1. Trang chủ
  2. » Vật lý

Toán 8 - Tiết 48 - Phương trình chứa ẩn ở mẫu

15 23 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 1,71 MB

Nội dung

các giá trị thoả mãn điều kiện xác định chính là các nghiệm của phương trình đã cho. §5[r]

(1)(2)

2/ Không giải phương trình, kiểm tra xem x = 1

có nghiệm phương trình

khơng ?

1 1

x 1

x 1 x 1

  

 

1/ Giải phương trình:

( )( )

a / 2x 3x 6 0

3x 2 2x 3

b /

4 3

- + =

-

(3)

1/ (2x – 1)( 3x + 6) = 0

2x – = 3x + = 0

2x = 3x = -6

x = ½ x = -2

(4)

1 Ví dụ mở đầu:

Thử giải phương trình 11

 

x

1 

x 1

1  

x

1 1 

xx  1 1

x

x 1

§5 PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU

Chuyển vế:

Thu gọn:

( )

?1 Giá trị có phải nghiệm phương trình ( ) hay khơng ? Vì sao?

1 

x

khơng phải nghiệm phương trình (1) giá trị

hai vế không xác định

(5)

2 Tìm điều kiện xác định phương trình.

Ví dụ 1: Tìm điều kiện xác định phương trình sau:

2x 1

a) 1

x 2 

 

2

b)

x 1   x 2

§5 PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU

Vì x – = Ta thấy x - ≠ x ≠ 1

1 Ví dụ mở đầu:

Điều kiện ẩn để tất mẫu thức phương trình khác gọi điều kiện xác định (ĐKXĐ) phương trình

nên ĐKXĐ phương trình

x ≠ 22x 1 x

 

Giải:

x =

Û

Giải:

Vậy ĐKXĐ phương trình

là x ≠ x ≠ –2

2

1

x 1   x 2

(6)

Tìm điều kiện xác định phương trình sau:

x x 4 a)

x 1 x 1  

 

 

 

3 2x 1

b) x

x 2 x 2

?2

Ta cã : x – ≠ x ≠ x + ≠ x ≠ -1

Ta cã: x – ≠ x ≠

§5 PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU

Gii: Gii:

Vy KXĐ phng trỡnh là: x ≠ vµ x ≠ -1

(7)

3 Giải phương trình chứa ẩn mẫu.

- Quy đồng mẫu hai vế, ta được:

Suy

 2(x2 – 4) = 2x2+3x

 2x2 – = 2x2 +3x

2(x + 2)(x – 2) = x(2x + 3) (2a)

- Giải phương trình:

-Vậy tập nghiệm phương trình (2) S = { }

3 

Tìm ĐKXĐ

Giải phương trình Quy đồng mẫu khử mẫu

- ĐKXĐ phương trình x ≠ x ≠

Kết luận

Phương pháp giải

§5 PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU

(2a)

 3x = –

(thỏa mãn ĐKXĐ)

Ví dụ 2: Giải phương trình: (2)

 

x 2x x x

             

2 x x x 2x 2x x 2x x

(8)

3 Giải phương trình chứa ẩn mẫu

Cách giải phương trình chứa ẩn mẫu:

Bước 1. Tìm điều kiện xác định phương trình

Bước Quy đồng mẫu hai vế phương trình khử mẫu.

Bước Giải phương trình vừa nhận

Bước ( Kết luận) Trong giá trị ẩn tìm bước 3,

các giá trị thoả mãn điều kiện xác định nghiệm phương trình cho

(9)

3 Giải phương trình chứa ẩn mẫu.

-Quy đồng mẫu hai vế, ta được:

Suy ra:

 2(x2 – 4) = 2x2+3x

 2x2 – = 2x2 +3x

2(x + 2)(x – 2) = x(2x + 3) (2a)

- Giải phương trình:

- Vậy tập nghiệm phương trình (2) S ={ }

3 

Tìm ĐKXĐ

Giải phương trình Quy đồng mẫu khử mẫu

- ĐKXĐ phương trình x ≠ x ≠

Kết luận

Phương pháp giải

§5 PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU

(2a)

 3x = –

(thỏa mãn ĐKXĐ)

Ví dụ 2: Giải phương trình: (2)

 

x 2x x x

             

2 x x x 2x 2x x 2x x

(10)

§5 PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU

4 Áp dụng

Giải:

ĐKXĐ: x ≠ -1 x ≠

( ) ( )

( )( ) ( )( )

x x x x 4x

2 x x x x

+ +

-=

+ - +

-2

x x x 3x 4x

Û + + - - =

Ví dụ 3. Giải phương trình

( ) ( )( )

x x 2x

2 x 3- + 2x 2+ = x x 3+ - (3)

2

2x 6x

Û - =

( ) ( )

x x + +1 x x - = 4x

2x

Û =

( )

2x x

Û - =

hoặc x – = 0

1/ 2x = Û0 x =0

2 / x 0- = Û x =3

( thỏa mãn ĐKXĐ )

(loại không thỏa mãn ĐKXĐ)

Vậy tập nghiệm phương trình (3) S = { }

( )3 Û

(11)

§5 PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU

 

 

x x 4

a)

x 1 x 1 (a)

 

 

3 2x

b) x

x x ( b )

     

x x 1  x 4 x 1

                       

x x x x

x x

( x ) x a 2

x x x 3x 4     

2x 4

x 2   

 

ĐKXĐ: x ≠ x ≠ -1

( thỏa mãn ĐKXĐ )

Giải:

Vậy tập nghiệm phương trình (a)

là S = { }

 

  

 

 

2x x x

(b)

x x

 

  

 2x x x 2

Giải:

 x2  4x  4

    

x x

ĐKXĐ: x ≠

Vậy tập nghiệm phương trình (b)

là S = Ф

( loại khơng thỏa mãn ĐKXĐ )

Giải phương trình ?2

?3

 

(12)(13)

(c)

Bài 28c sgk: Giải phương trình x  1 x2  12

x x

   1 0

xxx  

 1  1 0

xx  

 12  1 0

xx  x  0

x ÑKXÑ:

(thoả mãn KX )Đ Đ

Vậy tập nghiệm phương trình (c) S  1

3 1

 

x x x

4 1 0

xxx   Giaûi

2 2

2

. 1.

( )  x xxx x. 1

x x

c

§5 PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU

1  x

 1 0

x  

2

2 1 0)

2

 

      

 

x x x

(14)

HƯỚNG DẪN VỀ NHÀ

Hướng dẫn 28c (cách khác)

Đặt t x x  

- Xem lại ví dụ thực bài.

- Nắm cách tìm điều kiện xác định cách giải phương trình chứa ẩn mẫu

- Làm tập 27b,28,30,31,32 (SGK-22,23)

ĐKXĐ:

Giải phương trình:

2

1 1

x x

x x

   (d)

Phương trình (d) trở thành: t2  t 0  Giải phương trình ẩn t

2

2 1

x t 2

x

  

thì

1 t x

x  

Thay giá trị t vào ta giải phương trình ẩn x

(15)

Cảm ơn thầy cô đến dự tiết học !

Ngày đăng: 16/01/2021, 14:04

TỪ KHÓA LIÊN QUAN

w