Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 18 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
18
Dung lượng
1,61 MB
Nội dung
TRUNG TÂM LUYỆN THI THÀNH ĐẠT - ĐC số 38, ngõ 107/33 Lĩnh Nam-Hồng Mai MỘT SỐ DẠNG TỐN TỔNG QUÁT TÍCH PHÂN NGUYÊN HÀM CHỐNG MÁY TÍNH A DẠNG 1: Đề bài: Cho Tính ( Trong hàm cho) ; Kiến thưc cần nắm: - giá trị tích phân khơng phụ thuộc cách ký hiệu biến = - cách trình bày tích phân phương pháp đổi biến - tích chất tích phân = =- f(x) hàm chẵn f(-x) = f(x) - f(x) hàm lẻ f(-x) = -f(x) Phương pháp giải: Cách 1: sử dụng phương pháp đổi biến Bước 1: = + Sau đổi biến A(x)= u từ tính tích phân dạng Bước 2: đổi biến B(x)= t kết hợp tính bước tính tích phân từ tính Cách 2: sử dụng kỹ thuật chọn hàm (áp dụng cho số bài) Bài tập: Câu 1: cho tính I= Lời giải: xét tích phân I đặt 2x= u => du=2dx => dx = Dổi cận : x=0 =>u=0 x=2 =>u=8 Biên soạn: Lương Hữu Tiến ĐT: 096.569.2690 Page TRUNG TÂM LUYỆN THI THÀNH ĐẠT - ĐC số 38, ngõ 107/33 Lĩnh Nam-Hoàng Mai I= = = 16 =8 Câu 2: cho tính Đs :19 Câu 3: cho tính Đs : 11 Câu : cho tính Đs : Câu 5: cho tính I= Lời giải: Xét tích phân + 20 =16 = -4 Xét tích phân I= e2- = x2 = u => 2xdx =du => xdx = Đặt Dổi cận : x=0 => u=0 x=2 => u=4 + e2- I= (-4) + e2- = e2- = Câu 6: =19 tính B= Lời giải: Xét tích phân = 19 + 14 = 19 =5 (1) Xét tích phân Đặt: - 3x = u => -3dx = du => dx = - du Dổi cận : x=0 => u=5 x=2 => u = -1 (1) Biên soạn: Lương Hữu Tiến =5 = -15 ĐT: 096.569.2690 Page TRUNG TÂM LUYỆN THI THÀNH ĐẠT - ĐC số 38, ngõ 107/33 Lĩnh Nam-Hoàng Mai Xét tích phân B= = = = Xét tích phân Đặt 6x -7 =u => 6dx = du => dx= du Dổi cận : x=1 => u= -1 x= => u= B= + = (-15) + = Câu 7: cho =8 tính Câu 8: cho =12 tính Câu 9: tính Câu 10: tính Câu 11: cho F(x) nguyên hàm hàm số y=x2cos2x cos22x)dx giá trị tích phân I= A: 4(F(1)- F(0)) B: 4(F(2)- F(0)) C: 8(F(1)- F(0)) D: 8(F(2)- F(0)) Câu 12: cho hàm số f(x) liên tục đoạn [0;1] thảo mãn f(x)=6x2 f(x3)- tính A.2 B.4 C.-1 Câu 13 cho hàm số f(x) liên tục đoạn [0;3] Giá trị tích phân: A.6 D.6 ; là: B.3 C.4 D.5 B DẠNG 2: ÁP DỤNG TÍNH CHẤT Đề : Tính giá trị tích phân cịn lại biết giá trị tích phân Dấu hiệu nhận biết: - Biết giá trị tích phân tính giá trị tích phân thứ - Các cận liên tiếp (mức độ bản) - Biểu thức dấu tích phân giống hàm f Biên soạn: Lương Hữu Tiến ĐT: 096.569.2690 Page TRUNG TÂM LUYỆN THI THÀNH ĐẠT - ĐC số 38, ngõ 107/33 Lĩnh Nam-Hoàng Mai - Đối với khó đề để mức độ khó nhận dạng như: cận không liên tiếp nhau, biểu thức dấu tích phân khơng giống ta nhận dạng dựa biết tích phân tính giá trị tích phân thứ 3và có biểu thức hàm f dấu tích phân với dạng ta kết hợp với dạng để xử lý đưa có đầy đủ dấu hiệu Kiến thức bổ trợ - Các tính chất dạng - Khi làm thường kết hợp dạng để xử lý Phương pháp giải - Bước 1: biến đổi kết hợp dạng đưa đầy đủ dấu hiệu bên - Bước 2: áp dụng cơng thức Bài tập Câu 1: Cho tính ; Câu 2: ( Đề thi thử SGDĐT Hà Nội 2017) cho hàm f(x) hàm số chẵn , có đạo hàm [-6;6] biết tính ; Lời giải: Do f(x) hàm chẵn => f(-2x) =f(2x) tích phân Đặt : = 2x = u => 2dx= du => dx = du Dổi cận : x=1 => u= x=3 => u= I= hay Mà I=3 => =3 => Ta có =6 = = + 6= 14 Dáp số : 14 Câu : Cho hàm f(x) hàm số chẵn , có đạo hàm [-6;6] biết tính ; Câu : Cho Câu 5: Cho Biên soạn: Lương Hữu Tiến ; tính ; ĐT: 096.569.2690 Page TRUNG TÂM LUYỆN THI THÀNH ĐẠT - ĐC số 38, ngõ 107/33 Lĩnh Nam-Hồng Mai tính câu 6: Cho ; tính câu 7: Cho tính ; câu 8: Cho ; tính SỬ DỤNG CƠNG THỨC TÍCH PHÂN TỪNG PHẦN C DẠNG 3: Hay - Dấu hiệu nhận biết Cho Hay cho Đặc biệt: V’(x) = số Cho tính tính tính Khi đề có dạng : (Thiếu tích phân so với đề tổng quát) Chú ý: -ta dễ nhận thấy sử dụng tích phân phần để làm Nhưng đề mức độ nhận dạng khó địi hỏi ta phải quan sát, cần lưu ý : + có hàm chưa xác định + tích phân xuất thấy xuất kí hiệu đạo hàm biểu thức tích phân đạo hàm chưá biểu thức nằm tích phân Phương pháp giải: - Lựa chọn khéo léo U dV sử dụng phương pháp tích phân phần - Ghi nhớ dV=V’.dx hay V’.dx= dV (để dễ lựa chọn dV ) Bài tập: Câu 1: cho hàm số thỏa mãn =8 f(e+1)=9 Tính tích phân I= A:-1 B: C.17 D: Lời giải Biên soạn: Lương Hữu Tiến ĐT: 096.569.2690 Page TRUNG TÂM LUYỆN THI THÀNH ĐẠT - ĐC số 38, ngõ 107/33 Lĩnh Nam-Hồng Mai Ta có = = = lnx f(x+1) =9–I = f(e+1) 8= 9- I => I =1 - chọn B Câu 2: cho hàm số f(x) xác định nhận giá trị dương R thỏa mãn 10 f(1)=4 Tính I= A:-1 B: -2 C.- D: Lời giải: Đặt : = (x+1) - -2I − I => I = chọn D Câu 3: cho f(x) hàm số lẻ thỏa mãn f(1) =2017 Tính I= A:2017 B: 2018 C.4034 D: 4035 Câu 4: cho hàm số f(x) có nguyên hàm F(x) đoạn [1;2] Biết F(2) - F(1) =2 Tính I= A:-3 B: C.-4 D: 10 Câu 5: cho hàm số f(x) g(x) liên tục có đạo hàm R thỏa mãn f ’(0).f ’(2) ≠0 g(x).f ’(x)=x(x-2).ex tính giá trị tích phân I= A:-4 B: e-2 C.4 Câu 6: cho hàm số y=f(x) liên tục [0;1] thỏa mãn D: -8 10 2f(1) –f(0)=2 Tính Câu Cho F(x)=(x+1)ex nguyên hàm hàm số f(x).e3x Tìm nguyên hàm hàm số f ’(x).e3x A (6-3x)ex +C B (-6x-3)ex +C C (-2x-1)ex +C D (6+3x)ex +C Câu Cho hai hàm số f(x) va g(x) có đạo hàm [1 ;4] thỏa mãn hệ thức Biên soạn: Lương Hữu Tiến ĐT: 096.569.2690 Page TRUNG TÂM LUYỆN THI THÀNH ĐẠT - ĐC số 38, ngõ 107/33 Lĩnh Nam-Hồng Mai Tính I= A 8ln2 CHÚ Ý: B.3ln2 C.6ln2 D B.4ln2 DẠNG 1+2+3 CÓ THỂ KẾT HỢP KỸ THUẬT CHỌN HÀM D DẠNG : SỬ DỤNG KẾT QUẢ DẤU “=” XẢY RA CỦA TÍNH CHẤT Tính chất: G(x) hàm liên tục G(x) dấu “=” xảy (hay [a;b] G(x)=0 Dấu hiệu nhận biết : tính với f(x) tìm từ dấu “=” xảy tính chất f(x) (bị ẩn ,phải ra) nằm - ý : thường gặp dạng =[Q(x)]2 + hàm (bình phương hàm) hay gặp dạng (a ± b) đề thường xuất yếu tố bình phương ( dấu hiệu nhận dạng) + kết hợp dạng dùng tích phân phần để hàm Định hướng cách giải: Kết hợp dạng cần yếu tố có bình phương đề để hàm tính Từ => =0 => hàm f(x) Từ tính Bài tập Câu 1: cho =-7/6 Tính Câu 2: cho hàm f(x) liên tục [0;1] biết =6 =-3 tính Câu 3: cho Biên soạn: Lương Hữu Tiến ; =-7/6 Biết f(1)=2 ĐT: 096.569.2690 Page TRUNG TÂM LUYỆN THI THÀNH ĐẠT - ĐC số 38, ngõ 107/33 Lĩnh Nam-Hồng Mai Tính Câu 4: cho ; =-7/6 Biết f(1)=2 Tính Câu 5: (đề MH BGD 2018) Cho hàm số f(x) có đạo hàm liên tục [0;1] thỏa mãn f(1)=0 ; =7 Tính A B.1 C D.4 Lời giải: Đặt => (do f(1)=0) = -3 Ta có: = -3 =7 ; =-1 = -14 ; + = =0 =0 Mà nên đẳng thức xảy - Do f(1)=0 => C= => + = = Biên soạn: Lương Hữu Tiến = ĐT: 096.569.2690 Page TRUNG TÂM LUYỆN THI THÀNH ĐẠT - ĐC số 38, ngõ 107/33 Lĩnh Nam-Hoàng Mai Biên soạn: Lương Hữu Tiến ĐT: 096.569.2690 Page TRUNG TÂM LUYỆN THI THÀNH ĐẠT - ĐC số 38, ngõ 107/33 Lĩnh Nam-Hoàng Mai Biên soạn: Lương Hữu Tiến ĐT: 096.569.2690 Page 10 TRUNG TÂM LUYỆN THI THÀNH ĐẠT - ĐC số 38, ngõ 107/33 Lĩnh Nam-Hoàng Mai Câu 13: cho hàm số f(x) có đạo hàm liên tục [4;8] f(x) ≠0 với x [4;8] =1 f(4)= Biết ; f(8)= tính f(6) B A C D Lời giải: Xét tích phân I= Ta có : dx I= + = 1- J +1 =2 –J (với J = Biên soạn: Lương Hữu Tiến ) ĐT: 096.569.2690 Page 11 TRUNG TÂM LUYỆN THI THÀNH ĐẠT - ĐC số 38, ngõ 107/33 Lĩnh Nam-Hoàng Mai Xét J = Đặt đặt f(x)=u => du=f ’(x)dx J= = = =4-2=2 I=2-2=0 mà => Dấu = xảy f(x) = f(4)= => f(6) = = => = dx => c = -6 chọn đáp án C Bình luận : tốn tương đối khó theo chủ ý người đề Ở đòi hỏi phải phán đốn Thứ việc nhận dạng xuất đặc điểm phần dấu hiệu nhận biết Vấn đề cần phán đoán vai trị b dạng (a-b)2 đóng vai trị số Phán đốn dựa kinh nghiệm nhạy bén người làm khơng có phương pháp cụ thể Từ với liệu cho ta tính tốn số ½ MỘT SỐ BÀI TỐN KẾT HỢP CÁC DẠNG Biên soạn: Lương Hữu Tiến ĐT: 096.569.2690 Page 12 TRUNG TÂM LUYỆN THI THÀNH ĐẠT - ĐC số 38, ngõ 107/33 Lĩnh Nam-Hoàng Mai Biên soạn: Lương Hữu Tiến ĐT: 096.569.2690 Page 13 TRUNG TÂM LUYỆN THI THÀNH ĐẠT - ĐC số 38, ngõ 107/33 Lĩnh Nam-Hoàng Mai E DẠNG 5: SỬ DỤNG KỸ THUẬT ĐẠO HÀM VÀ LẤY NGUYÊN HÀM TÌM f(x) Kiến thức : => F’(x) =f(x) - F(x)= - Vi phân hàm số: d(f(x)) = f ’(x)dx Dấu hiệu nhận biết : - Khi xuất hiên đạo hàm - Khi xuất phương trình : f’(x).H(f(x)) =0 lấy ngun hàm vế Để dễ làm tính ngun hàm phương pháp đổi biến: u=f(x) Biên soạn: Lương Hữu Tiến ĐT: 096.569.2690 Page 14 TRUNG TÂM LUYỆN THI THÀNH ĐẠT - ĐC số 38, ngõ 107/33 Lĩnh Nam-Hoàng Mai Biên soạn: Lương Hữu Tiến ĐT: 096.569.2690 Page 15 TRUNG TÂM LUYỆN THI THÀNH ĐẠT - ĐC số 38, ngõ 107/33 Lĩnh Nam-Hoàng Mai Biên soạn: Lương Hữu Tiến ĐT: 096.569.2690 Page 16 TRUNG TÂM LUYỆN THI THÀNH ĐẠT - ĐC số 38, ngõ 107/33 Lĩnh Nam-Hoàng Mai Biên soạn: Lương Hữu Tiến ĐT: 096.569.2690 Page 17 TRUNG TÂM LUYỆN THI THÀNH ĐẠT - ĐC số 38, ngõ 107/33 Lĩnh Nam-Hồng Mai Hiện cịn số dạng tốn tổng quát chưa kịp tổng hợp Các em bạn bè đọc tài liệu thấy bổ ích chia sẻ giúp Mình viết nốt dạng cịn lại mà tự thân rút chia sẻ đến người Biên soạn: Lương Hữu Tiến ĐT: 096.569.2690 Page 18 ... dụng tích phân phần để làm Nhưng đề mức độ nhận dạng khó địi hỏi ta phải quan sát, cần lưu ý : + có hàm chưa xác định + tích phân xu? ??t thấy xu? ??t kí hiệu đạo hàm biểu thức tích phân đạo hàm chưá... giá trị tích phân I= A:-4 B: e-2 C.4 Câu 6: cho hàm số y=f(x) liên tục [0;1] thỏa mãn D: -8 10 2f(1) –f(0)=2 Tính Câu Cho F(x)=(x+1)ex nguyên hàm hàm số f(x).e3x Tìm nguyên hàm hàm số f ’(x).e3x... dạng =[Q(x)]2 + hàm (bình phương hàm) hay gặp dạng (a ± b) đề thường xu? ??t yếu tố bình phương ( dấu hiệu nhận dạng) + kết hợp dạng dùng tích phân phần để hàm Định hướng cách giải: Kết hợp dạng