Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 27 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
27
Dung lượng
1,17 MB
Nội dung
MỤC LỤC MỞ ĐẦU 1.1 Lí chọn đề tài 1.2 Mục đích nghiên cứu 1.3 Đối tượng nghiên cứu 1.4 Phương pháp nghiên cứu NỘI DUNG SÁNG KIẾN KINH NGHIỆM 2.1 Cơ sở lí luận sáng kiến kinh nghiệm 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm 2.3 Giải pháp sử dụng để giải vấn đề 2.4 Hiệu sáng kiến kinh nghiệm KẾT LUẬN, KIẾN NGHỊ Trang 1 2 2 19 20 MỞ ĐẦU 1.1 Lí chọn đề tài Ngày nay, nghiệp giáo dục đào tạo đổi trước yêu cầu phát triển kinh tế - xã hội theo hướng cơng nghiệp hố đại hoá đất nước Hướng đổi giáo dục đào tạo đào tạo người động, sáng tạo, chủ động trong học tập lao động để thích ứng với sống Bên cạnh việc dạy cho học sinh nắm vững nội dung kiến thức, giáo viên phải dạy cho học sinh biết suy nghĩ, tư sáng tạo, biết tạo cho học sinh có nhu cầu nhận thức trình học tập Từ nhu cầu nhận thức hình thành động thúc đẩy trình học tập tự giác, tích cực tự lực học tập để chiếm lĩnh tri thức Những thành đạt tạo niềm hứng thú, say mê học tập, nhờ mà kiến thức trở thành “tài sản riêng” em Học sinh nắm vững, nhớ lâu mà biết vận dụng tốt tri thức đạt để giải vấn đề nảy sinh học tập, thực tế sống lao động mai sau Đồng thời, học sinh có phương pháp học lớp học phương pháp tự học để đáp ứng đổi thường xuyên khoa học cơng nghệ ngày Tốn học mơn khoa học tự nhiên mang tính logíc, tính trừu tượng cao Đặc biệt với phân mơn số học giúp cho học sinh khả tính tốn, suy luận logíc phát triển tư sáng tạo Việc bồi dưỡng học sinh học tốn khơng đơn cung cấp cho em số kiến thức thông qua việc làm tập làm nhiều tập khó, hay mà giáo viên phải biết rèn luyện khả thói quen suy nghĩ tìm tịi lời giải tốn sở kiến thức học Qua nhiều năm cơng tác giảng dạy Tốn trường THCS tơi nhận thấy việc học tốn nói chung bồi dưỡng học sinh lực học tốn nói riêng, muốn học sinh rèn luyện tư sáng tạo việc học giải tốn việc cần làm giáo viên giúp học sinh khai thác đề toán để từ toán ta cần thêm bớt số giả thiết hay kết luận ta có tốn phong phú hơn, vận dụng nhiều kiến thức học nhằm phát huy nội lực giải tốn nói riêng học tốn nói chung Vì tơi sức tìm tịi, giải chắt lọc hệ thống lại số tập mà ta khai thác đề để học sinh lĩnh hội nhiều kiến thức toán - Với mong muốn góp phần cơng sức nhỏ nhoi việc bồi dưỡng lực học toán cho học sinh nhằm rèn luyện khả sáng tạo học toán cho học sinh để em tự phát huy lực độc lập sáng tạo mình, nhằm góp phần vào cơng tác chăm lo bồi dưỡng đội ngũ học sinh giỏi toán ngày khả quan Với lí trên, tơi xin trình bày đề tài “Khai thác phát triển toán từ toán ban đầu nhằm phát triển tư sáng tạo cho học sinh khá, giỏi lớp bậc THCS” hi vọng góp phần vào giải vấn đề 1.2 Mục đích nghiên cứu Giáo viên tìm cách khai thác tốn ban đầu để giúp học sinh phát triển thành toán khó hơn, phức tạp 1.3 Đối tượng nghiên cứu Đề tài nghiên cứu việc hướng dẫn để giúp học sinh khá, giỏi lớp bậc THCS khai thác phát triển toán từ toán ban đầu 1.4 Phương pháp nghiên cứu - Phương pháp nghiên cứu : Tìm hiểu, nghiên cứu tài liệu bồi dưỡng, sách giáo khoa, sách tham khảo,… - Phương pháp điều tra - Phương pháp đối chứng - Phương pháp thực nghiệm - Phương pháp tổng kết kinh nghiệm lớp học sinh trước để rút kinh nghiệm cho lớp học sinh sau NỘI DUNG CỦA SÁNG KIẾN KINH NGHIỆM 2.1 Cơ sở lí luận sáng kiến kinh nghiệm Đặc điểm lứa tuổi học sinh THCS muốn vươn lên làm người lớn, muốn tự khám phá, tìm hiểu trình nhận thức Các em có khả điều chỉnh hoạt động học tập, sẵn sàng tham gia hoạt động học tập khác cần phải có hướng dẫn, điều hành cách khoa học nghệ thuật thầy, giáo Hình thành phát triển tư tích cực, độc lập, sáng tạo cho học sinh q trình lâu dài *Tư tích cực, độc lập sáng tạo HS thể số mặt sau: - Biết tìm phương pháp nghiên cứu giải vấn đề, khắc phục tư tưởng rập khn, máy móc - Có kĩ phát kiến thức liên quan với nhau, nhìn nhận vấn đề nhiều khía cạnh - Có óc hồi nghi, ln đặt câu hỏi: Tại sao? Do đâu? Liệu có cách khác khơng? Các trường hợp khác kết luận cịn hay khơng? … - Tính độc lập cịn thể chỗ biết nhìn nhận vấn đề giải vấn đề - Có khả khai thác vấn đề từ vấn đề quen biết *Khai thác, phát triển kết tốn nói chung có nhiều hướng như: - Nhìn lại tồn bước giải Rút phương pháp giải loại tốn Rút kinh nghiệm giải tốn - Tìm thêm cách giải khác - Khai thác thêm kết có tốn, đề xuất toán 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm Qua trình công tác giảng dạy, thấy: - Đa số học sinh, sau tìm lời giải cho tốn em hài lịng dừng lại, mà khơng tìm lời giải khác, khơng khai thác thêm tốn, khơng sáng tạo thêm nên khơng phát huy hết tính tích cực, độc lập, sáng tạo thân - Học sinh học vẹt, làm việc rập khn, máy móc, lười suy nghĩ, lười tư q trình học tập Từ dẫn đến làm tính tích cực, độc lập, sáng tạo thân - Khơng học sinh thực chăm học chưa có phương pháp học tập phù hợp, chưa tích cực chủ động chiếm lĩnh kiến thức nên hiệu học tập chưa cao - Học không đôi với hành, làm cho thân học sinh củng cố, khắc sâu kiến thức, rèn luyện kĩ để làm tảng tiếp thu kiến thức mới, lực cá nhân khơng phát huy hết - Một số giáo viên chưa thực quan tâm đến việc khai thác, phát triển, sáng tạo tốn tiết dạy nói riêng công tác bồi dưỡng học sinh giỏi nói chung - Việc chuyên sâu vấn đề đó, liên hệ tốn với nhau, phát triển toán giúp cho học sinh khắc sâu kiến thức Quan trọng nâng cao tư cho em học sinh , giúp học sinh có hứng thú học tốn - Trước thực trạng địi hỏi phải có giải pháp phương pháp dạy học cho phù hợp Trong năm học 2016 – 2017, giao nhiệm vụ dạy Tốn Khối có lớp với tổng cộng 68 học sinh, số học sinh khá, giỏi tốn 19 em Giữa học kì I năm học, tơi kiểm tra kiến thức tốn học sinh với đề kiểm tra khảo sát sau: (Thời gian: 60 phút) Bài 1(4 điểm): Tính tổng sau: a A = + + + + 50 b B = + + + + 49 c C = 1.2 + 2.3 + 3.4 + 4.5 + …+ 49.50 d D = 1.4 + 2.5 + 3.6 + + 99.102 Bài 2(3 điểm): Tính tổng sau: a A = + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 b B = 12 + 22 + 32 + 42 + … + 502 Bài 3(3 điểm): 1 a Tính tổng: A = 1.2 b Cho B = 1.2.3 2.3 2.3.4 3.4 49.50 18.19.20 Chứng minh: B Kết ban đầu chưa áp dụng sáng kiến kinh nghiệm này: Số Số học sinh đạt điểm trung bình trở lên Học sinh 19 Số lượng Tỉ lệ ( % ) 15,8 2.3 Giải pháp sử dụng để giải vấn đề Qua toán mà học sinh giải được, định hướng cho em tư duy, tập trung nghiên cứu thêm lời giải, kết tốn Bằng hình thức như: - Kiểm tra kết Xem xét lại lập luận - Nghiên cứu, tìm tịi, với việc tập trung giải vấn đề như: Liệu toán cịn có cách giải khác hay khơng? từ tốn cho có rút tốn tổng qt khơng? Có thể thay đổi kiện cho để đề xuất tốn khơng? Bài tốn cho có liên quan với tốn khác khơng? Trong đề tài này, xin minh hoạ cách khai thác, phát triển từ kết ba tốn tính tổng lớp quen thuộc Nhằm giúp học sinh thấy hay, đẹp, thú vị học tốn nói chung số học nói riêng Từ đó, giúp học sinh tự tin, tích cực, sáng tạo học tốn; giúp học sinh thêm u thích mơn Tốn hơn, nâng cao chất lượng mũi nhọn Đặc biệt kết học tập mơn tốn ngày nâng lên rõ rệt Từ kết toán ban đầu, chịu khó suy xét tiếp ta khai thác theo nhiều khía cạnh như: tìm lời giải khác, phát triển toán, tạo chuỗi toán hay thú vị khác Sau vài ví dụ minh hoạ: Dạng 1: Khai thác, phát triển từ số tốn liên quan đến tính tổng số tự nhiên, tổng lũy thừa với số số mũ số tự nhiên 1.1 Bài toán hướng khai thác tốn 1: Tính tổng: A = + + + + 100 Phân tích tốn: Đây tổng số tự nhiên liên tiếp, khoảng cách chúng Để tính tổng A ta tính xem tổng A có số hạng sau sử dụng tính chất giao hốn, kết hợp để tính tổng Từ ta có cách giải tốn sau: Giải Cách 1: Ta có A = + + + + 100 + A=100+ 99+98+ +1 2A=101+101+ +101 100 số hạng 2A=101.100 A = 101.50 A = 5050 Giáo viên hướng dẫn cho học sinh làm theo cách khác Cách 2: Ta có số số hạng tổng là: (100-1):1+1=100 Do đó: A=1+2+3+ +100 A = (1+ 100) + + (49 + 51) 50 cặp A= 101+101+101+ +101 50 cặp A = 101.50 A = 5050 Như vậy: Muốn làm tốt toán ta thực bước sau: Bước 1: Tìm số số hạng dựa theo cơng thức: (Số cuối - số đầu) : khoảng cách hai số liên tiếp + Bước 2: Ghép cặp Có nhiều cách ghép cặp, nhiên thông thường ta nên ghép cặp sau: số hạng đầu với số hạng cuối Bước 3: Tính tổng cho cách chuyển tổng cần tìm tìm tích Hướng khai thác thứ nhất: Bài toán tổng quát toán Bài tốn 1.1: Tính tổng: B = + + + + n (với n N*) Từ cách giải tốn ta có cơng thức tính tổng số tự nhiên liên tiếp từ đến n (Với n N* ) sau: + + + + n = n(n 1) với n N* Vậy dựa theo công thức tổng quát để tính tổng dãy số cách Hướng khai thác thứ hai: Thay đổi khoảng cách số hạng dãy toán Bài toán 1.2: Tính tổng: a) C = + + + + 49 b) D = + + + + 100 (1 49).25 50.25 Giải 252 625 a) Tổng C có: 49 :2 25 (số hạng) C b) Tổng D có: 100 :2 50 (số hạng) D (2 100).50 2 102.25 2550 Từ tốn 1.2 ta có tốn tổng qt sau : Bài tốn 1.3: Tính tổng: a) + + + +(2n – 1) (Với n N* ) b) + + + + 2n (Với n N* ) Giải Với cách làm tốn 1.2, ta có: a) Cơng thức tính tổng số tự nhiên lẻ liên tiếp từ đến 2n - (Với n N* ) sau: + + + + (2n-1) = n2 với n N* b) Cơng thức tính tổng số tự nhiên chẵn liên tiếp từ đến 2n (Với n N* ) sau: + + + + 2n = n(n+1) với n N* Hướng khai thác thứ ba: Thay đổi yêu cầu toán Bài tốn 1.4: Tìm số tự nhiên x biết: x + (x + 1) + (x + 2) + (x + 3) + .+ (x + 48) + (x + 49) = 1275 Phân tích tốn: Thoạt nhiên có nhiều học sinh lúng túng gặp này, giáo viên gợi ý học sinh câu hỏi: Em nhóm số hạng x vế trái thành nhóm, số hạng cịn lại thành nhóm Nếu học sinh khơng trả lời giáo viên viết lại tốn sau: Tìm số tự nhiên x biết: ( x + x + x + + x) + (1 + + + + 48 + 49) = 1275 có số hạng x Từ vận dụng phương pháp làm tốn 1.1 để giải toán này? ( giáo viên yêu cầu ) Và ta có cách làm sau: Giải Ta có: x + (x + 1) + (x + 2) + (x + 3) + .+ (x + 48) + (x + 49) = 1275 ( x + x + x + + x) + (1 + + + + 48 + 49) = 1275 50 số hạng 50.x + (49 1).49 = 1275 50.x + 1225 = 1275 50.x = 1275 - 1225 50.x = 50 x =1 Vậy x = 1.2 Bài toán hướng khai thác tốn 2: * Tính tổng: D = 1.2 + 2.3 + 3.4 + 4.5 + …+ 99.100 Phân tích toán: Mỗi hạng tử tổng tích, tích có hai thừa số, khoảng cách hai thừa số Để tính tổng D ta biến đổi D để làm xuất hạng tử đối để triệt tiêu dần hạng tử Ta nhân hai vế D với Thừa số viết dạng – số hạng thứ nhất, – số hạng thứ hai, – số hạng thứ ba… 101 – 98 số hạng cuối từ ta có cách giải tốn sau: Giải 3D = 1.2.(3 – ) + 2.3.(4 – ) + 3.4 (5 – 2) + …+ 99.100 (101 – 98) = (1.2.3 + 2.3.4 + 3.4.5 + …+ 98.99.100 + 99.100.101) – (0.1.2 + 1.2.3 + 2.3.4 + …+ 97.98.99 + 98.99.100) 99.100.101 = 99.100.101 : = 333300 Vậy D = 333300 * Các hướng khai thác toán Hướng khai thác thứ nhất: Bài toán tổng qt tốn Bài tốn 2.1: Tính tổng: E = 1.2 + 2.3 + 3.4 + 4.5 + 5.6 +…+ n(n+1) Từ cách giải toán ta có cơng thức tổng qt: 1.2 + 2.3 + 3.4 + 4.5 + 5.6 +…+ n(n+1) = n.(n 1).(n 2) với n N* = Hướng khai thác thứ hai: Thay đổi khoảng cách thừa số hạng tử toán Nhận xét: Trong toán 2, thừa số hạng tử (cách nhau) đơn vị ta thay đổi khoảng cách thừa số hạng tử toán phát triển thành số tốn sau: Bài tốn 2.2: Tính: F=1.3 + 3.5 + 5.7 +…+ 97.99 Giải 6F = 1.3.6 + 3.5.6 + 5.7.6 + … + 97.99.6 = 1.3.(5 + 1) + 3.5.(7 - 1) + 5.7(9 - 3) + … + 97.99(101 - 95) 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + … + 97.99.101 - 95.97.99 = 1.3.5 + 1.3 + = 1.3.5 + + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 +…+ 97.99.101 - 95.97.99 = + 97.99.101 F = ( + 97.99.101 ) : = 161 651 Từ toán 2.2 ta có tốn tổng qt sau: Bài tốn 2.3: Tính tổng: G = 1.3 + 3.5 + 5.7 + … + (2n – 1).(2n + 1) với n Giải Với cách làm tốn 2.2, ta có công thức tổng quát: 1.3 + 3.5 + 5.7 + + (2n - 1).(2n+1) = (2n 1)(2n 1)(2n 3) N* với n N* Nhận xét: Ta thấy khoảng cách hai thừa số số hạng toán 2–1=3-2=4–3=…=1; Ở toán 2.2 – = – = – = … = Trong toán 2.2 ta nhân hai vế E với ( lần khoảng cách hai thừa số ), toán 2.2 ta nhân hai vế F với (3 lần khoảng cách hai thừa số) Từ nhận xét học sinh làm dạng theo hướng khai thác thứ Giáo viên tập nhà theo hướng khai thác sau: Tính G1 = 1.4 + 4.7 + 7.10 + … + 97.100 (Gợi ý: nhân hai vế G1 với lần khoảng cách ) Tính G2 = 1.5 + 5.10 + 10.15 + …+ 100.105 (Gợi ý: nhân hai vế G2 với lần khoảng cách ) Tính G3 = 2.4 + 4.6 + 6.8 + ….+ 98.100 ( Gợi ý: nhân hai vế G3 với lần khoảng cách ) Bài toán 2.4: Tính tổng: H = 2.4 + 4.6 + 6.8 + 8.10 + … + 196.198 + 198.200 Phân tích toán : Ta thấy số hạng tổng tích số tự nhiên chẵn liên tiếp Do đó, để tách số hạng thành hiệu số nhằm triệt tiêu cặp số hạng với ta nhân hai vế H với Thừa số viết dạng: (6 - 0) số hạng thứ nhất, (8 - 2) số hạng thứ hai, (10 - 4) số hạng thứ ba, ,(202 - 196) số hạng cuối Giải 6.H = 2.4.6 + 4.6.6 + 6.8.6 + … + 196.198.6 + 198.200.6 6.H = 2.4.6 + 4.6.(8 – 2) + 6.8.(10 – 4) + … + 196.198.(200 – 194) + 198.200.(202 – 196) 6.H = 2.4.6 + 4.6.8 - 2.4.6 + 6.8.10 - 4.6.8 +…+ 196.198.200 - 194.196.198 + 198.200.202 - 96.198.200 6.H = 198.200.202 H = 198.200.202 : = 333 200 Từ toán 2.4 ta có tốn tổng qt sau : Bài tốn 2.5: Tính tổng I = 2.4 + 4.6 + 6.8 + … + (2n – 2).2n với n Giải Với cách làm tốn 2.4, ta có cơng thức tổng quát: (2n 2)2n(2n 2) 2.4 + 4.6 + 6.8 + + (2n – 2).2n = N*, n > với n N*, n > Bài tốn 2.6: Tính tổng: K = 1.3 + 2.4 + 3.5 + + 99.101 Phân tích tốn: Để tính tổng K ta khơng nhân vế với số thích hợp mà tách thừa số số hạng làm xuất tổng khác mà ta biết cách tính dễ dàng tính Giải K = 1.3 + 2.4 + 3.5 + + 99.101 =1(2+1)+2(3+1)+3(4+1) + +99(100+1) =1.2+1+2.3+2+3.4+3+ +99.100+99 = (1.2 + 2.3 +3.4 + + 99.100) + (1 + + + + 99) 99.100.(99.2 7) 338250 = 99.100.101 99.100 99.100.205 6 Giáo viên hướng dẫn học sinh biến đổi biểu thức K thành tổng hai biểu thức có dạng tốn 2.3 2.5 tính tổng K Từ tốn 2.6 ta có tốn tổng qt sau : Bài tốn 2.7: Tính tổng: M = 1.3 + 2.4 + 3.5 + + n(n + 2) với n N* Giải Với cách làm tốn 2.6, ta có công thức: 1.3 + 2.4 + 3.5 + + n(n + 2) = N* n(n 1)(2n 7) với n Bài tốn 2.8: Tính tổng: N = 1.4 + 2.5 + 3.6 + + 99.102 Giải Ta có: N = 1.4 + 2.5 + 3.6 + + 99.102 =1(2+2)+2(3+2)+3(4+2)+ +99(100+2) = 1.2 + 1.2 + 2.3 + 2.2 + 3.4 + 3.2 + + 99.100 + 99.2 = (1.2 + 2.3 + 3.4 + + 99.100) + 2(1 + + + + 99) 99.100.(99 5) 343200 = 99.100.101 99.100 99.100.104 3 Từ tốn 2.8 ta có tốn tổng qt sau : Bài tốn 2.9: Tính tổng: P = 1.4 + 2.5 + 3.6 +…+ n(n + 3) Giải Với cách làm toán 2.8, ta có cơng thức: 1.4 + 2.5 + 3.6 +…+ n(n + 3) = n.(n 1)(n 5) với n N* với n N* Hướng khai thác thứ ba: Làm tăng thêm thừa số hạng tử tốn Bài tốn 2.10: Tính tổng: Q = 1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + … + 98.99.100 Giải Q = 1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + …+ 98.99.100 4.Q = (1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + …+ 98.99.100).4 = [1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + 4.5.6.(7-3) + …+ 98.99.100(101 – 97)] = (1.2.3.4 - 1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6 – 3.4.5.6 +…+ 97.98.99.100 – 97.98.99.100 + 98.99.100.101) = 98.99.100.101 Vậy Q = 98.99.100.101 = 24 497 550 Từ tốn 2.10 ta có tốn tổng qt sau: Bài tốn 2.11: Tính tổng: R = 1.2.3 + 2.3.4 + … + n (n + 1)(n + 2) với n N* Giải Ta có: 1.2.3 1.2.3.4 0.1.2.3 ; 2.3.4 2.3.4.5 1.2.3.4 ; 3.4.5 3.4.5.6 2.3.4.5 4 4 4 ……………… n(n 1)(n 2)(n 3) (n 1)n(n 1)(n 2) n (n + 1)(n + 2) = 4 Cộng vế với vế đẳng thức trên, ta được: R = 1.2.3 + 2.3.4 + … + n (n + 1)(n + 2) = n(n Ta có công thức tổng quát: 1.2.3 + 2.3.4 … + n (n + 1)(n + 2) = n(n 1)(n 2)(n 3) 1)(n 3) 2)(n với n N* Từ toán 2.11, ta tiếp tục thay đổi khoảng cách thừa số hạng tử, ta có toán sau: Hướng khai thác thứ tư: Vừa làm thay đổi khoảng cách thừa số, vừa làm tăng thêm thừa số hạng tử tốn Bài tốn 2.12: Tính tổng: S = 1.3.5 + 3.5.7 + … + 5.7.9 + … + 95.97.99 Giải 8S = 1.3.5.8 + 3.5.7.8 + 5.7.9.8 + … + 95.97.99.8 = 1.3.5(7 + 1) + 3.5.7(9 - 1) + 5.7.9(11 - 3) +…+ 95.97.99(101 - 93) = 1.3.5.7 + 15 + 3.5.7.9 - 1.3.5.7 + 5.7.9.11 - 3.5.7.9 + … + 95.97.99.101 - 93.95.97.99 = 15 + 95.97.99.101 S= 15 95.97.99.101 = 11 517 600 Nhận xét: Ta thấy khoảng cách hai thừa số liên tiếp hạng tử toán 2.11 là: 2–1=3-2=4–3=…=1; Ở toán 2.12 là: – = – = – = … = 10 hạng cuối tổng V Từ toán 2.15 ta phát triển thành tốn tổng qt sau: Bài tốn 16: Tính tổng: X = 12 + 22 + 32 + 42 +…+ n2 với n N* Giải Với cách làm toán 2.14, 2.15, ta có cơng thức tính tổng bình phương số tự nhiên từ đến n sau: 12 + 22 + 32 + 42 +…+ n2 = n(n 1)(2n 2) với n N* Thay đổi khoảng cách số 2.15 ta có tốn sau: Bài tốn 17: Tính X = 12 + 32 + 52 + … + 992 Giải X1=1 +3(2+1)+5(2+3) + 7(2+5)+…+99(2+97) =1+2.3+ 1.3 + 2.5 + 3.5 + 2.7 + 5.7 + … + 2.99 + 97.99 = +2(3+ + +…+ 99) + (1.3+3.5+5.7 +…+ 97.99) = + 4998 + 161651 = 166650 Thay đổi số mũ toán 2.15 ta có tốn sau: Bài tốn 2.18: Tính: X2 = 13 + 23 + 33 + … + 1003 Giải 3 3 Ta có: X2 = + + + … + 100 = 13–1+23–2+33–3+…+1003–100 +(1+2+3+ …+100) = 0+2(22–1)+3(32–1)+…+100(1002–1)+(1+2+3+…+100) = (1.2.3 + 2.3.4 + …+ 99.100.101) + ( + + + … + 100 ) 99.(99 1).(99 2).(99 3) 100.101 = = 101989800 + 5050 = 101994850 Từ toán 2.18 ta có tốn tổng qt sau: N* Bài tốn 2.19: Tính tổng: X3 = 13 + 23 + 33 + … + n3 với n Giải Với cách làm tốn 2.18, ta có: X3 = 13 + 23 + 33 + … + n3 = 13 – + 23 – + 33 – + 43 – + 53 – +…+ n3 – n + ( + + + …+ n ) = + 2( 22 – ) + 3( 32 – ) + 4( 42 – ) + …+ n( n2 – ) + ( + + + + …+ n ) = + 1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + …+ (n – )n( n + ) + ( + + + + … + n ) n(n 1) n(n 1) (n 1)(n 2) = (n 1)n(n 1)(n 2) 4 12 = n(n 1) n2 n 2) n(n 1) n(n 1)2 n(n 1) 4 Ta có cơng thức tính tổng lập phương số tự nhiên đến từ n sau: 3 3 n(n 1) +2 +3 +…+n = với n N* Thay đổi khoảng cách số 2.18 ta có tốn sau: Bài tốn 2.20: Tính tổng: X4 = 13 + 33 + 53 + … + 993 Phân tích tốn: Đây tổng lập phương số lẻ liên tiếp Muốn tính tổng ta lập tổng tổng lập phương số tự nhiên liên tiếp trừ phần cộng thêm Giải X4 = 13 + 33 + 53 + … + 993 = (13 + 23 + 33+…+ 993) - (23 + 43 + 63+…+983) = (13 + 23 + 33+…+ 993) - 23(13 + 23 + 33 +…+493) 2 49.50 = 99.100 2 4950 8.1225 24502500 12005000 12497500 Từ toán 2.20 ta có tốn tổng qt sau: Bài tốn 2.21: Tính tổng: X5 = 13 + 33 + 53 + + (2n + 1)3 với n N Giải Với cách làm tốn 2.20, ta có: X5 = 13 + 33 + 53 + + (2n + 1)3 = [13 + 23 + 33 + (2n)3 + (2n + 1)3] - [23 + 43 + 63 + + (2n)3] = [13 + 23 + 33 + (2n)3 + (2n + 1)3] - 23 [13 + 23 + 33 + + n3] = 2n 2n 1 = 2n n n 12 2n nn 2 n (n 1) 4n 2 2n n nn 2 2 n 2n 2n2 2 = Ta có cơng thức tính tổng lập phương số tự nhiên lẻ liên tiếp từ đến 2n + sau: 13 + 33 + 53 + + (2n + 1)3 = n 2n2 4n với n N* Từ toán 2.15 hoán vị số mũ số ta có tốn sau: Bài tốn 2.22: Tính tổng: Y = + 22 + 23 + 24 + + 299 Giải Ta có: Y = + 22 + 23 + 24 + + 299 2Y=22+23+24+ +299+2100 Xét: 2Y - Y = (22 + 23 + 24 + + 299 + 2100) - (2 + 22 + 23 + 24 + + 299) Suy ra: Y = 2100 - Từ cách giải toán 2.22 học sinh biết cách làm toán sau: Bài tốn 2.23: Tính tổng: Y1 = + 22 + 23 + 24 + + 2n ĐS: Y1 = = 2n+1 – 13 Từ toán 2.23 thay số số a (với a N, a > 1, n N) ta toán tổng quát sau: với a N, a > 1, n N Bài tốn 2.24: Tính tổng: Y2 = + a + a2 + a3 + … + an Giải Với cách làm toán 2.23, ta có: a Y2 – Y2 = an+1 – (a – 1) Y2 = an+1 – Y2 = a n 1 a Ta có cơng thức: + a + a + a3 + … + a n = an 1 a với a N, a > 1, n N Nhận xét: Với cách khai thác ta khai thác, phát triển toán thành nhiều toán hay mà q trình giải địi hỏi học sinh phải có linh hoạt, sáng tạo * Bài tập tự luyện: Tính tổng sau: a A=2+6+10+ 14+ +202 b B = 1.4 + + 3.6 + 4.7 + + n( n +3 ) (n = 1,2,3 , ) c C=49+64+81+ +169 d 1.3.5.7 + 3.5.7.9 + 5.7.9.11 + …+ 93.95.97.99 e E = 1+2 +22 +23 + + 26.2 + f F=5+52+53 + +599 +5100 Dạng 2: Khai thác, phát triển từ số tốn liên quan đến tính tổng phân số với tử số mẫu số số tự nhiên * Bài toán ban đầu hướng khai thác tốn 1 Tính tổng: A = 1.2 2.3 3.4 99.100 Phân tích tốn Ta thấy phân số có mẫu tích hai số tự nhiên liên tiếp nên ta viết sau: 1 1; 1 1; 1 ;… 1 1; 1.2 1 99 99.100 sau: 100 2.3 3.4 98.99 98 99 Từ ta tính tổng A cách dễ dàng Ta giải tốn Giải A 1 2 = 1 98 1.2 1 99 99 2.3 100 3.4 99.100 = 14 =1 99 100 99 99 Vậy: A = 100 99 100 * Các hướng khai thác toán Hướng khai thác thứ nhất: Bài toán tổng quát toán Bài toán 1: 1 1 với n N* Tính tổng: B = 1.2 2.3 3.4 n n Giải Với cách làm tốn 1, ta có cơng thức: 1.2 2.3 3.4 n n = n với n n N* Hướng khai thác thứ hai: Thay đổi khoảng cách hai thừa số mẫu phân số toán ban đầu 1 Bài tốn 2: Tính tổng: C = 1.3 3.5 5.7 99.101 Đối với đầu có nhiều học sinh hiểu nhầm áp dụng giống 11 11 cánh làm toán biến đổi 3 ; 3.5 ; thực tế không vậy, thực tế là: 1 3 1.3 ;1 1.3 5 3.5 ; ; 3.5 99 101 101 99 99.101 99.10 Giáo viên hỏi: phải biến đổi B dạng áp dụng cách giải toán ? Và học sinh biến đổi sau: 2 2C = 1.3 3.5 5.7 99.101 1 1 1 1 1 = 3 5 99 101 101 100 100 50 101 Vậy C = 101.2 101 Nhận xét: Xét hiệu hai thừa số mẫu ta thấy – = – = – = … = 101 – 99 = phải biến đổi phân số biểu thức B có tử tách phân số thành hiệu hai phân số có tử có mẫu hai thừa số tích mẫu ban đầu Khi học sinh hiểu giáo viên tốn dạng Từ tốn ta có tốn tổng qt sau: 1 Bài tốn : Tính tổng: C1 = với n N, n lẻ 1.3 3.5 5.7 nn Giải 15 1.3 = Ta có: C1 = 1 3.5 5.7 nn 1 1 1 3 5 n n 2 1 n 2 n n Ta có cơng thức: 1.3 3.5 5.7 nn =1 n n với n N, n lẻ Bài toán 4: Tính tổng: C2 = 4.6 6.8 8.10 54.56 Và học sinh dễ dàng tính tổng C cách nhân hai vế C với ( – = 8- = 10 – = … = 56 – 54 = ) tính tương tự ĐS: 2C2 = 1 C 13 Bài toán 5: Tính tổng: D = 56 5.10 112 1 10.15 15.20 100.115 Học sinh tính tổng D cách nhân hai vế D với ( Vì 10 – = 15 – 10 = … = 115 – 100 = ) Và tính tương tự 22 ĐS: D = 575 Hướng khai thác thứ ba: Làm thay đổi mẫu số phân số ban đầu Bài toán 6: Tính: E = 1 12 9900 Nhận xét: Ta có = 1.2; = 2.3 ; 12 = 3.4 ; …; 9900 = 99.100 Như tốn đưa tốn quen thuộc tốn Giải 1 1 1 1 1 99 E = 12 9900 = 1.2 2.3 3.4 99.100 100 100 Hướng khai thác thứ tư: Làm thay đổi tử số phân số toán Bài toán 7: 2 Tính tổng: F = 1.3 3.5 5.7 99.100 Nhận xét: Từ cách giải toán học sinh biết cách giải toán 2 2 Giải F= 1.3 = Vậy F = 3.5 5.7 1 100 99.100 5 99 101 1 101 100 101 101 Từ tốn ta có tốn tổng qt sau: Bài tốn : Tính tổng: F1 = 2 1.3 Ta có: F1 = 1.3 3.5 5.7 3.5 5.7 Giải với n N, n lẻ nn nn 16 1 = Ta có cơng thức: Bài tốn 9: 1 1 2 1.3 3.5 5.7 Tính tổng: G = n n = n nn 3 n 3.5 5.7 1.3 n n n với n N, n lẻ 99.100 Nhận xét: Trong biếu thức G giả sử tử số phân số giống tốn ta dễ dàng giải Vậy làm để tử số mà đề tốn? Đây tình có vấn đề buộc học sinh phải suy nghĩ tìm cách biến đổi, ta có cách giải sau: Giải 3 ) G= ( = = = 1.3 ( 3.5 5.7 3.5 5.7 1.3 99.100 ) 99.100 1 1 1 1 ( 3 5 99 101 ) 1 100 150 ( 101 ) 101 101 Hướng khai thác thứ năm: tăng thêm thừa số mẫu số phân số toán ban đầu 1 Bài tốn 10: Tính tổng: H = 1.2.3 2.3.4 3.4.5 98.99.100 1 1 Nhận xét: Ta có: ; ;…; 1.2 2.3 1.2.3 2.3 3.4 2.3.4 98.99 99.100 98.99.100 Giải 2H=( 1 ).2 1.2.3 2.3.4 3.4.5 98.99.100 1 + 1 = +1 1.2 2.3 2.3 3.4 98.99 99.100 1.2 4949 Vậy H = 9900 Từ tốn 10 ta có toán tổng quát sau: 1 Bài toán 11 : Tính tổng: H1 = 1.2.3 2.3.4 3.4.5 Giải Với cách làm tốn 10, ta có: 1 H1 = 1.2.3 2.3.4 3.4.5 = (n 1)(n 2) (n 1)(n 2) 2 2(n 1)(n 2) n(n 1)(n 2) 4(n 1)(n 2) n 99.100 n(n 1)(n 2) 9898 19800 4949 9900 với n N* 1 2 (n 1)(n 2) 2n n n(n 3) 4(n 1)(n 2) 4(n 1)(n 2) Ta có cơng thức : 17 1 1.2.3 2.3.4 3.4.5 N* Bài tốn 12: Tính tổng: I = Nhận xét: Ta có: = n(n 1)(n 2) 1 1.2.3.4 2.3.4.5 1 1.2.3.4 2.3.4.5 3.4.5.6 1.2.3.4 n(n 3) 4(n 1)(n 2) 3.4.5.6 27.28.29.30 1.2.3 2.3.4 1 2.3.4.5 3 2.3.4 3.4.5 3 3.4.5 3 3.4.5.6 với n 4.5.6 ………………………………………………… 1 Ta có: I = = = 1 ( 27.28.29.30 1 27.28.29.30 Giải 1 27.28.29 28.29.30 .( 3 1.2.3.4 2.3.4.5 1 3.4.5.6 ).3 27.28.29.30 1.2.3 ( 1.2.3 2.3.4 2.3.4 3.4.5 4059 28.29.30 ) 24360 27.28.29 1353 451 24360 28.29.30 ) 8120 451 Vậy I = 8120 Từ tốn 12 ta có tốn tổng qt sau: Bài tốn 13: 1 Tính tổng: I1 = 1.2.3.4 2.3.4.5 N* 3.4.5.6 với n n(n 1)(n 2)(n 3) Giải Với cách làm tốn 12, ta có: 1 1 I1 = 1.2.3.4 2.3.4.5 1 3.4.5.6 n(n 1)(n 2)(n 3) = [ 1.2.3.4 2.3.4.5 3.4.5.6 n(n 1)(n 2)(n 3) 1 1 = [ 1.2.3 2.3.4 2.3.4 3.4.5 n(n 1)(n 2) 1 1 = [ 1.2.3 Ta có cơng thức : 1.2.3.4 2.3.4.5 (n 1)(n 2)(n 3) 3.4.5.6 (n 1)(n 2)(n 3) ] ] ].3 n(n 1)(n 2)(n 3) = [ 1.2.3 1 (n 1)(n 2)(n 3) n N* Hướng khai thác thứ sáu: vừa làm thay đổi tử số phân số, vừa làm tăng thêm thừa số mẫu số phân số toán ban đầu ] với 18 Bài tốn 14: Tính tổng: K = 1.2.3 98.99 2.3.4 99.100 Giải 1.2 Bài toán 15 : 98.99.100 1.2 2.3 3 1.2.3 1.2 1 2.3 +…+ 3.4 1.2.3 2.3.4 3.4.5 98.99.100 Giải 98.99.100 ) 2.3.4 3.4.5 2 ) 2.3.4 3.4.5 98.99.100 + 1 + …+ 2.3 2.3 3.4 98.99 ) = 9898 = 4949 Ta có: M = ( 1.2.3 = (2 +1 19800 1.2 98.99.100 =1 9898 99.100 Tính M = =( 3.4.5 Vậy: K = 9898 19800 =( 1.2.3 2 3.4.5 K= 2 2.3.4 99.100 19800 2 ) 99.100 6 0 4949 Vậy M = 6 0 Hướng khai thác thứ bảy: Thay đổi yêu cầu toán 1 Bài toán 16: 1 99.100 < Chứng minh rằng: N = 1.2 2.3 3.4 Nhận xét: Vế trái bất đẳng thức tốn ban đầu, ta vận dụng tốn ban đầu để tính vế trái sau tìm cách chứng minh tốn Giải 1 Ta có: N = 1.2 2.3 3.4 99.100 = 1 1 1 1 1 2 3 98 99 99 100 = 1 100 99 99 99 100 Vậy N < Bài toán 17: Chứng minh rằng: Nhận xét: 1 5.6 … 5.5 100.101 ; 4.5 100.1000 5.6 6.7 7.8 100.101 P > 1 1 (2) 6 7 Từ (1) (2) ta suy ra: 1 101 5 65 1 2 11.16 5 16.21 c C = 21.26 1.2.3 Bài 2: a Cho A = b Cho B = 1 100 101 100 4 5.7 7.9 61.66 2.3.4 36 36 59.61 b B ; = 37.38.39 36 1.3.5 5.8.11 100 * Bài tập tự luyện: Bài 1: Tính a A = 100 6 Vậy: 1 99 3.5.7 8.11.14 25.27.29 Chứng minh: A < 302.305.308 Chứng minh: B 48 c Chứng minh với n N; n > ta có: C = 1 1 3 n 2.4 Hiệu Triển khai áp dụng đề tài cho 19 học sinh khá, giỏi mơn Tốn lớp trường, kết thu khả quan Giữa học kì II năm học 2016 - 2017, giao đề kiểm tra cho học sinh Đề kiểm tra (Thời gian: 60 phút) Bài 1(4 điểm): Tính tổng sau: a A = + + + + 200 b B = + + + + 199 c C = 1.2 + 2.3 + 3.4 + 4.5 + …+ 199.200 d D = 1.2.3.4 + 2.3.4.5 + 3.4.5.6 + … + 96.97.98.99 Bài 2(3 điểm): Tính tổng sau: a A = + 72 + 73 + + 7100 b B = 12 + 22 + 32 + 42 +…+ 502 Bài 3(3 điểm): a Tính tổng: A = 3 5.8 8.11 11.14 2006.2009 20 b Cho B = c Cho D = 1.2.3 1 Kết sau: Số học sinh 19 2 2.3.4 18.19.20 Chứng minh: B Chứng minh: 2D 9 Số học sinh đạt điểm trung bình Số học sinh đạt điểm trung trở lên trước triển khai đề tài bình trở lên sau triển khai đề tài Số lượng Tỉ lệ ( % ) 15,8 Số lượng 12 Tỉ lệ ( % ) 63,2 Như vậy, ban đầu đa số em chưa giải dạng tập này, sau triển khai đề tài, em hiểu giải số học sinh hiểu giải tăng lên rõ rệt Các em làm quen với phương pháp làm việc mang tính tư duy, sáng tạo cao, qua hồn thiện kỹ biến đổi, vận dụng phương pháp Đặc biệt em rèn luyện thói quen làm việc có phương pháp, có sáng tạo khơng ngại trước tốn khó rèn luyện ý chí vươn lên học tập Với kết trên, học sinh có động lực học tập, cịn tơi thấy vững tin phương pháp dạy học Đồng nghiệp tơi có nhận xét cách khai thác, phát triển toán đề tài dễ hiểu dễ nhớ học sinh (dù học sinh vùng nông thôn!) KẾT LUẬN, KIẾN NGHỊ 3.1 Kết luận Việc khai thác, phát triển toán cho trước góp phần quan trọng việc nâng cao lực tư cho học sinh học môn Toán việc bồi dưỡng học sinh giỏi Qua q trình giảng dạy nghiên cứu, thân tơi nhận thấy: Các giáo viên giảng dạy toán đánh giá cao tầm quan trọng việc khai thác, phát triển từ toán mà học sinh giải Mở rộng, phát triển thêm toán khác (đơn giản thường phức tạp hơn) nhằm phát triển tư sáng tạo, linh hoạt, độc lập, tích cực suy nghĩ cho người dạy người học Trong q trình giảng dạy học tập tốn, việc khai thác, tìm hiểu sâu thêm kết tốn quan trọng có ích Nó không giúp nắm bắt kĩ kiến thức dạng tốn mà cịn nâng cao tính khái quát hoá, đặc biệt hoá, tổng quát hoá tốn; từ phát triển tư duy, nâng cao tính sáng tạo, linh hoạt cho em học sinh; giúp cho học sinh nắm chắc, hiểu sâu rộng kiến thức cách lôgic, khoa học; tạo hứng thú khoa học u thích mơn tốn Sau thời gian kiên trì, nghiêm túc nỗ lực thực với giúp đỡ đồng nghiệp, hoàn thành sáng kiến kinh nghiệm với đề tài “Khai thác phát triển toán từ toán ban đầu nhằm phát triển tư sáng tạo cho học sinh khá, giỏi lớp bậc THCS” Tôi mong muốn học hỏi, trao đổi thêm tất đồng nghiệp bạn đọc quan tâm vấn đề Đồng 21 thời, hi vọng đề tài đóng góp phần nhỏ việc bổ sung hiểu biết, góp phần làm tài liệu tham khảo cho cơng tác giảng dạy bồi dưỡng học sinh giỏi tốn, từ nâng cao chất lượng dạy học mơn tốn nhà trường Bước đầu, đề tài thu nhiều kết tích cực, tạo thói quen tốt cho nhiều học sinh tính kiên trì, độc lập suy nghĩ có khả sáng tạo học toán, tự thấy phong phú, thú vị tốn học Các em ham thích với mơn tốn Mặc dù vậy, với khn khổ đề tài chưa phải cho tất đối tượng ý kiến riêng cá nhân Tuy cố gắng kinh nghiệm cá nhân hạn chế nên nội dung sáng kiến kinh nghiệm chắn không tránh khỏi nhiều khiếm khuyết Tôi mong trao đổi, bảo đóng góp ý kiến bổ sung thầy giáo, cô giáo để đề tài hoàn thiện 3.2 Kiến nghị * Đối với giáo viên: Tận tâm với nghề dạy học, tìm tịi phương pháp để truyền thụ kiến thức đến học sinh đạt hiệu hơn, thường xuyên quan tâm đến chất lượng học tập học sinh, trân trọng thành đạt học sinh dù nhỏ * Đối với nhà trường: Tổ chức triển khai sáng kiến kinh nghiệm cấp trường, cấp huyện để giáo viên áp dụng đề tài đạt giải vào thực tiễn giảng dạy * Đối với phòng giáo dục: Tổ chức triển khai sáng kiến kinh nghiệm đạt giải cấp tỉnh để giáo viên nghiên cứu trao đổi học hỏi đồng nghiệp, tìm biện pháp hay Xin chân thành cảm ơn ! Xác nhận thủ trưởng Hiệu trưởng Hà Sỹ Sơn Thọ Xuân, ngày tháng 03 năm 2017 Tôi xin cam đoan sáng kiến kinh nghiệm viết, khơng chép nội dung người khác Người thực Trần Thị Hằng TÀI LIỆU THAM KHẢO 22 Toán nâng cao chuyên đề Toán – Vũ Dương Thụy(chủ biên) Nâng cao phát triển Tốn – Vũ Hữu Bình Bổ trợ nâng cao Toán - Trần Diên Hiển (Chủ biên) Nguồn tập từ Internet 23 24 ... ? ?Khai thác phát triển toán từ toán ban đầu nhằm phát triển tư sáng tạo cho học sinh khá, giỏi lớp bậc THCS? ?? hi vọng góp phần vào giải vấn đề 1.2 Mục đích nghiên cứu Giáo viên tìm cách khai thác. .. nghiệp, tơi hồn thành sáng kiến kinh nghiệm với đề tài ? ?Khai thác phát triển toán từ toán ban đầu nhằm phát triển tư sáng tạo cho học sinh khá, giỏi lớp bậc THCS? ?? Tôi mong muốn học hỏi, trao đổi... lực học toán cho học sinh nhằm rèn luyện khả sáng tạo học toán cho học sinh để em tự phát huy lực độc lập sáng tạo mình, nhằm góp phần vào công tác chăm lo bồi dưỡng đội ngũ học sinh giỏi toán