Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 31 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
31
Dung lượng
879,2 KB
Nội dung
MA TRẬN ĐỀ THAM KHẢO BGD LẦN MƠN TỐN NĂM HỌC 2019 – 2020 LỚP 11 CHỦ ĐỀ NB Tổ hợp Xác suất Dãy số, CSC, CSN Quan hệ vng góc 1 Hs lũy thừa, Hs mũ Hs lơgarit Ngun hàm Tích phân ứng dụng 2 Khối đa diện TỔNG Mặt nón, mặt trụ mặt cầu PP tọa độ không gian Số phức VD VDC TỔNG Ứng dụng đạo hàm 12 TH 2 12 5 21 17 50 PHÁT TRIỂN ĐỀ THAM KHẢO LẦN - 2020 CỦA BGD BÀI THI: TOÁN ĐỀ 79 – (STRONGTEAM 32) Thời gian làm bài: 90 phút Câu Có cách phân cơng bạn từ tổ có bạn để làm trực nhật ? A A93 B C93 C D 39 Câu Cho cấp số nhân un với u1 công bội q Tính u3 A u3 Câu B x C x D x B 240 C 320 D 480 C y ln D y ln Đạo hàm hàm số y log3 4x 1 là: A y Câu D u3 Thể tích khối hộp chữ nhật có độ dài kích thước 6; 8; 10 A 160 Câu C u3 18 Nghiệm phương trình 52 x1 125 A x Câu B u3 x 1 ln B y x 1 ln Họ nguyên hàm hàm số y x x A x3 x ln x C 4x 1 4x 1 là: x B x3 x C x C Câu x3 x ln x C B V 6a C V 2a D V 3a Cho hình nón có bán kính R , đường cao h đường sinh l Diện tích xung quanh hình nón cho là: A S xq 2 Rh Câu x3 x ln x C Cho hình chóp S ABC , đáy tam giác ABC có diện tích 2a Đường cao SA 3a Thể tích khối chóp S ABC A V a Câu D B S xq 4 R C S xq R h D S xq R l Biết mặt cầu có bán kính R Thể tích khối cầu tương ứng cho A 132 B 144 C 288 D 140 Câu 10 Cho hàm số f (x) có bảng biến thiên sau: Hàm số cho đồng biến khoảng ? A 0; B 0; C 3;7 D (;1) C y x.ln D y Câu 11 Đạo hàm hàm số y x A y x.ln B y x.5 x 1 5x ln Câu 12 Cho khối trụ có bán kính đáy a chiều cao 3a Thể tích khối trụ A a3 B a 3 C 3 a D 3 a 3 Câu 13 Cho hàm số y f x có bảng biến thiên sau: Hàm số cho có giá trị cực tiểu yCT A yCT 3 B yCT 1 C yCT D yCT Câu 14 Đồ thị hàm số y x x hình vẽ đây? A B C D Câu 15 Tổng số đường tiệm cận đứng đường tiệm cận ngang đồ thị hàm số y A B 1 Câu 16 Tập nghiệm bất phương trình 5 A ;1 B ;1 C x1 x2 2x 2x 1 D 25 C 1; D 0;1 Câu 17 Cho hàm số y f x có bảng biến thiên hình vẽ Số nghiệm phương trình f x A B C D Câu 18 Biết f x dx 2 0 g x dx 3 Giá trị tích phân A B f x g x dx bao nhiêu? C D 1 Câu 19 Cho số phức z1 3i z2 2i Số phức liên hợp số phức w z1 z2 A w 2i B w 4i C w i D w i Câu 20 Tìm phần ảo số phức z , biết 1 i z i A B 2 C D 1 Câu 21 Trong mặt phẳng tọa độ, điểm A 3; 1 biểu diễn số phức đây? A z 1 3i B z 1 3i C z 3 i D z 3 i Câu 22 Trong không gian Oxyz , cho điểm M 4; 2; Gọi M a;0;0 , M 0; b ;0 hình chiếu vng góc M trục Ox; Oy Khi 2a 3b nhận kết sau đây? A B C Câu 23 Trong không gian với hệ tọa độ Oxyz , cho mặt cầu x y z x y z Tìm tọa độ tâm I bán kính R D S có S phương trình A Tâm I 1; 2; 3 bán kính R B Tâm I 1; 2;3 bán kính R C Tâm I 1; 2; 3 bán kính R D Tâm I 1; 2; 3 bán kính R 16 Câu 24 Trong khơng gian với hệ tọa độ Oxyz , cho mặt phẳng Q có phương trình x y z 15 Mặt phẳng P song song với mặt phẳng Q có vectơ pháp tuyến A n 2;1;5 B n 2; 1;15 C n 2;1;5 D n 2; 1;5 x 3t Câu 25 Trong không gian Oxyz , cho đường thẳng d : y 4t Điểm thuộc d ? z 1 t A M 1; 4; B N 5; 4; C P 2; 4; 1 D Q 8;8; 1 Câu 26 Cho hình chóp S ABCD có đáy hình chữ nhật, cạnh BC a Mặt bên tam giác SAB a có cạnh nằm mặt phẳng vng góc với đáy Tính góc đường thẳng SC mặt phẳng ABCD A 45 B 60 C 90 D 30 Câu 27 Cho hàm số y = f ( x) có bảng xét dấu đạo hàm sau: Số điểm cực đại hàm số cho A B D C Câu 28 Giá trị nhỏ hàm số f ( x) x x 2020 đoạn 2;1 A 2020 B 2019 C 2018 D 2028 Câu 29: Xét số thực a ; b thỏa mãn log 4a.16b log8 Trong mệnh đề sau đây, mệnh đề đúng? A a 2b C 3ab B 6a 3b D 3a 6b Câu 30 Số giao điểm đồ thị hàm số y x3 x đường thẳng y x B A C D Câu 31 Tập nghiệm bất phương trình log x 3 log x B ; 1 4; A 3; C 4; D 3; 4 Câu 32 Thiết diện qua trục hình nón tam giác vng cân có cạnh huyền Thể tích khối nón cho A 3 D 3 C B 3 Câu 33 Xét sin xe cos x dx , đặt u cos x sin xecos x dx A e du B ue du u u C e du D eu du u 0 Câu 34 Diện tích S hình phẳng giới hạn đường y e x , y 1, x x tính cơng thức đây? A S e x dx B S e x dx C S e x dx D S e x dx 0 Câu 35 Tìm hai số thực x y thỏa mãn x yi i 3i với i đơn vị ảo A x 1 ; y B x ; y C x ; y D x 1 ; y Câu 36 Gọi z nghiệm phức có phần ảo dương phương trình z z Môđun số phức w i z 2i A 1 B 13 C D 13 x 1 t Câu 37 Trong không gian Oxyz , cho điểm A 1; 1; đường thẳng d có phương trình y 3t z 2 Viết phương trình mặt phẳng P qua A chứa đường thẳng d A 12 x y z 22 B 12 x y z 14 C 12 x y z 22 D 12 x y z 14 Câu 38 Trong không gian Oxyz cho điểm A 0;1; , B 2;3; Đường thẳng AB có phương trình là: x 2t A y 3t z 2 2t C x 2t B y 3t z 2t x 2 y 3 z 2 1 D x y 1 z Câu 39: Cho đa giác có 20 đỉnh Chọn ngẫu nhiên đỉnh từ 20 đỉnh đa giác Tính xác suất để đỉnh Chọn đỉnh tam giác vuông, không cân 17 B C D 57 114 19 35 Câu 40 Cho hình chóp S ABCD có đáy ABCD hình chữ nhật, AD 3a , tam giác SAB cạnh a nằm mặt phẳng vng góc với đáy Gọi G trọng tâm tam giác ABC Khoảng cách hai đường thẳng CD SG bằng: A A 7a B 7a C 21a D Câu 41 Tập hợp tất giá trị thực tham số m để hàm số y 21a x x mx đồng biến khoảng 1; A 1;3 B 3; C 1; Câu 42 Tìm tất giá trị thực tham số m để hàm số y khoảng ; A m B m C m D ;3 ln x 2mx nghịch biến D m8 Câu 43 Cho hàm số y f ( x) ax bx c (a 0) có bảng biến thiên Tính S a b c A 96 B 36 C 29 D 30 Câu 44 Cho khối trụ tích 200 a Biết cắt khối trụ mặt phẳng song song với trục cách trục khoảng 3a thiết diện thu hình vng Diện tích xung quanh hình trụ cho B 108 a A 40 a Câu 45: Cho hàm f x x f x số xác định D 54 a C 80 a x 3 x x Đặt f x dx thỏa mãn f 1 , biết a b c với a , b , c số nguyên dương Khi giá trị T a b c A 21 B 52 C 64 D 13 Câu 46 Cho hàm số f x có đồ thị hình vẽ Số nghiệm thuộc đoạn ; phương trình f sin x A B 10 Câu 47 Cho số thực x , y thoả mãn log biểu thức P C D x y x x 3 y y 3 xy Tìm giá trị lớn x y xy 2 x 2y x y6 A 69 249 94 B 69 249 94 C 43 249 94 D 37 249 94 Câu 48 Có giá trị m để giá trị nhỏ hàm số f x e2 x 4e x m đoạn ; ln ? A B D C Câu 49 Cho khối lập phương ABCD ABCD có cạnh Gọi M, N, P, L tâm hình vng ABB’A’, A’B’C’D’, ADD’A’, CDD’C’ Gọi Q trung điểm BL Thể tích khối tứ diện MNPQ A 24 B 16 C 27 D 27 ỉ1ư x +1 x (m -1) - 2m hàm số y = g ( x ) = ỗỗ ữữữ Tỡm + x + ỗ ố2ứ x -2 -1 x - m để hai đồ thị hàm số cắt có giao điểm có hoành độ dương ? ln( x +1) Câu 50 Cho hàm số y = f ( x ) = A m 2; B m 0; C m 2, D m , 2 BẢNG ĐÁP ÁN 1.B 2.C 3.D 4.D 5.B 6.D 7.C 8.D 9.C 10.C 11.C 12.D 13.B 14.D 15.D 16.B 17.B 18.D 19.D 20.B 21.D 22.B 23.A 24.D 25.B 26.D 27.C 28.B 29 30.A 31.C 32.C 33.D 34.D 35 36.B 37.B 38.C 39.A 40.D 41.D 42.A 43.D 44.C 45.C 46.C 47.A 48.D 49.A 50.D Câu Có cách phân cơng bạn từ tổ có bạn để làm trực nhật ? A A93 B C93 C D 39 Lời giải Người sáng Chọn B Mỗi cách phân công ba bạn từ tổ có bạn để làm trực nhật tổ hợp chập Nên số cách phân công C93 Câu Cho cấp số nhân un với u1 cơng bội q Tính u3 A u3 B u3 C u3 18 D u3 Lời giải Chọn C Áp dụng cơng thức tính số hạng tổng quát cấp số nhân ta có: u3 u1.q 2.32 18 Vậy u3 18 Câu Nghiệm phương trình 52 x1 125 A x B x C x D x Lời giải Chọn D Ta có: 52 x1 53 2x 1 x Vậy nghiệm phương trình x Câu Thể tích khối hộp chữ nhật có độ dài kích thước 6; 8; 10 A 160 B 240 C 320 D 480 Lời giải Chọn D Thể tích khối hộp chữ nhật có độ dài kích thước 6; 8; 10 là: V 6.8.10 480 Câu Đạo hàm hàm số y log3 4x 1 là: A y x 1 ln B y x 1 ln C y ln 4x 1 D y ln 4x 1 Lời giải Chọn B Người sáng Chọn D 1 x3 x ln x C Áp dụng cơng thức ngun hàm ta có: x x dx x Câu Cho hình chóp S ABC , đáy tam giác ABC có diện tích 2a Đường cao SA 3a Thể tích khối chóp S ABC A V a B V 6a C V 2a D V 3a Lời giải Chọn C Thể tích hình chóp S ABC là: V 3a.2a 2a Câu Cho hình nón có bán kính R , đường cao h đường sinh l Diện tích xung quanh hình nón cho là: A S xq 2 Rh C S xq R h B S xq 4 R D S xq R l Lời giải Chọn D Diện tích xung quanh hình nón là: S xq R l Câu Biết mặt cầu có bán kính R Thể tích khối cầu tương ứng cho A 132 B 144 C 288 D 140 Lời giải 10 Vì SM ABCD SM MC Tam giác SMC vng M , có: tan SCM SM a 2 30 SCM MC 2 3a Vậy góc đường thẳng SC mặt phẳng ABCD 30 Câu 27 Cho hàm số y = f ( x) có bảng xét dấu đạo hàm sau: Số điểm cực đại hàm số cho A B C D Lời giải Chọn C Hàm số y = f ( x) có đạo hàm đổi dấu từ dương sang âm qua điểm x = nên hàm số có điểm cực đại Câu 28 Giá trị nhỏ hàm số f ( x) x x 2020 đoạn 2;1 A 2020 B 2019 C 2018 D 2028 Lời giải Chọn B Hàm số f ( x) x x 2020 liên tục đoạn 2;1 f ( x) x3 x x 2;1 f ( x) x 1 2;1 f (0) 2020; f (1) 2019; f (1) 2019; f (2) 2028 f ( x) 2019 2;1 Câu 29: Xét số thực a ; b thỏa mãn log 4a.16b log8 Trong mệnh đề sau đây, mệnh đề đúng? A a 2b C 3ab B 6a 3b D 3a 6b Chọn D Ta có: log 4a.16b log8 log 4a log 16b log8 22 log 22 a log 24b log 23 22 2a 4b 3a 6b Câu 30: Số giao điểm đồ thị hàm số y x3 x đường thẳng y x A B C D Lời giải Chọn A 17 Phương trình hoành độ giao điểm hàm số y x3 x đường thẳng y x là: x3 x x x3 3x Xét hàm số f x x x f x x x Ta có bảng biến sau: Dựa vào bảng biến thiên suy f x có nghiệm Vậy số giao điểm đồ thị hàm số y x3 x đường thẳng y x Câu 31 Tập nghiệm bất phương trình log x 3 log x B ; 1 4; A 3; C 4; D 3; 4 Lời giải Chọn C Điều kiện xác định: x Với điều kiện trên, bất phương trình cho tương đương: log x 3 log x x log x x x x x 1 Kết hợp với điều kiện x , suy tập nghiệm bất phương trình S 4; Câu 32 Thiết diện qua trục hình nón tam giác vng cân có cạnh huyền Thể tích khối nón cho A 3 C B 3 D 3 Lời giải Chọn C l h Vì thiết diện qua trục tam giác vng cân đỉnh chóp nên ta có: 2l l Bán kính r 18 h l2 r2 1 Thể tích khối nón V r h 3 3 2 0 Câu 33 Xét sin xecos x dx , đặt u cos x sin xecos x dx A eu du 1 C eu du B ueu du D eu du 0 Lời giải Chọn D Đặt u cos x du sin xdx u x Đổi cận u x 1 Khi đó: sin xecos x dx eu du eu du Câu 34 Diện tích S hình phẳng giới hạn đường y e x , y 1, x x tính cơng thức đây? A S e dx x B S e x dx C S e x dx D S e x dx 0 Lời giải Chọn D 1 Diện tích S hình phẳng là: S e (1) dx e x dx x 0 Câu 35 Tìm hai số thực x y thỏa mãn x yi i 3i với i đơn vị ảo A x 1 ; y C x ; y B x ; y D x 1 ; y Lời giải Chọn A Ta có: x yi i 3i x y 1 i 3i x x 1 2 y y Câu 36 Gọi z nghiệm phức có phần ảo dương phương trình z z Môđun số phức w i z 2i A 1 B 13 C D 13 Lời giải 19 Chọn B Ta có phương trình z i z z z z 1 z i z i Do z nghiệm phức có phần ảo dương phương trình z z nên z0 i Khi đó: w i z0 2i 3 2i w 3 22 13 Vậy w 13 x 1 t Câu 37 Trong không gian Oxyz , cho điểm A 1; 1; đường thẳng d có phương trình y 3t z 2 Viết phương trình mặt phẳng P qua A chứa đường thẳng d A 12 x y z 22 B 12 x y z 14 C 12 x y z 22 D 12 x y z 14 Lời giải Chọn B Gọi n vectơ pháp tuyến P Đường thẳng d qua M 1; 2; 2 có vectơ phương u 1;3;0 n AM Theo ta có với AM 0;3; 4 n u Mà AM u không phương nên suy n AM ; u 12; 4;3 Mặt phẳng P qua A 1; 1; có vectơ pháp tuyến n 12; 4;3 có trình tổng qt là: 12 x 1 y 1 z 12 x y z 14 Vậy P :12 x y z 14 Câu 38 Trong không gian Oxyz cho điểm A 0;1; , B 2;3; Đường thẳng AB có phương trình là: x 2t A y 3t z 2 2t C x 2 y 3 z 2 1 x 2t B y 3t z 2t D x y 1 z Lời giải Chọn C +) Ta có AB 2; 2; , suy đường thẳng AB có véctơ phương u 1;1; 20 +) Đường thẳng AB có véctơ phương u 1;1; qua điểm B 2;3; nên có x 2 y 3 z 2 1 x 2 y 3 z 2 Vậy phương trình đường thẳng AB : 1 phương trình tắc là: Câu 39: Cho đa giác có 20 đỉnh Chọn ngẫu nhiên đỉnh từ 20 đỉnh đa giác Tính xác suất để đỉnh Chọn đỉnh tam giác vuông, không cân A 57 B 17 114 C 19 D 35 Lời giải Chọn A Phép thử T: “Chọn đỉnh từ 20 đỉnh” n C20 Biến cố A: “ đỉnh Chọn đỉnh tam giác vuông không cân” Gọi O đường tròn ngoại tiếp đa giác 20 cạnh, đường tròn có 10 đường kính tạo thành từ 20 đỉnh đa giác Chọn đường kính bất kì, đường kính chia đường tròn thành phần, phần có đỉnh đa giác Khi phần có tam giác vuông không cân Vậy số tam giác vuông không cân tạo thành từ 20 đỉnh đa giác 8.2.10 160 n A 160 n A n 57 Câu 40 Cho hình chóp S ABCD có đáy ABCD hình chữ nhật, AD 3a , tam giác SAB cạnh a nằm mặt phẳng vuông góc với đáy Gọi G trọng tâm tam giác ABC Khoảng cách hai đường thẳng CD SG bằng: Vậy xác suất cần tìm P A A 7a B 7a C 21a D 21a Lời giải Chọn D 21 Do SAB nằm mặt phẳng vng góc với đáy nên chân đường cao H hình G CH chóp trung điểm cạnh AB GC 2GH Kẻ đường thẳng MN qua G song song với CD ( M,N điểm BC , AD ) CD / / (SMN) Khi đó: d(CD,SG) d(CD,(SMN)) d(C,(SMN)) 2d(H,(SMN)) Gọi I trung điểm đoạn MN MN HI Ta có: MN (SHI) MN SH HK SI Gọi K hình chiếu H lên SI HK (SMN) K d(H,(SMN)) HK HK MN a HI AD a,SH SA sin60o SHI vuông H Vậy d(CD,SG) 1 21a HK HK SH HI 21a Câu 41 Tập hợp tất giá trị thực tham số m để hàm số y x x mx đồng biến khoảng 1; A 1;3 B 3; C 1; D ;3 Lời giải Chọn D Ta có: y ' x x m 22 Hàm số đồng biến khoảng 1; y ' 0, x 1; x x m 0, x 1; m x x, x 1; m f x với f x x x 1; Ta có: f x f 1 m 1; Vậy m ;3 Câu 42 Tìm tất giá trị thực tham số m để hàm số y khoảng ; A m ln x 2mx nghịch biến C m B m D m8 Lời giải Chọn A Hàm số y Ta có y x 2m x 4 Hàm số y ln x 2mx có tập xác định D ; 2 ln x 2mx nghịch biến ; y ' 0, x ; x x 2m 0, x 2m, x x 4 x 4 Xét hàm số f ( x) x x2 có f ( x ) f ( x) x 2 2 x2 x Bảng biến thiên: x -2 -∞ - f'(x) + +∞ - f(x) -1 Từ BBT ta suy ra: max f ( x) f (2) x 1 Suy ra: 2m m 4 Câu 43 Cho hàm số y f ( x) ax bx c (a 0) có bảng biến thiên Tính S a b c 23 A 96 B 36 C 29 D 30 Lời giải Chọn D +) Hàm số cho hàm trùng phương có hình dạng bảng biến thiên a a 0, b Suy ra: a.b +) y ' 4ax3 2bx x +) Ta có: y ' 4ax 2bx x b 2a +) Dựa vào bảng biến thiên, ta có hệ phương trình: f (0) 3a b c 3a b a b 1 2a b b 2 2a c a b c f (1) Vậy S a b c 30 Câu 44 Cho khối trụ tích 200 a Biết cắt khối trụ mặt phẳng song song với trục cách trục khoảng 3a thiết diện thu hình vng Diện tích xung quanh hình trụ cho A 40 a B 108 a C 80 a D 54 a Lời giải Chọn C 24 Thiết diện thu hình vng ABCD hình vẽ Gọi h chiều cao hình trụ Khi AB BC h Gọi I trung điểm AB , ta có: OI AB OI ABCD 3a d OO, ABCD d O, ABCD OI Hình trụ có bán kính R OA OI AI 2 3a 2 h h 36a 2 Thể tích khối trụ V R h 200 a h h h h 36a h 200 a h3 36a h 800a 36 800 a a a h 8a Suy ra: R h 36a 2 8a 36a 5a Vậy diện tích xung quanh hình trụ là: S xq 2 Rh 2 5a.8a 80 a Câu 45: Cho hàm f x x f x số xác định x 3 x x mãn f 1 , biết a b c với a , b , c số f x dx Đặt thỏa nguyên dương Khi giá trị T a b c A 21 B 52 C 64 D 13 Lời giải Chọn C Ta có f x f x dx Đặt t 2x x 2x dt x x x 3 x x x 3 x x dx dx 25 1 dt dx x x 3 x x Vậy x x 3 1 dx dt t C 4 x 2x 2x x 1 C C x2 x x2 x Mà f 1 C f x x 1 x 2x 2 5 5 x 1 2x f x dx dx dx 2dx 2 x2 x 3 x 2x 3 5 1 x x 3 38 18 x2 x a 38 , b 18 , c dx 2 x2 x 3 Vậy a b c 64 Câu 46 Cho hàm số f x có đồ thị hình vẽ Số nghiệm thuộc đoạn ; phương trình f sin x A B 10 C D Lời giải Chọn C Đặt t sin x , x ; t 0; 4 Khi phương trình f sin x trở thành f t 3, t 0; 4 Đây phương trình hồnh độ giao điểm đồ thị hàm số y f t đường thẳng y 26 t a1 1;0 L Dựa vào đồ thị, ta có f t t a2 0;1 t a 2;3 Trường hợp 1: t a2 0;1 a2 sin x ;0 1 a 1 sin x 0; 4 a2 sin x 0; 4 Phương trình 1 cho ta nghiệm phân biệt x1 ; x2 thuộc khoảng ; Phương trình cho ta nghiệm phân biệt x3 ; x4 thuộc khoảng ; Trường hợp 2: t a3 2;3 a3 sin x ; 3 a 1 3 sin x ; 2 4 a3 4 sin x ; 2 4 Phương trình 3 cho ta nghiệm phân biệt x5 ; x6 thuộc khoảng ; Phương trình cho ta nghiệm phân biệt x7 ; x8 thuộc khoảng ; Hình vẽ minh họa trường hợp Vậy phương trình có nghiệm phân biệt 27 Câu 47 Cho số thực x , y thoả mãn log biểu thức P A x y x x 3 y y 3 xy Tìm giá trị lớn x y xy 2 x 2y x y6 69 249 94 69 249 94 B C 43 249 94 D 37 249 94 Lời giải Chọn A Điều kiện x y x y x y xy 2 Ta có log x y x x 3 y y 3 xy x y xy 2 log x y log x y xy x y xy 3x 3y xy x log x y 3x 3y 2log x y xy x y xy log 3x 3y 3x 3y 2log x y 2 y xy (*) Xét hàm đặc trưng f t 2log t t với t Ta có f ' t với t Suy hàm số y f (t) đồng biến khoảng t.ln3 0; Khi * 3x 3y x y xy (**) x a b 3a b Đặt Suy P ** a b2 2a y a b cost a 1 cost a Đặt với t [0;2 ) b sint b sint Khi P 3cos t sin t P 3 cos t sin t 3P cos t Phương trình có nghiệm 2P 3 3P 47P 69P 24 69 249 69 249 P (***) 94 94 Vì ln tồn t [0;2 ) để dấu xảy Do đó, ta ln tìm a , b từ tìm x, y để P đạt giá trị lớn Vậy giá trị lớn P 69 249 94 28 Câu 48 Có giá trị m để giá trị nhỏ hàm số f x e2 x 4e x m đoạn ; ln ? B A C D Lời giải Chọn D Xét x 0; ln 4 Đặt t e x t 1; 4 Đặt g t t 4t m với t 1; 4 Suy giá trị nhỏ hàm số f x e2 x 4e x m đoạn ; ln giá trị nhỏ hàm số g t t 4t m đoạn 1; 4 g t 2t Xét g t 2t t Ta có g 1 m ; g m ; g m Suy m g t m, t 1; 4 m4 6 Giá trị nhỏ g t t 4t m đoạn 1; 4 m 6 m 10 + Xét m m 2 Với m 10 g t 10, t 1; 4 Min g t TM 1;4 Với m 2 6 g t 2, t 1; 4 Min g t L 1;4 m 10 thỏa mãn yêu cầu toán m + Xét m m 6 Với m g t 6, t 1; 4 Min g t L 1;4 Với m 6 10 g t 6, t 1; 4 Min g t TM 1;4 m thỏa mãn yêu cầu tốn Vậy có hai giá trị m thỏa mãn yêu cầu toán Câu 49 Cho khối lập phương ABCD ABCD có cạnh Gọi M, N, P, L tâm hình vng ABB’A’, A’B’C’D’, ADD’A’, CDD’C’ Gọi Q trung điểm BL Thể tích khối tứ diện MNPQ A 24 B 16 C 27 D 27 Lời giải Chọn A 29 B C A Q D L M P B' C' N A' Ta có SMNP D' SAB ' D ' Vì Q BL BC ' D mà BC ' D / / AB ' D ' MNP nên d Q; MNP d B; MNP d A '; MNP Mặt khác: VA A ' B ' D ' 1 1 AA '.SA ' B ' D ' VA ' AB ' D ' d A '; AB ' D ' SAB ' D ' 3 3 d A '; MNP d A '; MNP (3) 1 Từ , có VQ.MNP SMNP d Q; MNP 24 ỉ1ư x +1 x (m -1) - 2m hàm số y = g ( x ) = ỗỗ ữữữ Tỡm + x + ỗ ố2ứ x -2 -1 x - m để hai đồ thị hàm số cắt có giao điểm có hồnh độ dương ? ln( x +1) Câu 50 Cho hàm số y = f ( x ) = A m 2; B m 0; C m 2, D m , 2 Lời giải Chn D x (m -1) - 2m ổỗ ửữ Xột phng trỡnh honh giao im = ỗ ữữ çè ø x -2 ln( x +1) ỉ1ư Biến i ta c m = ỗỗ ữữữ ỗố ứ ln( x +1) ỉ1ư Xét hàm số M ( x ) = ỗỗ ữữữ ỗố ứ ln( x +1) - ln ổỗ ửữ M Â( x ) = ỗ ữ ( x + 1) ỗố ữứ ln( x +1) - + + + x +1 + -1 x - x x +1 x + + -1 x - x - x x +1 x có xác định (-1; +¥) \ {0;2;3} + + -1 x - x - x x ln