GV Đỗ Đình Qn Trường THPT Nam Tiền Hải CHUN ĐỀ 1 KHẢO SÁT HÀM SỐ VÀ CÁC VẤN ĐỀ LIÊN QUAN CĐ 1. tiÕp tun cđa ®å thÞ hµm sè (T1) I/ Mục tiêu: 1/ Về kiến thức: Giúp học sinh hiểu rõ v ề tiếp tuyến 2/ Về kỹ năng: Rèn luyện cho hs có kỹ năng thành tạo trong việc vi ết pt tt 3/ Về tư duy thái độ: + Đảm bảo tính chính xác, linh hoạt. + Thái độ nghiêm túc, cẩn thận. II/ Chuẩn bị của GV và HS 1/ GV: Giáo án 2/ Hs: nắm vững lí thuyết về cực trị, GTLN, GTNN. Chuẩn bị trước bt ở nhà. III/ Phương pháp: Gợi mở, vấn đáp IV/ Tiến trình tiết dạy: 1/ Ổn định lớp: 2. Kiểm tra bài cũ 3/ Bài mới: Cho hàm số y=f(x) có đồ thò (C).Ta cần viết phương trình tiếp tuyến với đồ thò (C) trong các trường hợp sau: 1/ Tại điểm có toạ độ (x 0 ;f(x 0 )) : B1: Tìm f ’(x) ⇒ f ’(x 0 ) B2: Phương trình tiếp tuyến với (C) tại điểm (x 0 ;f(x 0 )) là: y = / 0 f (x ) (x–x 0 ) + f(x 0 ) 2/ Tại điểm trên đồ thò (C) có hoành độ x 0 : B1: Tìm f ’(x) ⇒ f ’(x 0 ), f(x 0 ) B2: Phương trình tiếp tuyến với (C) tại điểm có hoành độ x 0 là:y = / 0 f (x ) (x–x 0 ) + f(x 0 ) 3/ Tại điểm trên đồ thò (C) có tung độä y 0 : B1: Tìm f ’(x) . B2:Do tung độ là y 0 ⇔ f(x 0 )=y 0 . giải phương trình này tìm được x 0 ⇒ f / (x 0 ) B3: Phương trình tiếp tuyến với (C) tại điểm có tung độ y 0 là:y = / 0 f (x ) (x–x 0 ) + y 0 4/ Biết hệ số góc của tiếp tuyến là k: B1: Gọi M 0 (x 0 ;y 0 ) là tiếp điểm . B2: Hệ số góc tiếp tuyến là k nên : )( 0 xf ′ =k (*) B3: Giải phương trình (*) tìm x 0 ⇒ f(x 0 ) ⇒ phương trình tiếp tuyến. Chú ý: Tiếp tuyến song song với đường thẳng y=ax+b thì có f / (x 0 )=a. Tiếp tuyến vuông góc với đường thẳng y=ax+b thì có f / (x 0 ).a=-1. 5/ Biết tiếp tuyến đi qua điểm A(x 1 ;y 1 ) : B1:Phương trình đường thẳng d đi qua A(x 1 ;y 1 ) có hệ số góc k là: y = k(x–x 1 ) + y 1 (1) 1 GV Đỗ Đình Qn Trường THPT Nam Tiền Hải B2: d là tiếp tuyến của (C) ⇔ hệ phương trình sau có nghiệm : = ′ +−= kxf yxxkxf )( )()( 11 B3:Giải hệ này ta tìm được k chính là hệ số góc của tiếp tuyến thế vào (1) ⇒ phương trình tiếp tuyến. Ví dụ 1 : Cho đường cong (C) y = x 3 .Viết phương trình tiếp tuyến với đường cong : a.Tại điểm A(-1 ; -1) b.Tại điểm có hoành độ bằng –2 c.Tại điểm có tung độä bằng –8 d. Biết rằng hệ số góc của tiếp tuyến bằng 3. e.Biết rằng tiếp tuyến đi qua điểm B(2;8) Giải: Ta có y’= 3.x 2 a/ Tiếp tuyến tại A(-1;-1) ( )C∈ có 0 0 x 1 f(x ) 1 = − = − ⇒ f’(x 0 )= 3.(-1) 2 = 3 ⇒ phương trình tiếp tuyến là: y=f’(x 0 )(x-x 0 )+f(x 0 ) = 3.(x+1) + (-1) b/ Ta có x 0 = -2 ⇒ 0 0 f(x ) 8 f '(x ) 12 = − = ⇒ Ph.trình tiếp tuyến là y= 12(x+2) – 8 =12x + 16 c/ Ta có tung độä bằng y 0 = –8 ⇔ f(x 0 )= -8 ⇔ 3 0 x =-8 ⇒ x 0 =-2 ⇒ f’(x 0 )=12 ⇒ Phương trình tiếp tuyến là: y= 12(x+2) – 8 = 12x + 16 d/ Hệ số góc của tiếp tuyến bằng 3 ⇔ f’(x 0 )=3 ⇔ 3. 2 0 x =3 ⇔ x 0 = ± 1 với x 0 =1 ⇒ f(x 0 )=1 ⇒ Phương trình tiếp tuyến là: y= 3(x-1) + 1= 3x-2 . với x 0 =-1 ⇒ f(x 0 )= -1 ⇒ Phương trình tiếp tuyến là: y= 3(x+1) - 1= 3x+2. e/Phương trình đường thẳng d đi qua B(2;8) có hệ số góc k là: y = k(x–2) + 8 d là tiếp tuyến của (C) ⇔ hệ phương trình sau có nghiệm : 3 2 k(x-2) + 8(1) 3 (2) x x k = = ⇔ x 3 = 3x 2 (x-2) + 8 ⇔ 2x 3 - 6x 2 + 8 = 0 ⇔ 2 1 x x = = − Với x=2 ⇒ k=12 ⇒ phương trình tiếp tuyến là y=12(x-2)+8 = 12x -16. Với x=-1 ⇒ k=3 ⇒ phương trình tiếp tuyến là y= 3(x-2)+8 = 6x – 4 4. Củng cố - hd bài tập sau 5.Bài tập VN Bài 1: Cho hàm số y= x 3 - 3x 2 có đồ thò (C). Viết phương trình tiếp tuyến với (C) a/ Tại các giao điểm với trục hoành. b/ Tại điểm có hoành độ = 4. c/ Biết tiếp tuyến có hệ số góc k= -3. d/ Biết tiếp tuyến song song với đường thẳng y= 9x + 2005. 2 GV Đỗ Đình Qn Trường THPT Nam Tiền Hải e/ Biết tiếp tuyến vuông góc với đường thẳng y= 1 3 x + 2006. f/Biết tiếp tuyến đi qua A(1;-2). Bài 2: Cho hàm số y= 2 1 x x x − + + có đồ thò (C). Viết phương trình tiếp tuyến với (C) a/ Tại các giao điểm với trục hoành. b/ Tại điểm có hoành độ = 2. c/ Tại điểm có tung độ y=- 3 2 . d/Biết tiếp tuyến có hệ số góc k= - 1. e/Biết tiếp tuyến đi qua A(2;0). CĐ2 : SỰ ĐỒNG BIẾN NGHỊCH BIẾN CỦA HÀM SỐ (T2) I. Mơc tiªu bµi häc: - Về kiến thức: Học sinh nắm chắc hơn định nghĩa hàm số đồng biến, nghịch biến trên khoảng, nửa khoảng, đoạn, điều kiện đủ để hàm số đồng biến, nghịch biến trên khoảng, nửa khoảng, đoạn. - Về kỹ năng: Giải tốn về xét tính đơn điệu của hàm số bằng đạo hàm. Áp dụng được đạo hàm để giải các bài tốn đơn giản. - Về ý thøc, th¸i ®é: Tích cực,chủ động nắm kiến thức theo sự hướng dẫn của GV, sáng tạo trong q trình tiếp thu kiến thức mới. II. Ph ¬ng tiƯn d¹y häc SGK, SBT,làm bài tập ở nhà III. Ph ¬ng ph¸p d¹y häc chđ u: VÊn ®¸p – hoạt động nhãm IV. TiÕn tr×nh d¹y häc 2. Bµi míi: 1 : Ơn lý thuyết u cầu hs trình bày lại: Tính đơn điệu, hàm số đồng biến, hs nghịch biến, Mối quan hệ giữa dấu của đạo hàm và sự biến thiên hàm số. Để xét tính đơn điệu của hàm số ta làm theo quy tắc: - Tìm TXĐ - Tính y’=f’(x). Tìm các điểm x i (i = 1, 2, …) mà tại đó y’=0 hoặc khơng xác định - lập bảng biến thiên và xét dấu y’ - kết luận y’ từ bảng xét dấu y’ tìm ra các khoảng đồng biến, nghịch biến 2 : Tổ chức luyện tập 1)Xét tính đơn điệu của hàm số a) y = f(x) = x 3 -3x 2 +1. b) y = f(x) = 2x 2 -x 4 . c) y = f(x) = 2x 3x + − . d) y = f(x) = x1 4x4x 2 − +− . e) y= f(x) = x 3 −3x 2 . g) 1x 3x3x f(x) y 2 − +− == . h) y= f(x) = x 4 −2x 2 . i) y = f(x) = sinx trên [0; 2π]. 2) Cho hàm số y = f(x) = x 3 -3(m+1)x 2 +3(m+1)x+1. Định m để hàm số ln đồng biên trên từng khoảng xác định của nó (ĐS:1 ≤ m ≤ 0) 3) Tìm m∈Z để hàm số y = f(x) = mx 1mx − − đồng biên trên từng khoảng xác định của nó. (ĐS:m = 0) 4) Chứng minh rằng : hàm số luôn luôn tăng trên khoảng xác đònh (trên từng khoảng xác đònh) của nó : 3 GV Đỗ Đình Quân Trường THPT Nam Tiền Hải a) y = x 3 −3x 2 +3x+2. b) 1x 1xx y 2 − −− = . c) 1x2 1x y + − = . 5) Tìm m để hàm số mx 2mmx2x y 2 − ++− = luôn đồng biến trên từng khoảng xác định của nó CĐ 2 : CỰC TRỊ CỦA HÀM SỐ (T3) I/ Mục tiêu : 1/ Kiến thức : Nắm vững hơn về định nghĩa cực đại và cực tiểu của hàm số, hai quy tắc để tìm cực trị của hàm số, tìm tham số m để hàm số có cực trị . 2/ Kĩ năng: Vận dụng thành thạo hai quy tắc để tìm cực trị của hàm số, biết vận dụng cụ thể từng trường hợp của từng qui tắc. 3/ Thái độ: Nghiêm túc, cẩn thận, chính xác. II. Ph ¬ng tiÖn d¹y häc SGK, SBT, làm bài tập ở nhà III. Ph ¬ng ph¸p d¹y häc chñ yÕu: VÊn ®¸p – hoạt động nhóm IV. TiÕn tr×nh d¹y häc 1: Cũng cố lý thuyết Để tìm cực trị của hàm số ta áp dụng quy tắc 1 sau: - Tìm TXĐ - Tính y’ và tìm các điểm x i (i =1, 2, …)mà tại đó y’=0 hoặc không xác định - Lập bảng biến thiên - Dựa vào bảng biến thiên để kết luận các điểm cực trị của hàm số Để tìm cực trị của hàm số ta còn áp dụng quy tắc 2 sau: - Tìm TXĐ - Tính y’ và tìm các điểm x i (i =1, 2, …)mà tại đó y’=0 hoặc không xác định - Tính y’’ và y’’(x i ) - Dựa vào dấu của y’’(x i ) để kết luận các điểm cực trị của hàm số 2: Tổ chức luyện tập 1) Tìm các điểm cực trị của đồ thị hàm số bằng quy tắc I: a) y = x 3 . b) y = 3x + x 3 + 5. . 2) Tìm các điểm cực trị của đồ thị hàm số bằng quy tắc II: a / 4 2 3 2y x x= − + b) y = x 2 lnx c) y = sin 2 x với x∈[0; π ] . 3) Xác định tham số m để hàm số y = x 3 −3mx 2 +(m 2 −1)x+2 đạt cực đại tại x = 2. ( m = 11) 4) Xác định m để hàm số y = f(x) = x 3 -3x 2 +3mx+3m+4 a.Không có cực trị. ( m ≥1) b.Có cực đại và cực tiểu. ( m <1) 5) Xác định m để hàm số y = f(x) = x1 mx4x 2 − +− a. Có cực đại và cực tiểu. (m>3) b.Đạt cực trị tại x = 2. (m = 4) c.Đạt cực tiểu khi x = -1 (m = 7) 6) Tìm cực trị của các hàm số : a) x 1 xy += . b) 6x2 4 x y 2 4 ++−= . 4 GV Đỗ Đình Quân Trường THPT Nam Tiền Hải 7) Xác định m để hàm số sau đạt cực đại tại x =1: y = f(x) = 3 x 3 -mx 2 +(m+3)x-5m+1. (m = 4) 3 / Hướng dẫn học ở nhà : BT về nhà B1. Hàm số 3 2 2( 1) 4 1 3 m y x m x mx= − + + − . Tìm m để hàm số có cực đại cực tiểu. B2. Cho hàm 2 1 x mx y x + = − . Tìm m để hàm số có cực trị B3. Cho hàm số 2 2 4 2 x mx m y x + − − = + . Xác định m để hàm số có cực đại và cực tiểu. CĐ 3: GTLN – GTNN – TIỆM CẬN CỦA HÀM SỐ(T4-5) Phần 1: GTLN VÀ GTNN CỦA HÀM SỐ I/ Mục tiêu: Về kiến thức: Giúp học sinh hiểu rõ hơn về giá trị lớn nhất, giá trị nhỏ nhất của hàm số Về kỹ năng: Rèn luyện cho hs thành tạo trong việc tìm GTLN, GTNN của hàm số và biết ứng dụng vào các bài toán thường gặp. Về tư duy : Đảm bảo tính chính xác, linh hoạt. Thái độ : Thái độ nghiêm túc, cẩn thận. II/ Chuẩn bị của GV và HS Hs: Học bài ở nhà nắm vững lí thuyết về cực trị, GTLN, GTNN. Chuẩn bị trước bt ở nhà. III/ Phương pháp: Gợi mở, vấn đáp,hoạt động nhóm IV/ Tiến trình tiết dạy: 1 / Ổn định lớp: 2/ Bài mới: 1: Ôn lý thuyết : - Tính y’. Tìm các điểm x 1 , x 2 ,… trên khoảng (a;b) mà tại đó y’=0 hoặc không xác định - Tính f(a), f(b), tính f(x 1 ), f(x 2 ),…. - Tìm số lớn nhất M và nhỏ nhất m trong các số trên [ ] [ ] ; ; max ( ) ; min ( ) a b a b f x M f x m= = 2: Tổ chức luyện tập 1) Tìm giá trị nhỏ nhất của hàm số y = f(x) = x 2 -2x+3. ( R Min f(x) = f(1) = 2) 2) Tìm giá trị lớn nhất và nhỏ nhất của hàm số y = f(x) = x 2 -2x+3 trên [0;3]. ( ]3;0[ Min f(x) = f(1) = 2 và ]3;0[ Max f(x) = f(3.) = 6 3) Tìm giá trị lớn nhất của hàm số y = f(x) = 1x 4x4x 2 − +− với x<1. ( )1;( Max −∞ f(x) = f(0) = -4) 4) Tìm giá trị nhỏ nhất và lớn nhất của hàm số y = 3 sinx – 4 cosx. 5) Tìm GTLN: y = −x 2 +2x+3. ( R Max y = f(1 ) = 4) 6) Tìm GTNN y = x – 5 + x 1 với x > 0. ( );0( Min ±∞ y = f(1 ) = −3) 7) Tìm GTLN, GTNN của hàm số y = 2x 3 +3x 2 −1 trên đoạn − 1; 2 1 ( 4)1(fyMax ]1; 2 1 [ == − ; 1)0(fyMin ]1; 2 1 [ −== − ) 5 GV Đỗ Đình Quân Trường THPT Nam Tiền Hải 8) Tìm GTLN, GTNN của: a) y = x 4 -2x 2 +3. ( R Min y = f(±1) = 2; Không có R Max y) b) y = x 4 +4x 2 +5. ( R Min y=f(0)=5; Không có R Max y) Gv sửa sai,hoàn thiện lời giải Phần 2 : TIỆM CẬN VÀ ĐỒ THỊ HÀM SỐ I/ Mục tiêu: Về kiến thức: Giúp học sinh nắm chắc hơn về giới hạn của hàm số, Nắm kỹ hơn về tiệm cận,cách tìm tiệm cận của đồ thị hàm số Về kỹ năng: Rèn luyện cho hs có kỹ năng thành tạo trong việc tìm tiệm cận đứng và ngang của đồ thị hàm số và biết ứng dụng vào bài toán thực tế. Về tư duy : Đảm bảo tính chính xác, linh hoạt. Về thái độ : Thái độ nghiêm túc, cẩn thận. II/ Chuẩn bị của GV và HS Hs: nắm vững lí thuyết về giới hạn,tiệm cận của đồ thị. Chuẩn bị trước bt ở nhà. III/ Phương pháp: Gợi mở, vấn đáp IV/ Tiến trình tiết dạy: 1/ Ổn định lớp: 2/ Bài mới: Phần 1 : Yêu cầu học sinh chia làm 4 nhóm nhắc lại một số kiến thức lý thuyết có liên quan đến bài học như sau : 1 / Khái niệm giới hạn bên trái,giới hạn bên phải. 2 / Giới hạn vô cùng - Giới hạn tại vô cùng 3 / Khái niệm tiệm cận ngang của đồ thị 4 / Khái niệm tiện cận đứng của đồ thị Cả lớp thảo luận,bổ sung ,sửa sai,hoàn thiện phần lý thuyết để khắc sâu kiến thức cho Hs 2 : Tiến hành hướng dẫn,gợi mở dẫn dắt để học sinh giải các bài tập. Bài tập 1 : Chia lớp làm 4 nhóm yêu cầu mỗi nhóm giải mỗi câu sau.Tìm tiệm cận đứng,ngang của đồ thị các hàm số sau : a/ 2 1 2 x y x − = + b/ 3 2 1 3 x y x − = + c/ 5 2 3 y x = − d/ 4 1 y x − = + Đại diện các nhóm trình bày trên bảng, lớp thảo luận bổ sung, góp ý, hoàn chỉnh .ghi chép Gợi ý lời giải : a / 2 1 2 x y x − = + ta có 2 2 1 lim , 2 x x x + →− − = −∞ + và 2 2 1 lim , 2 x x x − →− − = +∞ + Nên đường thẳng x = - 2 là đường tiệm cận đứng của đồ thị. Vì 1 2 2 1 lim lim 2 2 2 1 x x x x x x →±∞ →±∞ − − = = + + nên đường thẳng y = 2 là đường tiệm cận ngang của đồ thị Bài tập 2 : Tiến hành tương tự cho bài tập 2 như sau : a./ 2 2 12 27 4 5 x x y x x − + = − + b/ 2 2 2 ( 1) x x y x − − = − c / 2 2 3 4 x x y x + = − d / 2 2 4 3 x y x x − = − + Đại diện các nhóm trình bày ,lớp thảo luận ,góp ý ,bổ sung. 6 GV ỡnh Quõn Trng THPT Nam Tin Hi Gi ý li gii : a./ 2 2 12 27 4 5 x x y x x + = + Vỡ 2 2 12 27 lim 1 4 5 x x x x x + = + nờn ng thng y = 1 l tim cn ngang ca th Vỡ 2 4 5x x + > 0 , x nờn th khụng cú tim cn ng 4/ Cng c : Nhc li cỏch tỡm gii hn ca hs trờn . Lu ý cỏch tỡm tim cn ng nhanh bng cỏch tỡm cỏc giỏ tr lm cho mu thc bng khụng. BTVN: Tỡm giỏ tr ln nht v giỏ tr nh nht ca cỏc hm s sau a. 4 3 2 3 2 9y x x x x= + trong on [ ] 2;2 b. 2 1 2 x y x + = trong on [ ] 3;4 c. [ ] 3 2 6 9 , 0;4y x x x x = + d. [ ] 2 2 , 2;2y x x x= + C 4 : KHO ST HM S V CC BI TON LIấN QUAN Phn 1 : KHO ST HM S BC BA V CC BI TON LIấN QUAN T6-7 I/ Mc tiờu: V kin thc: Giỳp hc sinh nm chc hn v s kho sỏt hm s, Nm k hn v bin thiờn,Cc tr,GTLN,GTNN,tim cn,cỏch v th hm s V k nng: Rốn luyn cho hs cú k nng thnh to trong vic kho sỏt v th hm s . V t duy : m bo tớnh logic V thỏi : Thỏi nghiờm tỳc, cn thn.chớnh xỏc, II/ Chun b ca GV v HS Hs: nm vng lý thuyt v khảo sát hàm số và các bài toán liên quan. III/ Phng phỏp: Gi m, vn ỏp kt hp hot ng nhúm . IV/ Tin trỡnh tit dy: * ễn lý thuyt : 1. Sơ đồ khảo sát hàm số: 1. Txđ 2. Sự biến thiên a) Giới hạn và tiệm cận (Chỉ xét tiệm cận của các hàm phân thức) b) Bảng biến thiên: - Tính o hm - Tìm các điểm x i sao cho phơng trình y (x i ) = 0. Tính y(x i ) - Lập bảng biến thiên. - Dựa vào bảng biến thiên để kết luận các khoảng đồng biến và cực trị. 3. Vẽ đồ thị: - Tìm giao với các trục toạ độ (Hoặc một số điểm đặc biệt) - Vẽ đồ thị 2. PTTT ca th hm s a) PTTT ca hm s (C): y = f(x) ti im M 0 (x 0 ; y 0 ) Bc 1: PTTT cn tỡm cú dng: y y 0 = f (x 0 )(x x 0 ) Bc 2: Tớnh f (x) Bc 3: Tớnh f (x 0 ) Bc 4: Thay x 0 , y 0 v f (x 0 ) vo bc 1 7 GV ỡnh Quõn Trng THPT Nam Tin Hi b) PTTT ca (C): y = f(x) bit h s gúc k cho trc Bc 1: Tớnh f (x) Bc 2: Gii phng trỡnh f (x 0 ) = k nghim x 0 Bc 3: Tớnh y 0 = f(x 0 ) Bc 4: Thay x 0 , y 0 v k = f (x 0 ) vo PT: y y 0 = f (x 0 )(x x 0 ) * Tin hnh hng dn,gi m dn dt hc sinh gii cỏc bi tp. VD1 : Cho hàm số y = - x 3 + 3x 2 - 2 a) Khảo sát hàm số. b) Viết phơng trình tiếp tuyến của đồ thị hàm số tại điểm y=0 Giải: a) Khảo sát hàm số: 1. Tập xác định: R 2. Sự biến thiên: a) Giới hạn: lim x y = m b) Bảng biến thiên: y = - 3x 2 + 6x, y = 0 - 3x 2 + 6x = 0 1 1 2 1 0 2 2 2 x y x y = = = = - Hàm số đồng biến trên khoảng (0 ; 2) và nghịch biến trên khoảng (- ; 0) và (2 ; +) - Cực trị: Điểm cực đại (2 ; 2) cực tiểu (0 ; -2) 3. Đồ thị : - Điểm uốn : y = - 6x + 6; y = 0 khi x = 1 y = 0. Ta có điểm uốn là: U(1 ; 0) - Giao Ox : (1 3;0); (1 3;0); (1;0)A B U + - Giao Oy : D(0 ; -2) Nhận xét : Đồ thi nhận điểm uốn U(1 ; 0) làm tâm đối xứng. b) Viết phơng trình tiếp tuyến tại điểm uốn U(1 ; 0) Hệ số góc k = f(1) = 3 Vậy ta có phơng trình tiếp tuyến là : y - y 0 = k(x - x 0 ) hay : y - 0 = 3(x - 1) y = 3x - 3 Một số chú ý khi khảo sát hàm số bậc ba : 1. Txđ: R 2. 0 lim ; 0 lim x x a y a y > = < = m 3. a > 0 : CĐ - CT; a < 0: CT - CĐ (Không có cực trị nếu y > 0 hoặc y < 0 x R) 4. Tìm điểm uốn trớc khi vẽ đồ thị. Đồ thị nhận điểm uốn làm tâm đối xứng. VD 2: Cho hm s (C): y = -x 3 + 3x + 2 a) Kho sỏt s bin thiờn v v th hm s (C) b) Da vo th (C), bin lun theo m s nghim ca phng trỡnh: x 3 3x 2 + m = 0 S: * m > 4: 1 n 0 ; * m = 4: 2 n 0 ; * 0 < m < 4: 3 n 0 ; * m = 0: 2 n 0 ; * m < 0: 1 n 0 c) Vit phng trỡnh tip tuyn ti im I(0; 2). S: y = 3x + 2 d) Vit phng trỡnh ng thng i qua im cc i v im cc tiu ca th (C) HD: PT t i qua 2 im A(x A ; y A ) v B(x B ; y B ) cú dng: A A B A B A x x y y x x y y = . S: y = 2x + 2 X - 0 2 + y - 0 + 0 - y + 2 -2 - 8 2 -2 y x O GV ỡnh Quõn Trng THPT Nam Tin Hi VD3: Cho hm s (C): y = x 3 + 3x 2 + 1 a) Kho sỏt s bin thiờn v v th hm s (C) b) Da vo th (C), bin lun theo k s nghim ca phng trỡnh: x 3 + 3x 2 k = 0 S: * k > 4: 1 n 0 ; * k = 4: 2 n 0 ; * 0 < k < 4: 3 n 0 ; * k = 0: 2 n 0 ; * k < 0: 1 n 0 c) Vit phng trỡnh tip tuyn ti im cú honh bng -1 HD: Th x = -1 vo (C) y = 3: M(-1; 3). S: y = -3x d) Vit phng trỡnh ng thng i qua im cc i v im cc tiu ca th (C) S: y = -2x + 1 VD4: Cho hm s (C): y = x 3 3x 2 + 4 a) Kho sỏt v v th hm s (C) b) Vit phng trỡnh tip tuyn ca (C) song song vi ng thng y = 5 x 1 3 . S: y = 5 83 x 3 27 + ; y = 5 115 x 3 27 + VD5: Cho hm s (C m ): y = 2x 3 + 3(m 1)x 2 + 6(m 2)x 1 a) Kho sỏt s bin thiờn v v th hm s (C) khi m = 2 b) Vi giỏ tr no ca m, th ca hm s (C m ) i qua im A(1; 4). S: m = 2 c) Vit phng trỡnh tip tuyn ca hm s (C) i qua im B(0; -1). S: y = -1; y = 9 x 1 8 Bài tập tự luyện: Bài 1: Cho hàm số: 3 12 12y x x= + (C) a) Khảo sát hàm số. b) Tìm giao điểm của (C) với đờng thẳng d: y = - 4 Bài 2: Cho hàm số 3 2 1 ( ) 3 y x x C= (Đề thi TN 2002) a) Khảo sát và vẽ đồ thị (C). b) Viết phơng trình tiếp tuyến của (C) đi qua điểm A(3; 0) Bài 3: Cho hàm số 3 1 3 ( ) 4 y x x C= (Đề TN 2001) a) Khảo sát và vẽ đồ thị hàm số b) Viết phơng trình tiếp tuyến của (C) tại điểm có hoành độ bằng 2 3 (d) Bài 4: (Đề TN 99) Cho hàm số y = x 3 - (m + 2)x + m a) Tìm m để hàm số có cự đại tơng ứng với x = 1 b) Khảo sát hàm số tơng ứng với m = 1(C) c) Biện luận số giao điểm của (C) với đờng thẳng y = k Bài 5 : (Đề 97) Cho hàm số y = x 3 - 3x + 1 (C) Khảo sát hàm số (C) Bai 6: (Đề 93) Cho hàm số y = x 3 - 6x 2 + 9 (C) a) Khảo sát hàm số b) Viết phơng trình tiếp tuyến tại điểm có hoành độ là nghiệm phơng trình y=0 c) Dựa vào (C) để biện luận số nghiệm của phơng trình x 3 - 6x 2 + 9 - m. Bài 8 : Cho hàm số 3 2 1 2,( ) 3 y x x C= + a) Khảo sát và vẽ đồ thị hàm số 9 6 4 2 -2 5 x y GV Đỗ Đình Qn Trường THPT Nam Tiền Hải b) ViÕt ph¬ng tr×nh tiÕp tun cđa (C) biÕt r»ng tiÕp tun ®ã vu«ng gãc víi ®êng th¼ng d: 1 2 3 y x= − + Phần 2: KHẢO SÁT HÀM SỐTRÙNG PHƯƠNG VÀ CÁC BÀI TỐN LIÊN QUAN T8-9 I/ Mục tiêu: Về kiến thức: Giúp học sinh nắm chắc hơn về sơ đồ khảo sát hàm số, Nắm kỹ hơn về biến thiên,Cực trị,GTLN,GTNN,tiệm cận,cách vẽ đồ thị hàm số Về kỹ năng: Rèn luyện cho hs có kỹ năng thành tạo trong việc khảo sát vẽ đồ thị hàm số . Về tư duy : Đảm bảo tính logic Về thái độ : Thái độ nghiêm túc, cẩn thận.chính xác, II/ Chuẩn bị của GV và HS Hs: nắm vững lí thuyết về kh¶o s¸t hµm sè vµ c¸c bµi to¸n liªn quan. III/ Phương pháp: Gợi mở, vấn đáp kết hợp hoạt động nhóm . IV/ Tiến trình tiết dạy: Phần 1 : Ơn lý thuyết : 1. S¬ ®å kh¶o s¸t hµm sè: 2/ Bài toán : Biện luận số nghiệm của phương trình bằng đồ thò Dùng đồ thò biện luận số nghiệm của phương trình f(x)= ( )m ϕ . Phương pháp giải: B1: Vẽ đồ thò (C) của hàm f(x) (Thường đã có trong bài toán khảo sát hàm số ) B2: Số nghiệm của phương trình là số giao điểm của đồ thò (C) và đường thẳng y= ( )m ϕ . Tùy theo m dựa vào số giao điểm để kết luận số nghiệm. Ví dụ: Cho hàm số y=x 3 – 6x 2 + 9x (C). Dùng đồ thò (C) biện luận số nghiệm của phương trình x 3 – 6x 2 + 9x – m = 0 Giải: Phương trình x 3 – 6x 2 + 9x – m = 0 ⇔ x 3 – 6x 2 + 9x = m Số nghiệm của phương trình là số giao điểm của đồ thò (C) và đường thẳng d: y=m. dựa vào đồ thò ta có: Nếu m > 4 phương trình có 1 nghiệm. Nếu m = 4 phương trình có 2 nghiệm. Nếu 0< m <4 phương trình có 3 nghiệm. Nếu m=0 phương trình có 2 nghiệm. Nếu m < 0 phương trình có 1 nghiệm. Phần 2 : Tiến hành hướng dẫn,gợi mở dẫn dắt để học sinh giải các bài tập. Hµm sè bËc 4 trïng ph¬ng y = ax 4 + bx 2 + c VD1: Cho hµm sè 4 2 1 9 2 ( ) 4 4 y x x C= − + + a) Kh¶o s¸t hµm sè b) ViÕt ph¬ng tr×nh tiÕp tun cđa (C) t¹i ®iĨm cã hoµnh ®é b»ng 1. Gi¶i: 10 [...]... hàm số f tăng ( hoặc giảm ) trong khỏang (a;b) thì phương trình f(x) = C có khơng q một nghiệm trong khỏang (a;b) ( do đó nếu tồn tại x0 ∈ (a;b) sao cho f(x0) = C thì đó là nghiệm duy nhất của phương trình f(x) = C) • Tính chất 2 : Nếu hàm f tăng trong khỏang (a;b) và hàm g là hàm một hàm giảm trong khỏang (a;b) thì phương trình f(x) = g(x) có nhiều nhất một nghiệm trong khỏang (a;b) ( do đó nếu tồn... hàm số f tăng ( hoặc giảm ) trong khỏang (a;b) thì phương trình f(x) = C có khơng q một nghiệm trong khỏang (a;b) ( do đó nếu tồn tại x0 ∈ (a;b) sao cho f(x0) = C thì đó là nghiệm duy nhất của phương trình f(x) = C) Tính chất 2 : Nếu hàm f tăng trong khỏang (a;b) và hàm g là hàm một hàm giảm trong khỏang (a;b) thì phương trình f(x) = g(x) có nhiều nhất một nghiệm trong khỏang (a;b) ( do đó nếu tồn tại... ⇒ y = - 1 lµ tiƯm cËn ngang x →∞ d) B¶ng biÕn thiªn : x -∞ 1 y’ - +∞ - 2 +∞ y -1 y -1 -∞ 3.§å thÞ : (H3) - Giao víi Ox : A(4 ; 0) - Giao víi Oy : B(0 ; -4) - §å thÞ nhËn I(1 ; - 1) lµm t©m ®èi xøng b) Hoµnh ®é giao ®iĨm cđa(C) vµ ®êng th¼ng d lµ nghiƯm 1 O x 5 I -2 -4 x1 = −2 ⇒ y1 = −2 −x + 4 2 = 2x + 2 ⇔ 2x + x − 6 = 0 ⇔ Cđa ph¬ng tr×nh: x2 = 3 ⇒ y2 = 5 x −1 2 3 VËy giao ®iĨm cđa (C) vµ ®êng... (C’) liên tục trên đoạn [a;b] khi đó diện tích hình b phẳng giới hạn bởi đường cong (C), (C’) và các đường thẳng x= a; x=b là : S =∫ f ( x) −g ( x) dx a Phương pháp giải toán: B1: Lập phương trình hoành độ giao điểm giữa (C) và (C’) B2: Tính diện tích hình phẳng cần tìm: TH1: Nếu phương trình hoành độ giao điểm vô nghiệm trong (a;b) Khi đó diện tích hình phẳng cần tìm là: b S = ∫ f ( x ) − ( x )]dx [... của GV và HS Hs: nắm vững lí thuyết về kh¶o s¸t hµm sè vµ c¸c bµi to¸n liªn quan III/ Phương pháp: Gợi mở, vấn đáp kết hợp hoạt động nhóm IV/ Tiến trình tiết dạy: −x + 4 (C ) VD1: Cho hµm sè: y = x −1 a) Kh¶o s¸t hµm sè b) X¸c ®Þnh to¹ ®é giao ®iĨm cđa (C) víi ®êng th¼ng d: y = 2x + 2 ViÕt ph¬ng tr×nh tiÕp tun cđa (C) t¹i c¸c giao ®iĨm trªn Gi¶i: a) Kh¶o s¸t hµm sè: 1.TËp x¸c ®Þnh: D = R\{1} 2.Sù biÕn... 4 − 2x 2 + 1 Phần 3 : KHẢO SÁT HÀM SỐ PHÂN THỨC BẬC NHẤT TRÊN BẬC NHẤT VÀ CÁC BÀI TỐN LIÊN QUAN T10-11 I/ Mục tiêu: Về kiến thức: Giúp học sinh nắm chắc hơn về sơ đồ khảo sát hàm số, Nắm kỹ hơn về biến thiên,Cực trị,GTLN,GTNN,tiệm cận,cách vẽ đồ thị hàm số Về kỹ năng: Rèn luyện cho hs có kỹ năng thành tạo trong việc khảo sát vẽ đồ thị hàm số Về tư duy : Đảm bảo tính logic Về thái độ : Thái độ nghiêm... 1)dx = a/ −1 3 3 −1 3 −1 3 ∫ x dx + ∫ 1dx = ( π 4 x4 81 1 + x ) = ( + 3) − ( − 1) = 24 4 4 4 −1 π π π 4 4 4 1 − 3sin x )dx = 4 ∫ dx − 3 ∫ sin xdx = (4 tan x + 3 cos x ) 4π = b/ ∫ ( − cos2 x cos2 x −π −π −π 4 4 4 4 π π π π = (4 tan 4 + 3 cos 4 ) − [4 tan( − 4 ) + 3 cos( − 4 )] =8 2 c/ ∫ −2 1 2 1 2 −2 1 −2 1 x − 1 dx = ∫ x − 1 dx + ∫ x − 1 dx = ∫ (1 − x )dx + ∫ ( x − 1)dx =(x- x2 1 x2 2 ) −2 + ( − x )... tích hình phẳng: a) Dạng toán1: Diện tích hình phẳng giới hạn bởi 1 đường cong và 3 đường thẳng Công thức: Cho hàm số y=f(x) liên tục trên đoạn [a;b] khi đó diện tích hình phẳng giới hạn bởi đường cong (C) b :y=f(x) và các đường thẳng x= a; x=b; y= 0 là : S = ∫ f ( x ) dx a b) Dạng toán2: Diện tích hình phẳng giới hạn bởi 2 đường cong và 2 đường thẳng Công thức: Cho hàm số y=f(x) có đồ thò (C) và y=g(x)... vẽ đồ thị hàm số (C) khi m = 0 b) Với giá trị nào của m, đồ thị của hàm số (Cm) đi qua điểm B(0; -1) ĐS: m = 0 c) Định m để tiệm cận ngang của đồ thị đi qua điểm C( 3 ; -3) ĐS: m = -4 c) Viết phương trình tiếp tuyến của hàm số tại giao điểm của nó với trục tung HD: Giao điểm với trục tung ⇒ x = 0, thay x = 0 vào (C) ⇒ y = -1: E(0; -1) ĐS: y = -2x – 1 Bµi tËp tù lun 2x −1 (C ) Bµi 1: Cho hµm sè: y =... C , 0 < a ≠ 1 ln a 5, ∫ a u du = au + C , 0 < a ≠ 1 ln a 6, ∫ cos x.dx = sin x + C 6, ∫ cos u.du = sin u + C 7, ∫ sin x.dx = − cos x + C 7, ∫ sin u.du = − cos u + C dx = tan x + C cos 2 x dx 9, ∫ 2 = − cot x + C sin x 8, ∫ du = tan u + C cos 2 u du 9, ∫ 2 = − cot u + C sin u 8, ∫ b.Tìm nguyên hàm của một hàm số bằng đònh nghóa và tính chất Phương pháp giải: Thường đưa nguyên hàm đã cho về nguyên hàm . hàm f tăng trong khỏang (a;b) và hàm g là hàm một hàm giảm trong khỏang (a;b) thì phương trình f(x) = g(x) có nhiều nhất một nghiệm trong khỏang (a;b) .. + trong on [ ] 2;2 b. 2 1 2 x y x + = trong on [ ] 3;4 c. [ ] 3 2 6 9 , 0;4y x x x x = + d. [ ] 2 2 , 2;2y x x x= + C 4 : KHO ST HM S V CC BI TON