1. Trang chủ
  2. » Giáo án - Bài giảng

Bài giảng Đại số và Giải tích 11 - Bài 1: Giới hạn của dãy số

14 26 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 1,16 MB

Nội dung

Bài giảng Đại số và Giải tích 11 - Bài 1: Giới hạn của dãy số tìm hiểu về định lí về giới hạn hữu hạn, tổng của cấp số nhân lùi vô hạn. Mời các bạn cùng tham khảo bài giảng để nắm chi tiết nội dung kiến thức.

Câu hoi  ̉ : Nêu đinh nghi ̣ ̃a về giới han h ̣ ữu han cua da ̣ ̉ ̃y số? 2.  a. Viết các giới han đăc biêt? ̣ ̣ ̣ 2012n +       b. Áp dung: Cho da ̣ ̃y sô ơu ́i:n = (ún      v ) n lim un = 2012 Chøng minh: Tra l ̉ ờ i: Đinh nghi ̣ ̃ a giớ i han 0:  ̣          Ta nói dãy sô(́u        co ́ giới  han la ̣ ̀ 0 khi n dần  n) un ́u       có thê nho h tới dương vô cực, nê ̉ ̉ ơn môt sô ̣ ́  dương bé  tùy ý kê t ̉ ừ môt sô ̣ ́ hang na ̣ ̀o đo ́v trở  đi l im = a � lim(vn − a ) = Đinh nghi ̣ ̃ a giớ i han h ̣ ữ u han: ̣ n 2. a)Viết các giới han đăc biêt? ̣ ̣ ̣ 2012n + (ún        v )     b)Áp dung:Cho da ̣ ̃y sô ớui:n = n                 Chứng minh: lim u = 2012 n Tra l ̉ ờ i: a. Môt sô ̣ ́  giớ i han đăc biêt: ̣ ̣ ̣ 1 + lim = 0, lim = 0, k � Ζ   k n n lim q n = 0, q < un = c                 Nếu              (c la ̀ hằng số) thi ̀ un = lim c = c lim b. Á p dung ̣ :  2012n + lim(un − 2012) = lim( − 2012) Ta có: n Vây: ̣ = lim( lim un = 2012 2012n + − 2012n ) = lim = n n •Đinh nghi ̣ ̃a giới han 0 ̣ •Đinh nghi ̣ ̃a giới han h ̣ ữu haṇ •Các giới han đăc biêt ̣ ̣ ̣ IIII Đinh li ̣̣ ́́ vê ̣̣ ̣̣ Đinh li  về̀ gi  giơ ớ́i han h i han h ữ̃u han u han ̉̉ ̉̉ ́́p sô ̣̣ Tông cua câ p số́ nhân lu  nhân lù̀i vô han i vô han III IIITơng cua câ ĐINH LÍ 1: ̣ un = a a) Nếu  lim                     va ̀                    thi ̀: lim = b       lim(un + ) = a + b lim(un − ) = a − b lim(un ) = a.b un a lim = (b b 0) un 0, ∀n un = a b) Nếu                   va ̀lim                     thi ̀a                             va # lim un = a Ví  du 1: ̣  Tính giới han cua ca ̣ ̉ ́c dãy số sau:   3n − 2n + a ) lim n2 + Cá c bướ c tì m giớ i  han h ̣ ữ u han: ̣ Bướ c 1: Chia ca t ̉ ử và  mẫu cho n có số mũ  cao nhất  Bướ c 2: Dùng đinh ly ̣ ́  về giới han h ̣ ữu han  ̣ đưa giới han da ̣ ̃y số về  các giới han đăc biêt ̣ ̣ ̣ + 2n b) lim − 3n − + 3n − 2n + n n )= =3 a ) lim = lim( n2 + 1+ n + 2) + 2n n b) lim = lim( ) − 3n − 3n 1 n +2 +2 2 n = lim( ) = lim( n )=− 2 − 3n −3 n n2 ( Nhóm 1: Tính giới hạn sau: HOẠT ĐỘNG NHÓM n − 2n + a ) lim − 3n + n Nhóm 2: Tính giới hạn sau: b ) lim + 4n − n 3n + 1 − + n3 − 2n + n n2 n4 = = a ) lim = lim − 3n3 + n − + n4 n b) lim + 4n − n = lim 3n + n +4 −n n2 = lim 3n + 1 + −1 n2 = 3+ n −1 = 3 1. Đinh nghi ̣̣ ̃̃a: 1. Đinh nghi a:  

Ngày đăng: 04/11/2020, 14:12

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w