1. Trang chủ
  2. » Giáo án - Bài giảng

bai tap nguyen ham du dang

2 509 5
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 270 KB

Nội dung

I. Tìm nguyên hàm bằng định nghĩa và các tính chất 1/ Tìm nguyên hàm của các hàm số. 1. f(x) = x 2 – 3x + x 1 ĐS. F(x) = Cx xx ++− ln 2 3 3 23 2. f(x) = 2 4 32 x x + ĐS. F(x) = C x x +− 3 3 2 3 . f(x) = 2 1 x x − ĐS. F(x) = lnx + x 1 + C 4. f(x) = 2 22 )1( x x − ĐS. F(x) = C x x x ++− 1 2 3 3 5. f(x) = 4 3 xxx ++ ĐS. F(x) = C xxx +++ 5 4 4 3 3 2 4 5 3 4 2 3 6. f(x) = 3 21 xx − ĐS. F(x) = Cxx +− 3 2 32 7. f(x) = x x 2 )1( − ĐS. F(x) = Cxxx ++− ln4 8. f(x) = 3 1 x x − ĐS. F(x) = Cxx +− 3 2 3 5 9. f(x) = 2 sin2 2 x ĐS. F(x) = x – sinx + C 10. f(x) = tan 2 x ĐS. F(x) = tanx – x + C 11. f(x) = cos 2 x ĐS. F(x) = Cxx ++ 2sin 4 1 2 1 12. f(x) = (tanx – cotx) 2 ĐS. F(x) = tanx - cotx – 4x + C 13. f(x) = xx 22 cos.sin 1 ĐS. F(x) = tanx - cotx + C 14. f(x) = xx x 22 cos.sin 2cos ĐS. F(x) = - cotx – tanx + C 15. f(x) = sin3x ĐS. F(x) = Cx +− 3cos 3 1 16. f(x) = 2sin3xcos2x ĐS. F(x) = Cxx +−− cos5cos 5 1 17. f(x) = e x (e x – 1) ĐS. F(x) = Cee xx +− 2 2 1 18. f(x) = e x (2 + ) cos 2 x e x − ĐS. F(x) = 2e x + tanx + C 19. f(x) = 2a x + 3 x ĐS. F(x) = C a a xx ++ 3ln 3 ln 2 20. f(x) = e 3x+1 ĐS. F(x) = Ce x + + 13 3 1 2/ Tìm hàm số f(x) biết rằng 1. f’(x) = 2x + 1 và f(1) = 5 ĐS. f(x) = x 2 + x + 3 2. f’(x) = 2 – x 2 và f(2) = 7/3 ĐS. f(x) = 1 3 2 3 +− x x 3. f’(x) = 4 xx − và f(4) = 0 ĐS. f(x) = 3 40 23 8 2 −− xxx 4. f’(x) = x - 2 1 2 + x và f(1) = 2 ĐS. f(x) = 2 3 2 1 2 2 −++ x x x 5. f’(x) = 4x 3 – 3x 2 + 2 và f(-1) = 3 ĐS. f(x) = x 4 – x 3 + 2x + 3 6. f’(x) = ax + 2)1(,4)1(,0)1(', 2 =−== fff x b ĐS. f(x) = 2 51 2 2 ++ x x 3.Phương pháp đổi biến số: Tìm nguyên hàm của các hàm số sau: 1. ∫ − dxx )15( 2. ∫ − 5 )23( x dx 3. dxx ∫ − 25 4. ∫ − 12x dx 5. ∫ + xdxx 72 )12( 6. ∫ + dxxx 243 )5( 7. xdxx .1 2 ∫ + 8. ∫ + dx x x 5 2 9. ∫ + dx x x 3 2 25 3 10. ∫ + 2 )1( xx dx 11. dx x x ∫ 3 ln 12. ∫ + dxex x 1 2 . 13. ∫ xdxx cossin 4 14. ∫ dx x x 5 cos sin 15. ∫ gxdxcot 16. ∫ x tgxdx 2 cos 17. ∫ x dx sin 18. ∫ x dx cos 19. ∫ tgxdx 20. ∫ dx x e x 21. ∫ − 3 x x e dxe 22. ∫ dx x e tgx 2 cos 23. ∫ − dxx .1 2 24. ∫ − 2 4 x dx 25. ∫ − dxxx .1 22 26. ∫ + 2 1 x dx 27. ∫ − 2 2 1 x dxx 28. ∫ ++ 1 2 xx dx 29. ∫ xdxx 23 sincos 30. dxxx .1 ∫ − 31. ∫ + 1 x e dx 32. dxxx .1 23 ∫ + 2. Phương pháp lấy nguyên hàm từng phần: Tìm nguyên hàm của các hàm số sau: 1. ∫ xdxx sin. 2. ∫ xdxx cos 3. ∫ + xdxx sin)5( 2 4 ∫ ++ xdxxx cos)32( 2 5. ∫ xdxx 2sin 6. ∫ xdxx 2cos 7. ∫ dxex x . 8. ∫ xdxln 9. ∫ xdxx ln 10. dxx ∫ 2 ln 11. ∫ x xdxln 12. ∫ dxe x 13. ∫ dx x x 2 cos 14. ∫ xdxxtg 2 15. ∫ dxxsin 16. ∫ + dxx )1ln( 2 17. ∫ xdxe x cos. 18. ∫ dxex x 2 3 19. ∫ + dxxx )1ln( 2 20. ∫ xdx x 2 21. ∫ xdxx lg 22. ∫ + dxxx )1ln(2 23. ∫ + dx x x 2 )1ln( 24. ∫ xdxx 2cos 2

Ngày đăng: 08/11/2013, 14:11

TỪ KHÓA LIÊN QUAN

w