Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 61 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
61
Dung lượng
571,91 KB
Nội dung
ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC DƯƠNG THỊ HOA VỀ SỰ PHÁT TRIỂN CỦA ĐIỀU KIỆN TỐI ƯU TRONG BÀI TOÁN QUY HOẠCH LỒI LUẬN VĂN THẠC SĨ TOÁN HỌC Thái Nguyên - 2017 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC DƯƠNG THỊ HOA VỀ SỰ PHÁT TRIỂN CỦA ĐIỀU KIỆN TỐI ƯU TRONG BÀI TOÁN QUY HOẠCH LỒI LUẬN VĂN THẠC SĨ TOÁN HỌC Chuyên ngành: Toán ứng dụng Mã số: 60.46.01.12 NGƯỜI HƯỚNG DẪN KHOA HỌC GS TSKH LÊ DŨNG MƯU Thái Nguyên - 2017 i Mục lục Lời cảm ơn ii Bảng ký hiệu Mở đầu Các kiến thức chuẩn bị giải tích lồi 1.1 Tập lồi 1.1.1 Các định nghĩa tập lồi 1.1.2 Toán tử chiếu tập lồi 1.2 Hàm lồi 3 12 17 Điều kiện tối ưu toán quy họach lồi 2.1 Bài toán quy hoạch lồi 2.2 Điều kiện cần đủ tối ưu 2.2.1 Điều kiện tối ưu theo nguyên lý Fermat tốn tối ưu khơng ràng buộc hàm biến khả vi 2.2.2 Điều kiện với ràng buộc hình học 2.2.3 Điều kiện có ràng buộc đẳng thức bất đẳng thức 23 23 24 Kết luận 56 Tài liệu tham khảo 57 24 33 37 ii Lời cảm ơn Trước trình bày nội dụng luận văn, em xin bày tỏ lời lòng biết ơn sâu sắc tới GS.TSKH Lê Dũng Mưu người tận tình hướng dẫn giúp đỡ em suốt trình học tập nghiên cứu để em hồn thành luận văn Em xin bày tỏ lòng biết ơn chân thành tới quý thầy, cô giáo trường Đại học Khoa Học - Đại học Thái Nguyên giảng dạy giúp đỡ em hồn thành khóa học Em xin chân thành cảm ơn Ban Giám hiệu, quý thầy cô giáo khoa Toán - Tin trường Đại học Khoa Học - Đại học Thái Ngun, gia đình bạn bè ln động viên, giúp đỡ tạo điều kiện cho em mặt suốt trình học tập thực khóa luận tốt nghiệp Để hồn thành khóa luận thân em cố gắng nhiều Luận văn khó tránh khỏi thiếu sót Tác giả mong muốn nhận ý kiến đóng góp quý thầy, cô bạn đọc để luận văn hoàn thiện Xin trân trọng cảm ơn! Thái Nguyên, ngày tháng năm 2017 Tác giả luận văn DƯƠNG THỊ HOA Bảng ký hiệu R Rn B B(0, 1) Rm + ∂f (x) δC (.) L(x, µ, ν) f (x), f (x), ∇f ∇2 f , ∂f trường số thực không gian Euclide n-chiều hình cầu đơn vị mở Rn hình cầu đơn vị, đóng tâm orthant khơng âm Rm vi phân hàm lồi f x hàm tập C hàm Lagrange đạo hàm (bậc bậc 2) hàm số f (x) Gradient hàm f ma trận Hessian f tích vơ hướng Rn vi phân hàm f Mở đầu Bài toán quy hoạch lồi phần quang trọng lý thuyết tối ưu Trong lý thuyết tối ưu, điều kiện tối ưu quan trọng, nghiên cứu tính chất nghiệm, đề suất phương pháp giải Lý thuyết toán quy hoạch lồi quan tâm nghiên cứu nhiều từ lâu đạt nhiều kết quan trọng dựa kết Giải tích lồi tối ưu hóa Về phương diện tính tốn có nhiều phương pháp hữu hiệu cho lớp tốn Trong q trình học tìm hiểu điều kiện tối ưu tốn quy hoạch lồi ta thấy phát triển toán phong phú nhiều vấn đề nối tiếp khoa học hay Mục đích luận văn tổng kết lại giai đoạn phát triển điều kiện tối ưu toán quy hoạch lồi xét đến ứng dụng chúng việc xây dựng phương pháp giải Trên sở khảo sát đến số ứng dụng việc giải toán quy hoạch lồi Tổng hợp lại lý thuyết tối ưu điều kiện tối ưu quan trọng chúng cho phép nghiên cứu tính chất nghiệm, xây dựng phương pháp giải Điều kiện tối ưu dựa nguyên lý Fermat toán cực trị khơng có nghiệm ràng buộc hàm biến khả vi học chương trình PTTH Theo người ta phát triển nguyên lí quy hoạch có ràng buộc hàm nhiều biến khơng thiết khả vi Bản luận văn, phần mở đầu tài liệu tham khảo cịn có hai chương cụ thể là: Chương trình bày kiến thức Giải tích lồi Chương giới thiệu toán tối ưu đặc biệt sâu vào phát triển điều kiện tối ưu cho lớp toán tối ưu lồi Chương Các kiến thức chuẩn bị giải tích lồi Chương chủ yếu nhắc lại số khái niệm, định nghĩa kết cần thiết liên quan đến tập lồi hàm lồi Nội dung chương tham khảo từ tài liệu [1], [2] 1.1 1.1.1 Tập lồi Các định nghĩa tập lồi Định nghĩa 1.1.1 Một tập C ⊆ Rn gọi tập lồi, C chứa đoạn thẳng qua hai điểm Tức C lồi ∀x, y ∈ C, ∀λ ∈ 0, ⇒ λx + (1 − λ)y ∈ C Ta nói x tổ hợp lồi điểm (véc - tơ) x1 , , xk k k j λj x , λj > ∀j = 1, , k, x= j=1 λj = j=1 Tương tư, x tổ hợp a-phin điểm (véc - tơ) x1 , , xk k k j x= λj x , j=1 λj = j=1 Tập hợp tổ hợp a-phin x1 , , xk thường gọi bao a-phin điểm Định lý 1.1.2 Tập hợp C lồi chứa tổ hợp lồi điểm Tức là: C lồi k k ∀k ∈ N, ∀λ1 , , λk > : k λj = 1, ∀x , , x ∈ C ⇒ j=1 λj xj ∈ C j=1 Chứng minh Điều kiện đủ hiển nhiên từ định nghĩa Ta chứng minh điều kiện cần quy nạp theo số điểm Với k = 2, điều cần chứng minh suy từ định nghĩa tập lồi tổ hợp lồi Giả sử định lý với k − điểm Ta cần chứng minh với k điểm Giả sử x tổ hợp lồi k điểm x1 , , xk ∈ C Tức k k j λj x , λj > ∀j = 1, , k, x= j=1 λj = j=1 Đặt k−1 ξ= λj j=1 Khi < ξ < k−1 k−1 j x= k λj x + λk x = ξ j=1 Do j=1 k−1 j=1 λj j x + λk x k ξ (1.1) λj =1 ξ λj > với j = 1, , k − 1, nên theo giả thiết quy nạp, điểm ξ k−1 y := j=1 λj j x ∈ C ξ Ta có x = ξy + λk xk k Do ξ > 0, λk > ξ + λk = λj = 1, nên x tổ hợp lồi j=1 k hai điểm y x thuộc C Vậy x ∈ C Lớp tập lồi đóng với phép giao, phép cộng đại số phép nhân tích Descartes Cụ thể, ta có định lý sau: Định lý 1.1.3 Nếu A, B tập lồi Rn , C lồi Rm , tập sau lồi: A ∩ B := {x|x ∈ A, x ∈ B}, λA + βB := {x|x = αa + βb, a ∈ A, b ∈ B, λ, β ∈ R}, A × C := {x ∈ Rn+m |x = (a, c) : a ∈ A, c ∈ C} Chứng minh Dễ dàng suy trực tiếp từ định nghĩa Định nghĩa 1.1.4 Một tập C gọi tập a-phin chứa đường thẳng qua hai điểm nó, tức ∀x, y ∈ C, ∀λ ∈ R ⇒ λx + (1 − λ)y ∈ C Vậy tập a-phin trường hợp riêng tập lồi Như nêu, ví dụ điển hình tập a-phin khơng gian Một ví dụ khác tập a-phin siêu phẳng định nghĩa Định nghĩa 1.1.5 Siêu phẳng không gian Rn tập hợp điểm có dạng {x ∈ Rn |aT x = α}, a ∈ Rn véc - tơ khác α ∈ R Véc - tơ a thường gọi véc - tơ pháp tuyến siêu phẳng Một siêu phẳng chia không gian hai nửa không gian Nửa không gian định nghĩa sau: Định nghĩa 1.1.6 Nửa khơng gian tập hợp có dạng {x|aT x ≥ α}, a = α ∈ R Đây nửa khơng gian đóng Tập {x|aT x ≥ α} nửa không gian mở Như siêu phẳng chia không gian làm hai nửa khơng gian, nửa khơng gian phía siêu phẳng Nếu hai nửa không gian đóng phần chung chúng siêu phẳng Mệnh đề cho thấy tập a-phin ảnh tịnh tiến không gian Định lý 1.1.7 M = ∅ tập a-phin có dạng M = L + a với L không gian a ∈ M Không gian L xác định Không gian L định lý gọi không gian song song với M , nói ngắn gọn khơng gian M Thứ nguyên (hay chiều) tập a-phin M định nghĩa thứ nguyên không gian song song với M ký hiệu dim M Định nghĩa 1.1.8 Một tập gọi tập lồi đa diện, giao số hữu hạn nửa khơng gian đóng Như vậy, theo định nghĩa, tập lồi đa diện tập hợp nghiệm hệ hữu hạn bất phương trình tuyến tính Dạng tường minh tập lồi đa diện cho sau: D := {x ∈ Rn | aj , x ≤ bj , j = 1, , m} Hoặc ta ký hiệu A ma trận có m hàng véc - tơ aj (j = 1, , m) véc - tơ bT = (b1 , , bm ), hệ viết là: D = {x ∈ Rn |Ax ≤ b} Chú ý phương trình a, x = b viết cách tương đương dạng hai bất phương trình a, x ≤ b, −a, x ≤ b, ... phân hàm lồi - Các điều kiện tối ưu toán quy hoạch lồi như: Điều kiện tối ưu theo nguyên lý Fecmat tốn tối ưu khơng ràng buộc hàm biến khả vi; điều kiện với ràng buộc hình học; điều kiện có ràng... kiện tối ưu toán quy họach lồi 2.1 Bài toán quy hoạch lồi 2.2 Điều kiện cần đủ tối ưu 2.2.1 Điều kiện tối ưu theo nguyên lý Fermat toán tối ưu không ràng buộc... kết Giải tích lồi tối ưu hóa Về phương diện tính tốn có nhiều phương pháp hữu hiệu cho lớp toán Trong trình học tìm hiểu điều kiện tối ưu toán quy hoạch lồi ta thấy phát triển toán phong phú