1. Trang chủ
  2. » Giáo án - Bài giảng

Đề thi thử toán 9 ngô gia tự 1920

8 575 3

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 507,47 KB

Nội dung

PHÒNG GD&ĐT HAI BÀ TRƯNG ĐỀ KHẢO SÁT CHẤT LƯỢNG NĂM HỌC: 2019 - 2020 TRƯỜNG THCS NGÔ GIA TỰ Mơn: Tốn Thời gian: 120’ (khơng kể thời gian giao đề) Bài (2,0 điểm) Cho hai biểu thức A  x 2 2x  x  x 1   ; B với x  , x x 1 x  x 1 x 1 x 2 x  1, x  1) Tính giá trị biểu thức B x  2) Rút gọn biểu thức A 3) Với x  , tìm giá trị lớn biểu thức K  A.B Bài (2,5 điểm) 1) Giải tốn cách lập phương trình hệ phương trình Một người dự định xe máy từ A đến B với vận tốc không đổi Sau với vận tốc ấy, người dừng nghỉ 15 phút Vì vậy, để đến B thời gian dự định, người phải tăng vận tốc thêm 10 km/h đoạn đường cịn lại Tính vận tốc ban đầu người đó, biết quãng đường AB dài 60km 2) Nam muốn dán lớp giấy màu lên mặt mũ phù thủy Biết phần nhơ lên mũ hình nón có chiều cao 16cm , vành nón giới hạn hai đường trịn có bán kính 12cm 18cm Tính diện tích giấy màu bạn Nam cần dùng? Bài (2,0 điểm) 1) Giải hệ phương trình:   x   y    1  y  7  x  2) Trong mặt phẳng tọa độ Oxy , cho đường thẳng  d  : y  mx  m  parabol  P  : y  x a) Chứng minh với giá trị m , đường thẳng  d  cắt parabol  P  : y  x hai điểm phân biệt có hồnh độ x1 ; x2 b) Tìm tất giá trị m thỏa mãn Bài 2 x1 x2    x1 x2 x2 x1 (3,0 điểm) Từ điểm A nằm ngồi đường trịn  O  , kẻ hai tiếp tuyến AB , AC với đường tròn  O  ( B; C tiếp điểm) Kẻ cát tuyến AMN với đường tròn  O  ( M   O  ; N   O  ) cho tia AM nằm góc AOB AM  AN Gọi H , I giao điểm BC với AO , MN 1) Chứng minh tứ giác ABOC tứ giác nội tiếp 2) Chứng minh AB  AM AN HI phân giác góc MHN 3) Qua M kẻ đường thẳng song song với BN cắt BC P , AP cắt đường thẳng BN K Chứng minh N trung điểm đoạn thẳng BK Bài (1,0 điểm) Cho a,b số thực khác thỏa mãn a  b  b  a  Tìm giá trị 1 nhỏ biểu thức P    a  b a b Trang Trang HƯỚNG DẪN GIẢI Bài (2,0 điểm) Cho hai biểu thức A  x 2 2x  x  x 1   ; B với x  , x  , x  x x 1 x  x 1 x 1 x 2 1) Tính giá trị biểu thức B x  2) Rút gọn biểu thức A 3) Với x  , tìm giá trị lớn biểu thức K  A.B Lời giải 1) Ta có x  thỏa mãn điều kiện xác định Thay x  vào B ta được: B  1  1   13 3 2 2) Rút gọn biểu thức A A   x 2 2x    x x 1 x  x 1 x 1 2x   x x 1   x  1   x  1  x  x  1   2x   x  x   2x  x    x 2   x  x  1    x  1  x  x  1 x   x  x    x 1 x  x 1  x 1 x  x 1 x x    x 1 x  x  x x 1 3) Với x  , tìm giá trị lớn biểu thức K  A.B x x  x 1 x   1 x  x 1 x 2 x 2 x 2 Đặt C  x 2 0  x  + Nếu x    x    x  K  A.B  Mà x  suy 2  hay K  1  Dấu “=” xảy x  (1) x 2 2 x 2   x   x  2 Mà x  suy hay K   Dấu “=” xảy x  (2)  x 2 52 + Nếu Từ (1) (2) suy giá trị lớn K  x  Bài (2,5 điểm) 1) Giải tốn cách lập phương trình hệ phương trình Một người dự định xe máy từ A đến B với vận tốc không đổi Sau với vận tốc ấy, người dừng nghỉ 15 phút Vì vậy, để đến B thời gian dự định, người Trang phải tăng vận tốc thêm 10 km/h đoạn đường lại Tính vận tốc ban đầu người đó, biết qng đường AB dài 60km Lời giải Gọi vận tốc ban đầu người x km/h , x  Theo dự định, thời gian để người hết quãng đường AB 60 (giờ) x Thực tế: + Quãng đường lại sau 60  x  km  + Thời gian người hết qng đường cịn lại Đổi 15 phút  60  x (giờ) x  10 Theo ra, ta có phương trình: 60 60  x   x x  10  240  x  10    60  x  x  x  x  10   x  30  x  50 x  2400     x  80 Kết hợp với điều kiện, ta vận tốc ban đầu người 30 km/h 2) Nam muốn dán lớp giấy màu lên mặt mũ phù thủy Biết phần nhô lên mũ hình nón có chiều cao 16cm , vành nón giới hạn hai đường trịn có bán kính 12cm 18cm Tính diện tích giấy màu bạn Nam cần dùng? Lời giải Diện tích phần nhơ lên diện tích xung quanh hình nón có r  12cm , h  16 cm Ta có đường sinh l  h  r  20 Diện tích xung quanh hình nón S xq   rl   12.20  240  cm  Diện tích vành mũ S1   182  12   180  cm  Vậy diện tích giấy cần để dán S  S xq  S1  420  cm  Bài (2,0 điểm) 1) Giải hệ phương trình :   x   y    1  y  7  x  2) Trong mặt phẳng tọa độ Oxy , cho đường thẳng  d  : y  mx  m  parabol  P  : y  x Trang a) Chứng minh với giá trị m , đường thẳng  d  cắt parabol  P  : y  x hai điểm phân biệt có hồnh độ x1; x2 b) Tìm tất giá trị m thỏa mãn 2 x1 x2    x1 x2 x2 x1 Lời giải 1) Điều kiện xác định: x    x   y  Ta có:   1  y  7  x    3y   x 1   5  30 y  35  x   33 y  33    x 1  3y   y  1     x 1  3y    y  1    x 1    y  1   x    y  1   x2 Thấy x  thỏa mãn điều kiện xác định x   x2 Vậy hệ phương trình cho có nghiệm   y  1 2) Xét phương trình hồnh độ giao điểm parabol  P  đường thẳng  d  x2  mx  m   x  mx  m   1 Ta có   m2   m    m  4m    m     với m Suy phương trình 1 ln có hai nghiệm phân biệt với m nên đường thẳng  d  cắt parabol ( P ) hai điểm phân biệt có hồnh độ x1 ; x2 Trang b)Tìm tất giá trị m thỏa mãn 2 x1 x2    x1 x2 x2 x1 Theo câu a phương trình 1 ln có hai nghiệm với m Áp dụng định lý viet ta có: x1  x2  m   x1.x2  m   3 Với điều kiện x1.x2   m    m  * Ta có: 2 x1 x2    x1 x2 x2 x1   x1  x2   x12  x2 2   x1  x2    x1  x2   x1 x2   Thay    3 vào   ta được: 2m  m   m    m  4m     m  2   m  ( không thỏa mãn điều kiện * ) Vậy khơng có giá trị m m thỏa mãn Bài 2 x1 x2    x1 x2 x2 x1 Từ điểm A nằm ngồi đường trịn  O  , kẻ hai tiếp tuyến AB , AC với đường tròn  O  ( B; C tiếp điểm) Kẻ cát tuyến AMN với đường tròn  O  ( M   O  ; N   O  ) cho tia AM nằm góc AOB AM  AN Gọi H , I giao điểm BC với AO , MN 1) Chứng minh tứ giác ABOC tứ giác nội tiếp 2) Chứng minh AB  AM AN HI phân giác góc MHN 3) Qua M kẻ đường thẳng song song với BN cắt BC P , AP cắt đường thẳng BN K Chứng minh N trung điểm đoạn thẳng BK Lời giải 1) Chứng minh tứ giác ABOC tứ giác nội tiếp   90  90  180 ABO  ACO Tứ giác ABOC có:   tứ giác ABOC tứ giác nội tiếp 2) Chứng minh AB  AM AN HI phân giác góc MHN Trang Xét ABM  ANB có:  chung BAN )   (cùng chắn BM ABM  BNA  ABM ∽ ANB  g.g   AB AM  AN AB 1  AB  AM AN Áp dụng hệ thức lượng tam giác vuông ABO với đường cao BH ta được: AB  AH AO  2 Từ 1   suy ra: AM AN  AH AO hay AM AH  AO AN Xét AHM ANO có:  chung OAN AM AH  AO AN  AHM ∽ ANN  c.g.c   AHM   ANO  tứ giác MHON nội tiếp   OMN  (cùng chắn ON )  OHN  ( OMN cân O ) Mà  ANO  OMN   AHM  OHN   90 ; OHN   NHB   90 Mặt khác:  AHM  MHB   NHB   MHB  HI phân giác góc MHN 3) Qua M kẻ đường thẳng song song với BN cắt BC P , AP cắt đường thẳng BN K Chứng minh N trung điểm đoạn thẳng BK Ta có: BN //MP  Mà  BN IN  MP IM IN HN ) ( HI tia phân giác MHN  IM HM BN HN  MP HM Ta có: NK //MP   3 NK AN  MP AM Mà AH  HI  AH tia phân giác MHN đỉnh H Trang  AN HN  AM HM  NK HN  MP HM  4 Từ   ;    BN NK  MP MP  BN  NK hay N trung điểm đoạn thẳng BK Bài (2,0 điểm ) Cho a,b số thực khác thỏa mãn a  b  b  a  Tìm giá trị nhỏ biểu thức P  1  a b a b Lời giải Ta có: a  b2  b  a  , ( a,b  )  a  b2    a  a   b    b  a  b2   a   2a  a b2   4b  a  2b  a b   a  2b  a  b     a2     a  b (*)  b  Vì a, b có vai trò  a  Từ (*)  a  b  2 Mà a  b a  b  2   a  b    2  a  b  Do a, b    a  b  P 1 4  ab   a  b    a b ab Dấu “=” xảy a  b  Vậy giá trị nhỏ biểu thức P  1   a  b a  b  a b Trang ... ban đầu người x km/h , x  Theo dự định, thời gian để người hết quãng đường AB 60 (giờ) x Thực tế: + Quãng đường lại sau 60  x  km  + Thời gian người hết quãng đường lại Đổi 15 phút  60... Chứng minh N trung điểm đoạn thẳng BK Lời giải 1) Chứng minh tứ giác ABOC tứ giác nội tiếp   90   90   180 ABO  ACO Tứ giác ABOC có:   tứ giác ABOC tứ giác nội tiếp 2) Chứng minh AB  AM...   OMN  (cùng chắn ON )  OHN  ( OMN cân O ) Mà  ANO  OMN   AHM  OHN   90  ; OHN   NHB   90  Mặt khác:  AHM  MHB   NHB   MHB  HI phân giác góc MHN 3) Qua M kẻ đường thẳng

Ngày đăng: 09/07/2020, 09:20

TỪ KHÓA LIÊN QUAN

w