1. Trang chủ
  2. » Truyện người lớn 18+

Download Bài tập về bất đẳng thức

2 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 16,33 KB

Nội dung

Nếu bạn thấy thú vị với những khám phá của mình ở bài tập này, hãy gửi gấp bài viết về cho chuyên mục EUREKA của TTT2.[r]

(1)

Onthionline.net

LÀM QUEN VỚI BẤT ĐẲNG THỨC TRÊ-BƯ-SEP

Các bạn làm quen với bất đẳng thức Cô si, Bunhiacôpski không bạn chưa biết bất đẳng thức Trê - bư - sép Con đường đến bất đẳng thức thật giản dị, gần gũi với kiến thức bạn bậc THCS

Các bạn thấy : Nếu a1 ≤ a2 b1 ≤ b2 (a2 - a1) (b2 - b1) ≥ Khai

triển vế trái bất đẳng thức ta có :

a1b1 + a2b2 - a1b2 - a2b1 ≥

=> : a1b1 + a2b2 ≥ a1b2 + a2b1

Nếu cộng thêm a1b1 + a2b2 vào hai vế ta :

2 (a1b1 + a2b2) ≥ a1 (b1 + b2) + a2 (b1 + b2)

=> : (a1b1 + a2b2) ≥ (a1 + a2) (b1 + b2) (*)

Bất đẳng thức (*) bất đẳng thức Trê - bư - sép với n = Nếu thay đổi giả thiết, cho a1 ≤ a2 b1 ≥ b2 tất bất đẳng thức đổi chiều ta có

:

2 (a1b1 + a2b2) ≤ (a1 + a2) (b1 + b2) (**)

Các bất đẳng thức (*) (**) trở thành đẳng thức a1 = a2

b1 = b2

Làm theo đường tới (*) (**), bạn giải nhiều tốn thú vị

Bài toán : Biết x + y = Chứng minh x2003 + y2003 ≤ x2004 + y2004

Lời giải : Do vai trị bình đẳng x y nên giả sử x ≤ y Từ => : x2003

≤ y2003

Do (y2003 - x2003).(y - x) ≥

=> : x2004 + y2004 ≥ x.y2003 + y.x2003

Cộng thêm x2004 + y2004 vào hai vế ta có : 2.(x2004 + y2004) ≥ (x+y) (x2003 + y2003) = 2.

(x2003 + y2003)

=> : x2004 + y2004 ≥ x2003 + y2003 (đpcm)

Để ý : Bất đẳng thức vừa chứng minh trở thành đẳng thức x = y = ; bạn có lời giải toán sau :

Bài tốn : Giải hệ phương trình :

Nếu bạn quan tâm tới yếu tố tam giác vận dụng bất đẳng thức (*) (**) dẫn đến nhiều toán

Bài tốn : Cho tam giác ABC có diện tích AH BK đường cao tam giác

Chứng minh : (BC + CA).(AH + BK) ≥

(2)

Do (CA - BC).(BK - AH) ≤

=> : CA x BK + BC x AH ≤ BC x BK + CA x AH Cộng thêm CA x BK + BC x AH vào vế ta có : 2.(CA x BK + BC x AH) ≤ (BC + CA) (AH + BK) => : (BC + CA).(AH + BK) ≥

Đẳng thức xảy BC = CA BK = AH tương đương với BC = CA hay tam giác ABC tam giác cân đỉnh C

Bài toán : Cho tam giác ABC với BC = a, CA = b, AB = c đường cao tương ứng cạnh có độ dài ha, hb, hc Chứng minh :

với S diện tích tam giác ABC

Lời giải : Do vai trị bình đẳng cạnh tam giác nên giả sử a ≤ b ≤ c

=> : 2S/a ≥ 2S/b ≥ 2S/c => ≥ hb ≥ hc

Làm lời giải tốn ta có : (a + b).(ha + hb) ≥ 8S

=> : 1/(ha + hb) ≤ (a + b)/(8S) (1)

Tương tự ta :

1/(hb + hb) ≤ (b + c)/(8S) (2)

1/(hc + ha) ≤ (c + a)/(8S) (3)

Cộng vế (1), (2), (3) dẫn đến :

Bất đẳng thức (4) trở thành đẳng thức bất đẳng thức (1), (2), (3) đồng thời trở thành đẳng thức tương đương với a = b = c hay tam giác ABC tam giác

Bây bạn thử giải tập sau :

1) Biết x2 + y2 = Tìm giá trị lớn F = (x4 + y4) / (x6 + y6)

2) Cho số dương x, y, z thỏa mãn x + y + z = Chứng minh :

3) Cho tam giác ABC có độ dài cạnh a, b, c độ dài đường phân giác thuộc cạnh la, lb, lc Chứng minh :

Ngày đăng: 18/02/2021, 17:49

w