cho ôn luyệnLop8.net học sinh giỏi các lớp 6- – – THCS (8) Sưu tầm và biên soạn nội dung : Trần Văn Quang _ DĐ : 0914.866.590 100  100  100  100  99      99 100   99   100 100 100 b) Biến đổi số chia:                99   99   1  1  1 1  100  100        99   100        99  99 100  2 2 Biểu thức này 100 lần số bị chia Vậy B  100 1  4) Áp dụng đẳng thức :  ( a  0), ta có : a a  a (a  1) 1 1     1.2 2.3 3.4 2009.2010 1 1 1 1 2009           1  2010 2009 2010 2010  1 1 5) Áp dụng kết :  , ta có :    a (a  1) (a  1)(a  2)  a (a  1)(a  2) 1 1     1.2.3 2.3.4 3.4.5 1998.1999.2000 1 1 1 1            1.2 2.3 2.3 3.4 1998.1999 1999.2000  11  1999.2000       1999.2000  2.1999.2000 1   , sau đó áp dụng kết 6) Hãy điền vào ô trống để có đẳng thức đúng : a (a  2) A A nhận vào giải bài toán * Chú ý : Từ kết các bài 4,5,6 trên ta rút số quy luật ( Công thức ) sau đây : 1   1) n(n  1) n n  k  1  k   2)  n(n  1)  n n 1 1 1     3)  n( n  k ) k  n n  k  k  1   4)  n( n  k )  n n  k  1  1  1      5)      2n(2n  2) 4n(n  1)  2n 2n    n n   1  1     6)  (2n  1)(2n  3)  2n  2n   1  2 7) n.(n  1) n (n  1).n  1 1 8)     a (a  1) (a  1)(a  2)  a (a  1)(a  2) Tài liệu sử dụng cho ôn luyệnLop8.net học sinh giỏi các lớp 6- – – THCS (9) Sưu tầm và biên soạn nội dung : Trần Văn Quang _ DĐ : 0914.866.590 (Trong đó: n, k  N , n  ) 7) Nhân tử và mẫu phân số với 1; x ; xy với chú ý xyz = , ta : 1  x  xy  5 5 5x 5xy A        x  xy  y  yz  z  zx  x  xy  xy   x  x  xy x  xy  * Chú ý : Cũng có thể đặt phần ví dụ mẫu 1992 8) Từ giả thiết xyz = 1992 (1) suy : xy  (2) , thay (1) và (2) vào vế trái đẳng thức z : 1992 x y z VT    xy  1992 x  1992 yz  y  1992 xz  z  1992 x y z    1992  1992 x  1992 yz  y  xyz xz  z  z xz y z     xz  z y ( z   xz ) xz  z  xz z     xz  z z   xz xz  z  1  xz  z   xz  z   VP   1 3  1    1   1  4  2  4 16 3 4 9) a) 6       1 :   1  6   1 :    2 :         27       b) 63  3.62  33 :13  62 6  3  33  :13  22.32.32  33 :13  33 3.22  1:13  33.13 :13  33  27 c) 1 1 1 1          10 90 72 56 42 30 20 12 1 1 1 1  1               10  90 72 56 42 30 20 12     1 1 1              10  90 72 56 42 30 20  12    1 1 1             10  90 72 56 42 30  20    1 1            10  90 72 56 42  30    9  10 10 0  10) Tìm x , biết : 315  x 313  x 311  x 309  x      ( HSG quận Hoàn Kiếm HN – 101 103 105 107 2004) + Làm tương tự Câu : Tài liệu sử dụng cho ôn luyệnLop8.net học sinh giỏi các lớp 6- – – THCS (10) Sưu tầm và biên soạn nội dung : Trần Văn Quang _ DĐ : 0914.866.590 315  x 313  x 311  x 309  x    40 101 103 105 107 315  x 313  x 311  x 309  x  1 1 1 0 101 103 105 107 416  x 416  x 416  x 416  x     0 101 103 105 107 1    416  x     0  101 103 105 107  1      Vì   > nên dẫn đến 416 – x = hay x = 416  101 103 105 107  11) Tìm x , biết : a) Kết : x = 48      b)  x                1  x      8  1 :   8  1  x      8 1  x   64  x  64 9  x  ;x  64 64 a b c c) x    bc ca ab + Theo tính chất dãy tỉ số , ta có : a b c abc     b  c c  a a  b a  b  c  12) TÍnh : a ) A           1999  2000  2001  2002  2003 Vậy x =        b) B    1   1   1   1   1      16   25   121  a) b) Từ đến 121 có các số chính phương là : 4;9;16;25;36;49;64;81;100;121 nên :        B    1   1   1   1   1      16   25   121  3 8 15 24 35 48 63 80 99 120  ( ).( ).( ).( ).( ) 16 25 36 49 64 81 100 121 20 35 54 25 54 54  ( ).( )  ( )   10 21 36 55 27 55 55 11 Tài liệu sử dụng cho ôn luyệnLop8.net học sinh giỏi các lớp 6- – – THCS (11) Sưu tầm và biên soạn nội dung : Trần Văn Quang _ DĐ : 0914.866.590 1 2     7 13) a) Ta có : 2003 2004 2005  2002 2003 2004    5 3 15     2003 2004 2005 2002 2003 2004 b) Biết : 13 + 23 + 33 + … + 103 = 3025 TÍnh : S = 23 + 43 + 63 + … + 203 + Ta có : S = 23(13 + 23 + 33 + …+ 103) = 8.3025 = 24200 x  x  0, 25 xy  c) Cho A  TÌm giá trị A , biết x = và y là số nguyên âm lớn x y ( HSG - quận Tân Phú – T.p HCM – 2004 ) + Vì y là số nguyên âm lớn nên y = -1 cùng với x = thay vào biểu thức A , : 2 1 1 1   4       1  9 3 9 4 2 8 A     :   2 1 1   1   14) Tìm x , biết : 3x + 3x +1 + 3x + = 117 ( HSG - quận Tân Phú – T.p HCM – 2004 ) x x +1 x + +3 +3 = 117  3x(1 + + 32) = 117  13.3x = 117  3x = 117 : 13  3x = 32  x = 15) Thực phép tính : 111  2  1,5   14  31  19   1:    ( HSG – Hà Tây – 2003 )  1 1 93    12   6 3 1   16) Thực phép tính : a (a  b) a  c  b b  a b  c  c c  b c  a  ( HSG quốc gia – 1963) + 17) Gọi n là số tự nhiên , tính tích sau đây theo n :       ( HSG quốc gia – 1978) 1   1   1   1          n 1 + Ta có :  n       1   1   1   1           n 1 n 1 n 1 x y z 18) Vì abc = nên ta có thể đặt : a  ; b  ; c  với x,y,z là các số khác Khi đó ta có : y z x a) Vế trái đẳng thức a) biến đổi thành : Tài liệu sử dụng cho ôn luyệnLop8.net học sinh giỏi các lớp 6- – – THCS (12) Sưu tầm và biên soạn nội dung : Trần Văn Quang _ DĐ : 0914.866.590 1 yz zx xy yz  zx  xy        1; x x y y z z xy  yz  zx xy  yz  zx xy  yz  zx xy  yz  zx 1  1  1  y z z x x y Vậy ta có ĐPCM b) Vế trái đẳng thức b) biến đổi thành : x z  y x  z y  x  y  z y  z  x z  x  y x  y  z   y  z  x  z  x  y   ;(*)  1   1   1   y  z z  x x y z x xyz y Tương tự ta biến đổi vế phải đẳng thức b) biểu thức (*) suy ĐPCM 19) Đẳng thức đã cho tương đương với : 1    ;(*) a b c 1 1 1 b c a a b c Đặt x  ; y  ; z  ta có x,y,z là các số dương thoả mãn xyz = Khi đó ta có : b c a 1    *  x 1 y 1 z 1  xy  yz  zx   x  y  z   ( quy đồng mẫu số , khai triển các tích và rút gọn với chú ý xyz = )  xyz - (xy + yz + zx) + (x + y + z) - =  (x -1)(y - 1)(z - 1) =  x = y = z = a  b  b  c c  a 20) Biến đổi đẳng thức đã cho tương đương với : 1  a  b  c  x     0  a b c abc  1  thì x = a + b + c Nếu :    a b c abc 1  thì có vô số giá trị x thoả mãn Nếu    a b c abc 1 yz 21) Từ giả thiết ta có : x  y    z y yz yx zx ;yz  Tương tự : x  z  yx zx Nhân theo vế ba đẳng thức trên : x  y x  z  y  z  x  y x  z  y  z   x2 y z Đẳng thức này xảy x2y2z2 = x = y = z Tài liệu sử dụng cho ôn luyệnLop8.net học sinh giỏi các lớp 6- – – THCS (13)

Ngày đăng: 01/04/2021, 00:10

TỪ KHÓA LIÊN QUAN

w