0

Bài tập điều khiển số - Examples (bachelor)

48 1,147 1

Đang tải.... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Tài liệu liên quan

Thông tin tài liệu

Ngày đăng: 15/10/2013, 15:39

Điều khiển số, báo cáo, thí nghiệm, báo cáo điều khiển số, TN điều khiển số 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Ng. Ph. Quang ĐHBK Hà Nội1 Điềukhiểnsố (Digital Control Systems) Các ví dụ: Đánh số thứ tự theo chương của giáo trình cùng tên (Version 5, 8/2011) 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Ng. Ph. Quang ĐHBK Hà Nội2 1. Mô hình tín hiệuvàhệ thống 1.2 Mô hình tín hiệutrênmiền ảnh z Ví dụ 1.2.1 Một tín hiệugiánđoạnvề thờigianđượcmôtả bởi: () 1 1 1 1 z Uz z z − == − − Lờigiải: Dễ dàng tìm ảnh z củatínhiệukể trên bằng cách tính tổng Laurent: () () 00 k kk kk a Uz az z ∞∞ − == ⎛⎞ ⎟ ⎜ == ⎟ ⎜ ⎟ ⎟ ⎜ ⎝⎠ ∑∑ Chuỗitrênchỉ hộitụ khi , tứclàở vùng phía ngoài đường tròn có bán kính a. 1az< Hãy đi tìm ảnh U(z) và miềnhộitụ củatínhiệu! Ví dụ 1.2.2 Hãy đi tìm ảnh z của hàm bướcnhẩy đơnvị 1(t) ! () () ( ) () 1 00 1 khi 0 1 khi 0,1, 2, 11 1 0khi 0 0khi 0 k k k kk tk ut u U z z z tk ∞∞ −− == ⎧⎧ ≥= ⎪⎪ ⎪⎪ == ⇒ = ⇒ = ⋅= ⎨⎨ ⎪⎪ << ⎪⎪ ⎩⎩ ∑∑ … () 0 1 s s r rq q ∞ = = − ∑ () 1 1 1 1 z Uz z z − == − − Kếtquả trên đúng vớimọi giá trị trên toàn miền z, trừđiểm z = 1. Khi thay vào chuỗi: các giá trị q = z -1 và r = 1 ta thu được: 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Ng. Ph. Quang ĐHBK Hà Nội3 1. Mô hình tín hiệuvàhệ thống 1.2 Mô hình tín hiệutrênmiền ảnh z Ví dụ 1.2.3 Ví dụ 1.2.4 Hãy tìm ảnh z của hàm e mũ (hàm exponent) ! () ( ) ( ) () 1 00 ;0 ; 0,1,2, k at akT akT k aT k kk ft e t fkT f e k Fz e z e z ∞∞ −− == =≥⇒ == = ⇒ = = ∑∑ … Kếtquả tính tổng củachuỗilà: () 1 1 11 aT aT aT ez Fz ez e z − −− == −− Hãy tìm ảnh z của hàm dốctuyến tính ! ( ) ; 0; constft att a=≥= Dễ dàng viết được ảnh F(z) dướidạng chuỗinhư sau: () 0 k k F zakTz ∞ − = = ∑ Để tính tổng trên ta phảiáp dụng nguyên lý tịnh tiếnvà sử dụng ảnh z củahàmbước nhẩy1(t) và viếtlại công thứctrên: () () 123 23 3 12 12 1 2 11 1 11 1 Tz Tz Tz Tz Tz Fz a Tz zz z aT z z aT z z zz z zz aTz aT z zz z −−− −− − −− −− − ⎡ ⎤ +++ ⎢⎥ ⎢⎥ ++ ⎢⎥ = ⎢⎥ + ⎢⎥ ⎢⎥ ⎢⎥ ⎣⎦ ⎡⎤ ⎡ ⎤ ⎢⎥ =++=++ ⎢ ⎥ ⎣ ⎦ ⎢⎥ −− − ⎣⎦ == −− −      21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Ng. Ph. Quang ĐHBK Hà Nội4 1. Mô hình tín hiệuvàhệ thống 1.2 Mô hình tín hiệutrênmiền ảnh z Ví dụ 1.2.5 Bổ xung lý thuyết: Tìm hàm gốccủa ảnh z cho trướcbằng phương pháp tách phân thứchữutỷ thành các phân thứctốigiản. Sau đólầnlượt tìm hàm gốccủa các phân thứctốigiản. k z a za ⇔ − () () 1 ;1,2, 1 1 1 km m m km k z am m za k za a m −+ − − ⎛⎞ ⎟ ⎜ ⎟ ⇔= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ − ⎝⎠ − ⎛⎞ − ⎟ ⎜ ⎟ −⇔ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ − ⎝⎠  •Điểmcực đơn: •Điểmcựclặplại m lần: Cho trước ảnh z có dạng phân thức: () 2 0,9 0,5 0, 4 0,1 0, 2 z zz Fz zz zz ==− −+ −− Áp dụng công thức để tìm hàm gốc: ( ) 0,5 0, 4 k k k f =−− Ví dụ: 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Ng. Ph. Quang ĐHBK Hà Nội5 1. Mô hình tín hiệuvàhệ thống 1.2 Mô hình tín hiệutrênmiền ảnh z () ( )( ) 0,9 0,5 0, 4 z Fz zz = −+ Xét hàm ảnh cho ở ví dụ 1.2.5: () () ()() () () ()() () 1 2 1 1 1 0,5 z 1 1 2 0,4 z 0,9 0,5 0,5 Res lim 0,5 0,5 0, 4 0,9 0, 4 0, 4 Res lim 0,4 0,5 0, 4 k kk z k k k z zz z zFzz zz zz z zFzz zz − − → − − →− ⎧ ⎡ ⎤ ⎪ − ⎪ ⎢⎥ ⎡⎤ ⎪ =⇒ = = ⎪ ⎢⎥ ⎢⎥ ⎣⎦ ⎪ −+ ⎢⎥ ⎪ ⎣⎦ ⎪ ⎪ ⎨ ⎪ ⎡⎤ + ⎪ ⎢⎥ ⎪ ⎡⎤ =− ⇒ = =− − ⎪ ⎢⎥ ⎢⎥ ⎣⎦ ⎪ −+ ⎪ ⎢⎥ ⎣ ⎦ ⎪ ⎩ ⎪ Có hai điểmcực z 1 , z 2 , vậykhi: Hàm gốccódạng sau: ( ) 0,5 0,4 k k k f =−− Ví dụ 1.2.6 Bổ xung lý thuyết: Tìm hàm gốccủa ảnh z cho trướcbằng phương pháp tính Residuum. Khi z = z ν là điểmcực -lặplại m lần: - đơn: Hàm gốccódạng: () 1 1 Res n k k f Fzz ν − = ⎡⎤ = ⎢⎥ ⎣⎦ ∑ () () ()( ) () ()( ) 1 11 1 z 11 z 1 Res lim 1! Res lim m m kk m zz kk zz d Fzz Fz z z z m dz Fzz Fz z z z ν ν ν ν ν ν − −− − → −− → ⎡ ⎤ ⎡⎤ =− ⎢ ⎥ ⎢⎥ ⎣⎦ ⎣ ⎦ − ⎡⎤⎡ ⎤ =− ⎢⎥⎢ ⎥ ⎣⎦⎣ ⎦ 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Ng. Ph. Quang ĐHBK Hà Nội6 1. Mô hình tín hiệuvàhệ thống 1.3 Mô hình hệ thống trên miền ảnh z Ví dụ 1.3.1 Mô tả khâu có bảnchấtgiánđoạnbằng phương trình sai phân Hãy tìm giá trị trung bình [x k ], tính từ 4 giá trị mớinhấtcủadãy[u k ] ! Chú ý : Còn gọi là phép tính trung bình trượt. () 123 1 4 kkkkk xuuuu −− − =+++ Có thể giảm nhu cầutínhtoánbằng cách sử dụng giá trị vừa tính trước đó: () 11234 1 4 kkkkk xuuuu −−−−− =+++ Vậy: () 14 1 4 kk kk xx uu −− =+ − Ví dụ 1.3.2 Mô tả khâu có bảnchấtgiánđoạnbằng hàm truyền đạt ()()()() () () 4 14 14 1 1111 444 1 kk kk z x xuu XzzXzUzzUz Uz z − −− −− − − ⎡⎤ =+ − ⇒ = + − = ⎢⎥ ⎣⎦ − Tiếpvídụ 1.3.1: Thuật toán tính giá trung bình trượtcóthểđượcmôtả bởihàmtruyền đạtsau: () ( ) ( ) 4 1 11 4 1 Xz z Gz Uz z − − − == − Phép tính trên đượcgọilàthuật toán tính giá trị trung bình trượt, đặctrưng cho mộtkhâucó bảnchấtgiánđoạn. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Ng. Ph. Quang ĐHBK Hà Nội7 1. Mô hình tín hiệuvàhệ thống 1.3 Mô hình hệ thống trên miền ảnh z Ví dụ 1.3.3 Mô tả khâu có bảnchất liên tụcvớitínhiệuvàobậcthangbằng hàm truyền đạt Hãy tìm hàm truyền đạtcủa khâu tỷ lệ có quán tính bậcnhất(khâuPT1): () 1 1 1 Gs sT = + Cách 1: () () () () () 1 11 11 11 11 ⎛⎞ ⎟ ⎜ =⇒= ⇒=− ⎟ ⎜ ⎟ ⎜ ⎟ ++ ⎝⎠ t T Gs Hs ht e t sT s sT •Từảnh G(s) ta tìm ảnh H(s) để sau đótìmhàmgốc h(t) •Sau khi gián đoạnhóahàmgốc h(t), ta tìm ảnh z củatínhiệugiánđoạn h k : () 1 1 1 1 kT T kT k TT zz he Hz z ze − − =− ⇒ = − − − •Vậy hàm truyền đạtcódạng: () () () 1 11 1 11 11 TT TT TT ze Gz z Hz ze ze − − −− −− =− =− = −− Cách 2: •Có thể tách ảnh H(s) thành 2 phân thứctốigiản: () () 1 1 1 1 11 1 1 T Hs s s ss T T ==− + + •Dễ dàng tìm ảnh z của H(s) bằng cách tìm ảnh củatừng phân thức tốigiản: () {} () () () () 1 1 1 1 1 1 1 TT TT TT zz Hs Hz z ze e Gz z Hz ze − − − − Ζ==− − − − ⇒=− = − 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Ng. Ph. Quang ĐHBK Hà Nội8 1. Mô hình tín hiệuvàhệ thống 1.3 Mô hình hệ thống trên miền ảnh z Ví dụ 1.3.4 Mô tả khâu có bảnchất liên tụcvớitínhiệuvàobậcthangbằng hàm truyền đạt () () () ()() () 12 12 11 1 S m m xs K Gs T T T u s sT sT sT == ≠≠ ++ + … … Hãy tìm hàm truyền đạttrênmiền ảnh z cho đốitượng sau: •Tách H S (s) thành các phân thứctốigiản: () () 12 0 12 12 12 0 1; 1; 11 1 11 1 11 1 111 ;1,2,, S mm S m m mm i jji jji jij K Gs TT T A A AA Hs ss ss s ss s s TT T TT T AKA K i m TTT =≠ =≠ == =++++ ⎛⎞ ⎛⎞⎛⎞ ⎟ ⎟⎟ ⎜ ⎜⎜ ++ + ⎟ ⎟⎟ ++ + ⎜ ⎜⎜ ⎟ ⎟⎟ ⎜ ⎜⎜ ⎟ ⎟⎟ ⎜⎜ ⎜ ⎝⎠⎝⎠ ⎝⎠ ⎛⎞ ⎛ ⎞ ⎟⎟ ⎜⎜ ⎟⎟ ⎜⎜ ==− −+ = ⎟⎟ ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟ ⎜⎜ ⎝⎠ ⎝ ⎠ ∏∏   … … •Chuyển H S (s) sang miền ảnh z: () () {} 00 1 11 1 1 1 1 i mm ii SS T ii T i AA A A Hs Hs s z s ze T − − == − ⎛⎞ ⎟ ⎜ ⎛⎞ ⎟ ⎜ ⎟ ⎟ ⎜ ⎜ ⎟ ⎟ ⎜ ⎜ ⎟ ⎟ ⎜ ⎜ ⎟ =+ ⇒Ζ = + ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎟ ⎜ − ⎜ ⎟ ⎟ ⎜ + ⎟ ⎜ ⎟ ⎝⎠ ⎜ − ⎟ ⎟ ⎜ ⎝⎠ ∑∑ 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Ng. Ph. Quang ĐHBK Hà Nội9 1. Mô hình tín hiệuvàhệ thống 1.3 Mô hình hệ thống trên miền ảnh z Ví dụ 1.3.4 Mô tả khâu có bảnchất liên tụcvớitínhiệuvàobậcthangbằng hàm truyền đạt () () () {} () 111 0 11; 1 1 1 1 111 1 1 j i i T T m mm T T i ijji i SS T m T i Aze zA ze Gz z Hs ze − − −−− ==≠ = − − − = ⎛⎞ ⎛⎞ ⎟ ⎜ ⎟ ⎜ ⎟ ⎟ ⎜ ⎜ ⎟ −+− − ⎟ ⎜ ⎜ ⎟ ⎟ ⎜ ⎜ ⎟ ⎟ ⎟ ⎜ ⎜ ⎟ ⎝⎠ ⎝⎠ =− Ζ = ⎛⎞ ⎟ ⎜ ⎟ ⎜ − ⎟ ⎜ ⎟ ⎜ ⎟ ⎟ ⎜ ⎝⎠ ∑ ∏∏ ∏ •Quy đồng mẫusố: •Ví dụ bằng số cụ thể: m = 3; K = 1; T 1 = 10s; T 2 = 7,5s; T 3 = 5s Bảng: Hệ số của G S (z) vớicácchukỳ trích mẫu T khác nhau 0,22608 0,26433 0,01672 -0,59381 0,10645 -0,00552 0,50712 0,15867 0,22570 0,01813 -0,76681 0,18243 -0,01312 0,40250 0,09896 0,17182 0,01746 -0,99538 0,31484 -0,03122 0,28824 0,05108 0,1086 0,01391 -1,2993 0,54723 -0,07427 0,17362 0,0186 0,0486 0,0078 -1,7063 0,958 -0,1767 0,0750 0,00269 0,00926 0,00186 -2,25498 1,68932 -0,42035 0,01399 b 1 b 2 b 3 a 1 a 2 a 3 ∑b i =1+∑a i 12108642T [s] Nhậnxét:Khi tăng dần T •Giá trị các tham số a i nhỏ dần. •Giá trị các tham số b i tăng dần. •Tổng ∑b i =1+∑a i tăng dần. •Khi T lớn, ta có: và vì vậycóthể bỏ qua a 3 , b 3 . Mô hình ban đầuthực tế chỉ cònlàmôhìnhbậc2. 33 1; ii aabb+ ∑∑  21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Ng. Ph. Quang ĐHBK Hà Nội10 1. Mô hình tín hiệuvàhệ thống 1.3 Mô hình hệ thống trên miền ảnh z Ví dụ 1.3.5 Mô tả khâu có bảnchất liên tụcvớitínhiệuvàobậcthangbằng hàm truyền đạt Ví dụ xét khâu tỷ lệ có quán tính bậc2(khâu PT2), được điều khiểnbởitínhiệu vào có dạng bậcthang. Đâylàkhâuliêntục mang tính điển hình. Để dễ so sánh, ta chọn đốitượng là động cơ mộtchiều (ĐCMC), được điềukhiểnbởi điện áp nuôi ở phầ n ứng. Gọi u A (t) là điện áp nuôi và n(t) là tốc độ quay, ĐCMC có mô hình trên miền ảnh Laplace sau: () () () 2 1 A mech mech el Ns K Gs Us sT s T T == ++ () 1 2 0 0 6111 sec; sec; sec 568 AA mech el A JR L TTKV Rc ck ψ ψ − == == == Với: J Mômen quán tính của các khốigắnvàotrục ĐCMC ψ 0 Từ thông (coi là const) R A Điệntrở mạch phần ứng L A Điệncảmmạch phần ứng c, k Các hằng số của ĐCMC •Sau khi thay số cụ thể, ta biếtrằng khâu PT2 trên có thểđượcthaythế bởi 2 khâu PT1, với T 1 = 1sec và T 2 = 0,2sec: () ()() 2 12 1 8 61 11 1 55 == ++ ++ K Gs sT sT ss •Ta đãbiết công thức: () () () {} () () () {} 1 1 SH S Gz G sGs Gz z Hs − =Ζ ⇔ = − Ζ
- Xem thêm -

Xem thêm: Bài tập điều khiển số - Examples (bachelor) ,

Hình ảnh liên quan

1. Mô hình tín hiệu và hệ thống 1.2 Mô hình tín hiệu trên miềnảnh z - Bài tập điều khiển số - Examples (bachelor)

1..

Mô hình tín hiệu và hệ thống 1.2 Mô hình tín hiệu trên miềnảnh z Xem tại trang 2 của tài liệu.
1. Mô hình tín hiệu và hệ thống 1.2 Mô hình tín hiệu trên miềnảnh z - Bài tập điều khiển số - Examples (bachelor)

1..

Mô hình tín hiệu và hệ thống 1.2 Mô hình tín hiệu trên miềnảnh z Xem tại trang 3 của tài liệu.
1. Mô hình tín hiệu và hệ thống 1.2 Mô hình tín hiệu trên miềnảnh z - Bài tập điều khiển số - Examples (bachelor)

1..

Mô hình tín hiệu và hệ thống 1.2 Mô hình tín hiệu trên miềnảnh z Xem tại trang 4 của tài liệu.
1. Mô hình tín hiệu và hệ thống 1.2 Mô hình tín hiệu trên miềnảnh z - Bài tập điều khiển số - Examples (bachelor)

1..

Mô hình tín hiệu và hệ thống 1.2 Mô hình tín hiệu trên miềnảnh z Xem tại trang 5 của tài liệu.
1. Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z - Bài tập điều khiển số - Examples (bachelor)

1..

Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z Xem tại trang 7 của tài liệu.
1. Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z - Bài tập điều khiển số - Examples (bachelor)

1..

Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z Xem tại trang 8 của tài liệu.
1. Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z - Bài tập điều khiển số - Examples (bachelor)

1..

Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z Xem tại trang 9 của tài liệu.
1. Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z - Bài tập điều khiển số - Examples (bachelor)

1..

Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z Xem tại trang 10 của tài liệu.
1. Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z - Bài tập điều khiển số - Examples (bachelor)

1..

Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z Xem tại trang 11 của tài liệu.
1. Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z - Bài tập điều khiển số - Examples (bachelor)

1..

Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z Xem tại trang 12 của tài liệu.
1. Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z - Bài tập điều khiển số - Examples (bachelor)

1..

Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z Xem tại trang 13 của tài liệu.
1. Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z - Bài tập điều khiển số - Examples (bachelor)

1..

Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z Xem tại trang 14 của tài liệu.
1. Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z - Bài tập điều khiển số - Examples (bachelor)

1..

Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z Xem tại trang 15 của tài liệu.
1. Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z - Bài tập điều khiển số - Examples (bachelor)

1..

Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z Xem tại trang 16 của tài liệu.
1. Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z - Bài tập điều khiển số - Examples (bachelor)

1..

Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z Xem tại trang 17 của tài liệu.
1. Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z - Bài tập điều khiển số - Examples (bachelor)

1..

Mô hình tín hiệu và hệ thống 1.3 Mô hình hệthống trên miềnảnh z Xem tại trang 19 của tài liệu.
•Mô hình trên có 1 điểm không - Bài tập điều khiển số - Examples (bachelor)

h.

ình trên có 1 điểm không Xem tại trang 21 của tài liệu.
•Mô hình trạng thái của khâu viết dưới dạng chuẩn ĐK là: - Bài tập điều khiển số - Examples (bachelor)

h.

ình trạng thái của khâu viết dưới dạng chuẩn ĐK là: Xem tại trang 32 của tài liệu.
Hình bên: Kết hợp giữ a khâu - Bài tập điều khiển số - Examples (bachelor)

Hình b.

ên: Kết hợp giữ a khâu Xem tại trang 34 của tài liệu.
•Mô hình của hệ thống sau khi mở rộng có dạng dưới đây: - Bài tập điều khiển số - Examples (bachelor)

h.

ình của hệ thống sau khi mở rộng có dạng dưới đây: Xem tại trang 35 của tài liệu.
•Khi thiết kế khâu ĐC trạng thái ta nên xuất phát từ dạng chuẩn ĐK của mô hình đối tượng - Bài tập điều khiển số - Examples (bachelor)

hi.

thiết kế khâu ĐC trạng thái ta nên xuất phát từ dạng chuẩn ĐK của mô hình đối tượng Xem tại trang 36 của tài liệu.
Ví dụ 3.2 Mô hình gián đoạn của đối tượng bao gồm DAC, khâu I2 và ADC - Bài tập điều khiển số - Examples (bachelor)

d.

ụ 3.2 Mô hình gián đoạn của đối tượng bao gồm DAC, khâu I2 và ADC Xem tại trang 39 của tài liệu.
•Bổ xung lý thuyết: Chuyển mô hình trạng thái sang miền ảnh Laplace - Bài tập điều khiển số - Examples (bachelor)

xung.

lý thuyết: Chuyển mô hình trạng thái sang miền ảnh Laplace Xem tại trang 40 của tài liệu.
•Trên cơ sở mô hình gián đoạn ta hãy đi tìm các ma trận ĐK và QS. Để phân biệt với ma trận - Bài tập điều khiển số - Examples (bachelor)

r.

ên cơ sở mô hình gián đoạn ta hãy đi tìm các ma trận ĐK và QS. Để phân biệt với ma trận Xem tại trang 41 của tài liệu.
•Theo ví dụ 3.2, đối tượng có mô hình với: () 1; () 22 - Bài tập điều khiển số - Examples (bachelor)

heo.

ví dụ 3.2, đối tượng có mô hình với: () 1; () 22 Xem tại trang 44 của tài liệu.
được cất trong bảng bên. Dễ dàng nhận thấy đã xuất hiện dao động bang-bang v ớ i  chu kỳM = 3. - Bài tập điều khiển số - Examples (bachelor)

c.

cất trong bảng bên. Dễ dàng nhận thấy đã xuất hiện dao động bang-bang v ớ i chu kỳM = 3 Xem tại trang 48 của tài liệu.