1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bổ chính bậc nhất cho biên độ tán xạ năng lượng cao và phương trình chuẩn thế002

90 17 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 90
Dung lượng 795,41 KB

Nội dung

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN VŨ VĂN TIẾN BỔ CHÍNH BẬC NHẤT CHO BIÊN ĐỘ TÁN XẠ NĂNG LƢỢNG CAO VÀ PHƢƠNG TRÌNH CHUẨN THẾ LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội -2013 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN VŨ VĂN TIẾN BỔ CHÍNH BẬC NHẤT CHO BIÊN ĐỘ TÁN XẠ NĂNG LƢỢNG CAO VÀ PHƢƠNG TRÌNH CHUẨN THẾ LUẬN VĂN THẠC SĨ KHOA HỌC Chuyên ngành: Vật lý lý thuyết vật lý toán Mã ngành: 60440103 NGƯỜI HƯỚNG DẪN KHOA HỌC: GS TSKH Toán-lý Nguyễn Xuân Hãn Hà Nội -2013 MỤC LỤC Trang MỞ ĐẦU CHƢƠNG BIỂU DIỄN EIKONAL CỦA BIÊN ĐỘ TÁN XẠ 1.1 Thành lập cơng thức tốn tán xạ 1.2 Biểu diễn Eikonal biên độ tán xạ học lượng tử 12 CHƢƠNG BỔ CHÍNH CHO GẦN ĐÚNG EIKONAL 20 2.1 Phương trình chuẩn 20 2.2 Phương trình chuẩn biểu diễn tọa độ 28 CHƢƠNG PHƢƠNG TRÌNH CHUẨN THẾ VÀ PHÉP GẦN ĐÚNG BORN .34 3.1 Phép gần Born 34 3.2 Vùng lượng cao 35 3.3 Thế Yukawa 38 KẾT LUẬN 44 TÀI LIỆU THAM KHẢO 45 PHỤ LỤC 47 Phụ lục A :Giải phương trình chuẩn 47 Phụ lục B: Tính đóng góp phép lặp ( N+1) cho biên độ tán xạ với góc tán xạ nhỏ 49 Phụ lục C : Tính đóng góp phép lặp ( N+1) cho biên độ tán xạ với góc tán xạ 52 Phụ lục D: Một số tích phân sử dụng chương 54 DANH MỤC HÌNH VẼ Trang Hình 1: Minh hoạ rõ ràng biến đổi phức tạp sử dụng tính tốn 11 Hình Biểu diễn tương tác hai “nucleons” trường hợp trao đổi meson vô hướng 38 Hình Biểu diễn tương tác hai “nucleons” trường hợp trao đổi hạt vectơ 41 Hình Biểu diễn tương tác hai “nucleons” trường hợp trao đổi hạt tenxơ 42 MỞ ĐẦU Phép gần eikonal sử dụng để tìm biên độ tán xạ hạt học lượng tử phi tương đối tính sử dụng từ lâu biểu diễn eikonal thu cho biên độ tán xạ dùng rộng rãi để phân tích số liệu thực nghiệm vật lý lượng cao [3-7] Sử dụng phép gần sở phương trình chuẩn LogunovTavkhelidze lý thuyết trường lượng tử, lần người ta thu biểu diễn eikonal cho biên độ tán xạ hạt vùng lượng cao xung lượng truyền nhỏ (góc tán xạ nhỏ) Biểu diễn eikonal cho biên độ tán xạ này, thu người ta tiến hành lấy tổng giản đồ Feynman, hay phương pháp tích phân phiếm hàm Trong lý thuyết trường lượng tử, phép gần eikonal thực tế tương ứng với việc tuyến tính hóa hàm truyền hạt tán xạ theo xung lượng hạt trao đổi [12,13] sau:    p + ∑ ki   i  p xung lượng hạt tán xạ, ki – xung lượng hạt trao đổi công thức (0.1) ta bỏ qua số hạng ki k j = Phép gần sử dụng để nghiên cứu trình tán xạ lượng cao gọi phép gần quỹ đạo thẳng hay gần eikonal Bức tranh vật lý sau: Các hạt lượng cao bị tán xạ cách trao đổi liên tiếp độc lập lượng tử ảo, đồng thời liên kết tương thích q trình trao đổi riêng biệt với nhau, nên số hạng tương quan ki k j khơng có mặt hàm truyền (0.1) Các số hạng bổ cho biên độ tán xạ eikonal cho biên độ tán xạ hạt vùng lượng cao, gần giới khoa học quan tâm nghiên cứu, tương tác hạt tương tác hấp dẫn số hạng bổ liên quan đến lực hấp dẫn mạnh gần lỗ đen, lý thuyết siêu dây hấp dẫn loạt hiệu ứng hấp dẫn lượng tử /12-14/ Việc xác định số hạng bổ cho biểu diễn tán xạ eikonal lý thuyết hấp dẫn cần thiết , song vấn đề cịn bỏ ngỏ, lượng hạt tăng, số hạng bổ tính theo lý thuyết nhiễu loạn, lại tăng nhanh số hạng trước Mục đích Bản luận văn Thạc sĩ tìm bổ bậc cho biên độ tán xạ eikonal hạt dựa sở phương trình chuẩn vùng lượng cao xung lượng truyền nhỏ lý thuyết trường lượng tử Nội dung Bản luận văn bao gồm: phần mở đầu, ba chương, phần kết luận, tài liệu trích dẫn phụ lục Chƣơng I Biểu diễn eikonal biên độ tán xạ Trong mục 1.1 xuất phát từ phương trình dừng Schrodinger hạt trường ngồi theo định nghĩa ta tìm cơng thức eikonal cho biên độ tán xạ vùng lượng cao xung lượng truyền nhỏ Biểu diễn eikonal biên độ tán xạ với điều kiện cần thiết cho phép sử dụng gần trình bầy mục Chƣơng II Biểu diễn eikonal bổ bậc Trong mục 2.1 giới thiệu cách thu nhận phương trình chuẩn cho biên độ tán xạ cho hàm sóng Trong mục 2.2 xuất phát từ phương trình chuẩn biểu diễn tọa độ, thực khai triển hàm sóng phương trình theo xung lượng hạt p = p Sử dụng phép khai triển ta thu biểu diễn eikonal số hạng bổ bậc cho biên độ tán xạ Chƣơng III Bài toán dựa phương trình chuẩn giải phương pháp lặp theo gần Born (lý thuyết nhiễu loạn theo tương tác) Ở mục 3.1 chuẩn dạng Gauss sử dụng để minh họa phương pháp tính biên độ tán xạ bổ bậc bậc gần Born thấp Biểu thức tổng quát cho n+1 lần gần Born khai triển biên độ tán xạ theo lũy thừa 1/p, tương tự phân tích chương II, kết số hạng số hạng bổ bậc cho biên độ tán xạ tìm mục 3.2 Trường Yukawa tương ứng với trao đổi hạt lượng tử với spin khác (trao đổ hạt vô hướng, hạt véctơ graviton tương tác hấp dẫn ), sử dụng để minh hoa phụ thuộc vào lượng số hạng bổ cho biên độ tán xạ eikonal Cuối kết luận chung, tài liệu tham khảo phụ lục liên quan tới luận văn Trong luận văn sử dụng hệ đơn vị nguyên tử = c =1 metric Pauli: xµ = x µ = ( x1 = x, x2 = y , x3 = z , x4 = ict = it ) = xµ ab = aµ bµ = ab − a0b0 = ab + a4b4 = ak bk + a4b4 δ µν Các số Hy Lạp lặp lại có ngụ ý lấy tổng từ đến (k =1, 2, 3) CHƢƠNG I BIỂU DIỄN EIKONAL CỦA BIÊN ĐỘ TÁN XẠ Bài toán tán xạ học lượng tử nghiên cứu sở phương trình Schrodinger Giả sử có hạt tán xạ trường ngồi, dáng điệu hàm sóng hạt bị tán xạ tìm dạng ψ tán xa Trong f (θ , ϕ) biên độ tán xạ cần tìm Nếu lượng hạt lớn, góc tán xạ nhỏ, ta tìm biểu diễn eikonal cho biên độ tán xạ- hay người ta gọi biểu diễn Glaubert [10], người thu công thức học lượng tử 1.1 Thành lập công thức tốn tán xạ Q trình tán xạ học lượng tử mơ tả phương trình Schrodinger: ∇  sử dụng ký hiệu k2 = phương trình vi phân (1.1.1) viết lại dạng phương trình tích phân: ψ( r ) = φ( r ) + hàm φ( r ) thoả mãn phương trình cho hàm tự do: ∇  +k2 Phương trình φ( r ) = A ei k r + B e−i k r ∇  +k2 Chúng ta tìm G0 (r , r ' ) theo công thức: ( G Chuyển phổ Fourier ta có: r,r/ ( r,r' G Vậy : (∇ + k )G0 (r , r / ) = is r − r Nhưng : ∇ e ( ) / Sử dụng: δ (3) ( (r − r / ) = (2π1 )3 ∫e is r −r / ) d3s Thay vào phương trình (1.1.4a) có: ∫ ( − s + k )e (2π ) → g (s ) = 2π )3 (k − s2 )  Đặt vào (1.1.4a) ta có: G (r , r / ) = Chuyển sang tọa độ cầu (s,θ , φ ) dọc theo trục r Vì s (r − r / ) = s r − r / cosθ π ∫e r −r is 2 sin s r / Vì vậy: G (r , r ( −r ) sr−r / / = 4π Chuyển sang tích phân phức : PHỤ LỤC B: TÍNH ĐĨNG GĨP CỦA PHÉP LẶP (N+1) CHO BIÊN ĐỘ TÁN XẠ VỚI GÓC TÁN XẠ NHỎ Tính đóng góp phép lặp (n+1) vào biên độ tán xạ (A.1) T ( p, k ; E) vùng lượng cao góc tán xạ nhỏ: dq dq T ( n +1) ( p , k ; E ) = (isg0 ) n +1 ∫ ∫ ∫ n n ε ε  × ×  2  ( ql − p − i0) l=1 ε đó: = q2 Làm phép ∆ l = ql − λl , đây: λ = q exteme = l l giá trị xung lượng dạng toàn phương lũy thừa hàm mũ (B.1) Đưa vào véctơ trực giao l = dạng: λ =l+ l r= l trị phần lại: ( p − ql ) = (p−k) n− n +1 Trong biến số (B.1) có dạng: 49 ( n +1) ( p , k ; E ) = (isg ) T Chia phép lấy tích phân theo ∆ thành thành phần dọc ngang véctơ l  = ( ∆ ⊥ ; ∆) , ( ∆ ⊥ l ) = T ( n +1) ( p , k ; E ) = (isg ) n +1 e × ex I = n ∫∫ ∫ Biểu diễn số mẫu dạng tích phân chia thành hai cực điểm: i = [ ]k Ở vùng lượng lớn góc tán xạ nhỏ ta chứng minh được: In = 2l ( ) sử dụng giả thiết εk ≅ l ( k =1, 2, 3, n) Jn có đóng góp cực điểm khơng Biểu diễn thừa số Gauss dạng phổ e − a ∆ = ∞∫ e i ∆z v ( z ) dz −∞ Lưu ý định nghĩa hàm θ giới hạn In ≈ Như vậy, đóng góp chủ yếu vào biên độ tán xạ vùng là: 50 ( n +1) (p,k; T Sử dụng công thức biết: lưu ý trường hợp DetC = n +1 kết cuối nhận được: T ( n +1) ( p , k ; E ) ≈ (isg )n+1 51 PHỤ LỤC C: TÍNH ĐĨNG GĨP CỦA PHÉP LẶP (N+1) CHO BIÊN ĐỘ TÁN XẠ VỚI GÓC TÁN XẠ BẤT KỲ Dẫn tính tốn T ( n+1) ( p, k ; E) vùng (3.1), sau ta sử dụng số ký hiệu phụ lục B Xét biểu thức: ( n +1) ( p , k ; E ) = (isg ) T Tại vùng lượng cao, khơng giả thiết góc tán xạ nhỏ (C.2) ε = l l =1, 2, , n ; λl - xác định (B.2), θ - góc tán xạ hệ khối tâm λ − p = −4 p2 sin2 l n ∏ ( ∆ l2 + ∆ l λl + λl2 − p − i 0) ≈ ∏( λl2 − p − i0) l =1 = Chú ý (C.2), (C.3) từ (C.1) ta thu được: (C.3) ( p , k ; E) = T ( n+1) Lấy tích phân (C.4) tiến hành theo xung lượng - chiều ∆ Sử dụng tương tự - chiều (B.5), biểu thức cho T ( n+1) : n  isg π π  + T ( n 1) ( p , k ; E ) = isg     pta a   ( n +1) n e ( n +1) ( n !) Xét hàm số: 52 fn (γ ) = ∏ f n (γ ) tính ln fn (γ ) n ln f n ( λ ) = ∑ln  − γ Như vậy: n ∏ − sin2 l =1 đó: ϕ (0) = + Re = Thay biểu thức vào (C.5) Ta thu đóng góp vào T ( n+1) vùng (3.1) T ( n+1) ( p , k ; E ) = isg 53 PHỤ LỤC D: MỘT SỐ TÍCH PHÂN SỬ DỤNG TRONG CHƢƠNG = ( −iπ ) × Tính tích phân I1 = ∫d x⊥ e i ∆ ⊥ x ⊥ K (µ | x⊥ |) = ( 2π ) ∫d | x⊥ || x⊥ |J ( 0) (∆⊥ | x⊥ | ) K (µ | x⊥ |)   2π= ⊥ 2π +µ2 54 µ2 − t Tính tích phân I2 = d x⊥ e i ∆ ⊥ x⊥ K 02 ∫ 2 2 i ( q +∆ π ∫ d q q2 + µ2 ∫d x⊥ e ⊥ ) x⊥ K (µ | x⊥ |) (2π = biến đổi cơng thức (D.2) ta sử dụng kết tính tích phân I1 Sử dụng tích phân Feynman: I = ∫ dx ∫d q = ∫ dx ∫d q = ∫dx = ( −iπ ) ∫ dx (D.1) (D.2) (D.3) đó: F1 (t ) = Tính tích phân I = ∫d x⊥ e i ∆ ⊥ x ⊥ K 03 ( µ | x⊥ |) |) | x⊥ |) = (2π )2 (D.4) = (2π )2 Áp dụng kết tích phân tính biểu thức ∫ d q1 Như vậy: I3 = (2π)2 Lại sử dụng tích phân Feynman: i I3=− 4π =− 4π { i i =− 4π  µ2 B = x (1 − x ) Vì thế: I3=− ∫  x (1 − x) 55 =− x (1 − =− I3 =− ∫ với D = −(1 − y )(ty − µ ) = ty + ( µ − t ) y + µ2 ; µ2 x −x+ D Chú ý rằng: 4µ2 x+x ta có: ln Thay kết vào (D.6), ta thu kết cuối cùng: (1 56 ... tính biên độ tán xạ số hạng bổ bậc cho biên độ tán xạ sở phương trình chuẩn Logunov-Tavkhelidze [4-10] 2.1 Phương trình chuẩn Phương trình chuẩn trường lượng tử, ta giới thiệu cách thu nhận phương. .. :Giải phương trình chuẩn 47 Phụ lục B: Tính đóng góp phép lặp ( N+1) cho biên độ tán xạ với góc tán xạ nhỏ 49 Phụ lục C : Tính đóng góp phép lặp ( N+1) cho biên độ tán xạ với góc tán xạ. .. eikonal biên độ tán xạ với điều kiện cần thiết cho phép sử dụng gần trình bầy mục Chƣơng II Biểu diễn eikonal bổ bậc Trong mục 2.1 giới thiệu cách thu nhận phương trình chuẩn cho biên độ tán xạ cho

Ngày đăng: 19/11/2020, 20:32

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
1. Nguyễn Xuân Hãn (2002), Các bài giảng về tích phân quỹ đạo trong lý thuyết lượng tử, Giáo trình ĐHQG Hà Nội Sách, tạp chí
Tiêu đề: Các bài giảng về tích phân quỹ đạo trong lý thuyết lượng tử
Tác giả: Nguyễn Xuân Hãn
Năm: 2002
3. Nguyễn Xuân Hãn (1998), Cơ sở lý thuyết trường lượng tử, ĐHQG Hà Nội Sách, tạp chí
Tiêu đề: Cơ sở lý thuyết trường lượng tử
Tác giả: Nguyễn Xuân Hãn
Năm: 1998
4. Phạm Thúc Tuyền (2007,2010), Cơ học lượng tử, NXB ĐHQG Hà Nội Sách, tạp chí
Tiêu đề: Cơ học lượng tử
Nhà XB: NXB ĐHQG Hà Nội
5. Phạm Thúc Tuyền (2007,2011), Lý thuyết hạt cơ bản, NXB ĐHQG Hà Nội Tiếng Anh Sách, tạp chí
Tiêu đề: Lý thuyết hạt cơ bản
Nhà XB: NXB ĐHQG Hà NộiTiếng Anh
6. Efremov A.A (1971) , Short Distance Scala Invariance and High Energy Process in Field Theory , TMF 6, 55 Sách, tạp chí
Tiêu đề: Short Distance Scala Invariance and High Energy Process in Field Theory
7. Filipov A.T (1964), Các bài giảng tại lớp học vật lý lý thuyết Quốc tế mùa Đông tại Viện nghiên cứu liên hợp hạt nhân Dubna, NXB JINR-Liên Xô, pp.80-107 Sách, tạp chí
Tiêu đề: Các bài giảng tại lớp học vật lý lý thuyết Quốc tế mùaĐông tại Viện nghiên cứu liên hợp hạt nhân Dubna
Tác giả: Filipov A.T
Nhà XB: NXB JINR-Liên Xô
Năm: 1964
8. Garsevanishvili V.R, Matveev V.A., Slepchenko L.A, Tavkhelidze A.N (1969), Coral Gables Conference on Fundamental Interactions at High Energy, Gordon and Breach Science Publishers, p. 74 Sách, tạp chí
Tiêu đề: Coral Gables Conference on Fundamental Interactions at High Energy
Tác giả: Garsevanishvili V.R, Matveev V.A., Slepchenko L.A, Tavkhelidze A.N
Năm: 1969
9. Garsevanishvili V.R, Matveev V.A, Slepchenko L.A and Tavkhelidze (1969),“Relativistic quasipotential model of particle scattering at high energies”Phys.Lett. 29B, No. 3, 191 Sách, tạp chí
Tiêu đề: “"Relativistic quasipotential model of particle scattering at high energies"”"Phys.Lett. 29B
Tác giả: Garsevanishvili V.R, Matveev V.A, Slepchenko L.A and Tavkhelidze
Năm: 1969
10. Garsevanishvili V.R, Matveev V.A, Slepchenko L.A and Tavkhelidze (1969), ICTP – Preprint IC/69/87, Trieste Sách, tạp chí
Tiêu đề: ICTP – Preprint
Tác giả: Garsevanishvili V.R, Matveev V.A, Slepchenko L.A and Tavkhelidze
Năm: 1969
11. Glauber R.J (1959), Lectures in Theorical Physics, New York, 315p Sách, tạp chí
Tiêu đề: Lectures in Theorical Physics
Tác giả: Glauber R.J
Năm: 1959
12. Logunov A.A and Tavkhelidze A.N (1963), “Quasipotential approach in quantum field theory”, Nuovo Cimento 29 (2), pp. 380 Sách, tạp chí
Tiêu đề: “"Quasipotential approach in quantum field theory"”, Nuovo Cimento 29 (2)
Tác giả: Logunov A.A and Tavkhelidze A.N
Năm: 1963
13. Nguyen Suan Han and Eap Ponna (1997), “Straight-Line Path Aprroximation for the Studying Planckian- Energy Scattering in Quantum Gravity”, ICTP, IC/IR/96/36, Trieste, pp.1-15; IL Nuovo Cimento A, Vol. 110A(5), pp. 459 Sách, tạp chí
Tiêu đề: ), “"Straight-Line Path Aprroximationfor the Studying Planckian- Energy Scattering in Quantum Gravity"”, ICTP,IC/IR/96/36, Trieste, pp.1-15; IL Nuovo Cimento A, Vol. 110A(5)
Tác giả: Nguyen Suan Han and Eap Ponna
Năm: 1997
14. Nguyen Suan Han (2000), “Straight-Line Paths Approximation for the High- Energy Elastic and Inelastic Scattering in Quantum Gravity”, European Physical Journal C, vol.16(3), pp. 547-553 Sách, tạp chí
Tiêu đề: “"Straight-Line Paths Approximation for the High-Energy Elastic and Inelastic Scattering in Quantum Gravity”, "EuropeanPhysical Journal C
Tác giả: Nguyen Suan Han
Năm: 2000
15. Nguyen Suan Han and Nguyen Nhu Xuan (2002), “Planckian Scattering Beyond Eikonal Approximation in the Functional Approach”, NXB Giáo dục, pp.393-401 Sách, tạp chí
Tiêu đề: “"Planckian ScatteringBeyond Eikonal Approximation in the Functional Approach"”, NXB Giáo dục
Tác giả: Nguyen Suan Han and Nguyen Nhu Xuan
Nhà XB: NXB Giáo dục"
Năm: 2002
16. Salpeter E.E and Bethe H.A (1951), “A Relativistic Equation for Bound-State Problems”, Phys. Rev. 84, pp. 1231 Sách, tạp chí
Tiêu đề: “"A Relativistic Equation for Bound-State Problems"”, Phys. Rev
Tác giả: Salpeter E.E and Bethe H.A
Năm: 1951
17. Tavkelidze A.N (1964), Các bài giảng tại lớp học vật lý lý thuyết Quốc tế mùa Đông tại Viện nghiên cứu liên hợp hạt nhân Dubna, NXB JINR-Liên Xô,pp.66-78 Sách, tạp chí
Tiêu đề: Các bài giảng tại lớp học vật lý lý thuyết Quốc tế mùaĐông tại Viện nghiên cứu liên hợp hạt nhân Dubna
Tác giả: Tavkelidze A.N
Nhà XB: NXB JINR-Liên Xô
Năm: 1964
18. Verlinde E. and Verlinde H. (1992), “Scattering at Planckian energies”, Nucl. Phys. B.371, pp. 246 Sách, tạp chí
Tiêu đề: Scattering at Planckian energies"”, Nucl. Phys
Tác giả: Verlinde E. and Verlinde H
Năm: 1992
19. M. Abramowitz, I. Stegun, “Hanbook of Mathematical Functions’’, National Buerau of Standards (1970, Eq. (11.4.16)) Sách, tạp chí
Tiêu đề: Hanbook of Mathematical Functions"’’, National Buerau of Standards

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w