Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 38 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
38
Dung lượng
1,37 MB
Nội dung
BÀI À TÍCH PHÂN BỘI BA Giảng viên: ThS ThS Nguyễn Hải Sơn TÌNH HUỐNG KHỞI ĐỘNG BÀI ??? THỂ TÍCH CỦA HÌNH ELIPSOID Thể tích hình cầu bán kính R Diện tích hình trịn bán kính R: R S R Diện tích hình elip có độ dài bán trục a b b a S ab TÌNH HUỐNG KHỞI ĐỘNG BÀI (tiếp theo) ??? THỂ TÍCH CỦA HÌNH ELIPSOID Thể tích hình cầu bán kính R V R 3 ??? Thể tích elipsoid có bán trục a, b, c V MỤC TIÊU BÀI HỌC Sau học xong này, sinh viên có thể: • Trình bày khái niệm tích phân bội ba ứng dụng nó, thấy tích phân bội ba phát triển tự nhiên tích phân kép • Vận dụng kĩ thuật tính tích phân bội ba làm tập liên quan đến tích phân ộ ba bội CÁC KIẾN THỨC CẦN CÓ • Giống tích phân kép, sinh viên cần có kiến thức giải tích, đặc biệt phép tính tích phân hàm biến số • Bên cạnh đó, sinh viên cần có kiến thức hình học phẳng, hình học khơng gian HƯỚNG DẪN HỌC • Xem giảng đầy đủ tóm tắt nội dung bài • Tích cực thảo luận diễn đàn đặt câu hỏi có thắc mắc • Làm tập luyện thi trắc nghiệm theo yêu cầu CẤU TRÚC NỘI DUNG Đị Định h nghĩa hĩ – Tính Tí h chất hất Cách tính tích phân bội ba hệ tọa độ Đề Phép đổi biến số tích phân bội ba Ứng dụng tích phân bội ba ĐỊNH NGHĨA – TÍNH CHẤT 1.1 Định nghĩa tích phân bội ba 1.2 Tính chất 1.1 ĐỊNH NGHĨA TÍCH PHÂN BỘI BA • f = f(x,y,z) f(x y z) xác định vật thể đóng, đóng bị chặn • • Chia cách tùy ý thành n khối nhỏ: 1, , , n Thể tích tương ứng khối V(1), V(2 ), , V(n ) • Trên khối i lấy tuỳ ý điểm Mi (x i , yi , zi ) • Lập tổng tích phân: n In f (Mi ) V(i ) i 1 • Cho n cho , I I xác định không phụ thuộc Max {di} n i 1,n 1n cách chia miền , cách lấy điểm Mi f=f(x,y,z) khối I gọi tích phân bội ba I f (x, y, z)dxdydz • Khi đó, f gọi khả tích 1.1 ĐỊNH NGHĨA TÍCH PHÂN BỘI BA (tiếp theo) • Nhận xét: Thể tích vật thể V dxdydz • Định lý: Nếu miền đóng, bị chặn, có biên trơn mảng f(x,y,z) liên tục f(x,y,z) khả tích 10 3.1 PHÉP ĐỔI BIẾN SỐ TỔNG QUÁT (tiếp theo) Nếu 1 , đối xứng qua Oz f(-x,-y,z) = -f(x,y,z) 0 I 2 f (x, (x yy, z)dxdydz f( f(-x,-y,z) x y z) = f(x f(x,y,z) y z) 1 Nếu 1 , đối xứngg qqua ggốc O f(-x,-y,-z) = -f(x,y,z) 0 I 2 f (x, y, z)dxdydz f(-x,-y,-z) f( x, y, z) = f(x,y,z) 1 24 3.2 PHÉP ĐỔI BIẾN SỐ TRONG TỌA ĐỘ TRỤ Tọa độ trụ Điểm M(x,y,z) Điể M( ) t hệ trục t t độ 0xyz tọa M xác định (r, , z) (r, ) tọa độ cực hình chiếu M1 M lên Oxy Oxy Z độ cao M (r, , z) gọi tọa độ trụ điểm M M Công thức đổi biến từ tọa độ Decasters sang tọa độ trụ: • • z M(x, ( , y, y,z)) z x y r x r cos y r sin zz M1(x, y,0) 25 3.2 PHÉP ĐỔI BIẾN SỐ TRONG TỌA ĐỘ TRỤ (tiếp theo) Đổi biến số tọa độ trụ (khi hình trụ trịn trụ elip) I f (x, y,z)dxdydz z z (r, ) Đặt x r cos y r sin , zz z z1 ( r , ) Jacobi j=r Mặt phía dưới: z z1(r, (r ) Mặt phía trên: z z2 (r, ) 1 2 Hình chiếu: D: r1 r r2 2 r2 z2 (r,) 1 r1 z1 (r,) 1 2 1 : r1() r r2 () z1(r, ) z z2 (r, ) I d dr f (rcos ,rsin ,z) r dz 26 3.2 PHÉP ĐỔI BIẾN SỐ TRONG TỌA ĐỘ TRỤ (tiếp theo) Ví dụ 1: Tính tích phân I x2 y2 dxdydz V vật thể giới hạn bởi: V z 4, z x2 y2 , x2 y2 x r cos Đặt y r sin , J r zz z4 2 Mặt phía dưới: z x y r Hình chiếu xuống 0xy: D: x2 y2 Mặt phía trên: 2 V V1 : 0 r 1 r z 2 0 1r2 2 I d dr r r dz 2 I d dr r z d r (3 r ) dr 12 1r 0 0 27 3.2 PHÉP ĐỔI BIẾN SỐ TRONG TỌA ĐỘ TRỤ (tiếp theo) Ví dụ 2: Tính tích phân I zdxdydz V vật thể giới hạn bởi: V z x y2 ,z x2 y2 ,x2 y2 Đặt x r cos y r sin , zz Jr z r2 Mặt phía dưới: z r Mặt phía trên: Hình chiếu xuống 0xy: D x2 y2 1 D: 2 V V1 : 0 r r z r 2 2r 0 r2 2 0 I d dr z r dz d r 2 r z r2 dr 3 28 3.3 PHÉP ĐỔI BIẾN SỐ TRONG TỌA ĐỘ CẦU Tọa độ cầu Điểm M(x,y,z) M(x y z) hệ trục tọa độ 0xyz 0xyz M xác định z (r, , ) r OM M(x, y,z) r (r, , ) gọi tọa độ cầu điểm M z rcos rcos y x r rsin M1(x,y,0) Chú ý: 0 2 or r 29 3.3 PHÉP ĐỔI BIẾN SỐ TRONG TỌA ĐỘ CẦU (tiếp theo) Đổi biến số tọa độ cầu (khi có dạng hình cầu hay phần hình cầu hay elipsoid) I f (x, y,z)dxdydz x r sin cos Đặt y r sin sin , z r cos J r sin 1 : 1 ( ) ( ) r1 ( , ) r r2 ( , ) Khi 2 2 r2 1 1 r1 I d d f (rsin cos ,rsin rsin sin ,rcos rcos ) r2 sin dr 30 3.3 PHÉP ĐỔI BIẾN SỐ TRONG TỌA ĐỘ CẦU (tiếp theo) Ví dụ 1: Tính tích phân I x2 y2 z2 dxdydz V vật thể giới hạn bởi: V z x2 y2 ,x2 y2 z2 z Đặt x r sin cos y r sin sin , J r sin z r cos 1/2 V V1 : r c os / 2 cos 0 I d d r r sin dr 1 2 10 80 31 3.3 PHÉP ĐỔI BIẾN SỐ TRONG TỌA ĐỘ CẦU (tiếp theo) Ví dụ 2: Tính tích phân I (y z)dxdydz V vật thể giới hạn bởi: V z 0,x2 y2 z2 2y (z 0) Cách Đặt: x r sin cos J r sin y r sin sin , J r sin z r cos V V1 : 2 r sin sin 2sin sin / I d d z y x (rsin sin rcos ) r2 sin dr 32 3.3 PHÉP ĐỔI BIẾN SỐ TRONG TỌA ĐỘ CẦU (tiếp theo) z Cách 2: Đổi sang tọa độ cầu suy rộng cos x r sin y 1 r sin sin , z r cos Gốc tọa độ dời y Xác định cận: 2 V V1 : 2 r 1 2 / 0 x I d d ((1 rsin sin rcos ) r2 sin d 33 ỨNG DỤNG CỦA TÍCH PHÂN BỘI BA • Từ định nghĩa tích phân bội ba ta có cơng thức tính thể tích vật thể : V d x d y d z • • • Có thể sử dụng tích phân kép để tính thể tích vật thể Tuy nhiên số trường hợp sử dụng tích phân bội ba tính nhanh tích phân bội ba có cách đổi sang tọa độ trụ tọa độ cầu 34 ỨNG DỤNG CỦA TÍCH PHÂN BỘI BA Ví dụ 1: Tính thể tích vật thể E giới hạn x2 y2 z2 1;x2 y2 z2 4,z x2 y2 Thể tích V ddxdydz dyd E x r sin cos Đặt: y r sin sin , J r sin z r cos E E1 2 / 0 : 0 r 2 14 V d d r sin dr 3 0 35 ỨNG DỤNG CỦA TÍCH PHÂN BỘI BA Ví dụ 2: Tính thể tích hình elipsoid (E) V dxdydz x2 y2 z2 1 a b c E Sử dụng tọa độ cầu suy rộng x ar sin cos Đặt: y br sin sin , J abcr sin z cr cos E E1 0 : 0 r 1 2 0 V d d abcr sin dr v1.0013110216 4abc 36 ỨNG DỤNG CỦA TÍCH PHÂN BỘI BA Ví dụ 3: Tính thể tích vật thể E giới hạn x2 y2 2x;x z 3,x z V dxdydz E Sử dụng tọa độ trụ E E1 x rcos y rsin ,J r zz 2 : r co s r co s 3 z 3 r co s / 2cos 3rcos / rcos 3 V d dr z y O x r dz 4 37 TÓM LƯỢC CUỐI BÀI Trong xem xét nội dung sau: • Khái niệm tích phân bội ba; • Cách tính tích phân bội ba; • Ứng dụng tích phân bội ba để tính thể tích vật thể 38 ... phân bội ba ứng dụng nó, thấy tích phân bội ba phát triển tự nhiên tích phân kép • Vận dụng kĩ thuật tính tích phân bội ba làm tập liên quan đến tích phân ộ ba bội CÁC KIẾN THỨC CẦN CĨ • Giống tích. .. tọa độ Đề Phép đổi biến số tích phân bội ba Ứng dụng tích phân bội ba ĐỊNH NGHĨA – TÍNH CHẤT 1.1 Định nghĩa tích phân bội ba 1.2 Tính chất 1.1 ĐỊNH NGHĨA TÍCH PHÂN BỘI BA • f = f(x,y,z) f(x y z)... gdxdydz 11 CÁCH TÍNH TÍCH PHÂN BỘI BA TRONG HỆ TỌA ĐỘ ĐỀ CÁC Cách tính: đưa tích p phân xác định ị theo g biến ( (tích phân p lặp) ặp) Tích phân bội ba Tích phân kép Trường hợp miền