SỞ GIÁO DỤC VÀ ĐÀO TẠO KHÁNH HÒA ĐỀ THI CHÍNH THỨC (Đề thi có 01 trang) KỲ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2019 – 2020 Mơn thi : TỐN Ngày thi: 04/06/2019 Thời gian làm bài: 120 phút, không kể thời gian phát đề Bài 1: (2 điểm) Giải phương trình hệ phương trình sau (khơng dùng máy tính cầm tay) a) x 3x �x y b) � �x y 9 T 2; 2 P có phương trình Bài 2: (1,0 điểm) Trên mặt phẳng tọa độ Oxy, cho điểm , parabol y 8 x đường thẳng d có phương trình y 2 x a) Điểm T có thuộc đường thẳng d không? b) Xác định tọa độ giao điểm đường thẳng d parabol Bài 3: (2,0 điểm) Cho biểu thức P 4x 9x P x x với x a) Rút gọn P b) Tính giá trị P biết x (khơng dùng máy tính cầm tay) A bán Bài 4: (3,0 điểm) Cho tam giác ABC vuông A , đường cao AH Vẽ đường tròn A cắt đường thẳng AC D (điểm I kính AH Từ đỉnh B kẻ tiếp tuyến BI với tiếp điểm, I H không trùng nhau) a) Chứng minh AHBI tứ giác nội tiếp b) Cho AB 4cm, AC 3cm Tính AI c) Gọi HK đường kính A Chứng minh BC BI DK Bài 5: (2,0 điểm) a) Cho phương trình 2x 6x 3m (với m tham số) Tìm giá trị m để 3 phương trình cho có hai nghiệm x1 , x2 thỏa mãn: x1 x2 b) Trung tâm thương mại VC thành phố NT có 100 gian hàng Nếu gian hàng Trung tâm thương mại VC cho thuê với giá 100.000.000 đồng (một trăm triệu đồng) năm tất gian hàng thuê hết Biết rằng, lần tăng giá 5% tiền thuê gian hàng năm Trung tâm thương mại VC có thêm gian hàng trống Hỏi người quản lý phải định giá thuê gian hàng năm để doanh thu Trung tâm thương mại VC từ tiền cho thuê gian hàng năm lớn nhất? Đáp án Bài 1: a) Đặt x t t �0 , phương trình trở thành t 3t Nhận xét: Phương trình có hệ số a 1, b 2, c 4 a b c (4) Do phương trình có hai nghiệm phân biệt t1 1(tm) t2 4( ktm) Với t1 � x � x �1 Vậy tập nghiệm phương trình S 1;1 �x y �7 y 14 � y2 �y �� �� �� � �x y �x 2.2 �x b) �x y 9 Vậy hệ phương trình có nghiệm x; y 1; Bài 2: a) Điểm T có thuộc đường thẳng d khơng? Thay x 2; y 2 vào phương trình đường thẳng d : y 2x ta 2 2.( 2) � 2 2 (luôn đúng) nên điểm T thuộc đường thẳng d b) Xác định tọa độ giao điểm đường thẳng d parabol P Xét phương trình hồnh độ giao điểm đường thẳng d parabol 8 x 2 x � x x Phương trình x1 1; x2 * có P * a 8; b 2; c 6 � a b c 2 6 c 3 a +Với x � y 8.1 8 , ta có: � 3� x � y 8 � � � 4� + Với nên có hai nghiệm P Vậy tọa độ giao điểm đường thẳng d parabol 9� ; � � 2� 1; 8 ; � � Bài 3: a) Rút gọn P Với x thì: P x x x x x 3 x 2 x x Vậy P x với x b) Tính giá trị P biết x Ta có: x 1 Thay x 5 5.1 12 (tm) vào P x ta P 1 1 Vậy P Bài 4: a) Chứng minh tứ giác AHBI tứ giác nội tiếp A � BI AI � �AIB 900 Do BI tiếp tuyến Xét tứ giác AHBI có: 2 �IB 900 � A � �� �AHB 90 AH BC �� AIB � AHB 900 900 1800 � Tứ giác AHBI tứ giác nội tiếp đường tròn đường kính AB (tứ giác có tổng hai góc đối 180 ) b) Áp dụng hệ thức lượng tam giác vng tính AH, suy AI Áp dụng hệ thức lượng tam giác vuông ABC, đường cao AH ta có: 1 1 1 25 2 2 AH AB AC 16 144 � AH Vậy 144 144 12 � AH 25 25 AI AH 12 R A Chứng minh BC BI DK c) Gọi HK đường kính � �BI BH 1 �� � +) Áp dụng tính chất hai tiếp tuyến cắt ta có: �BAI BAH � BAH � � 900 BAI � 900 BAH � � IAD � HAC � BAI � � � � Mà HAC KAD � IAD KAD +) Xét ADI ADK có: AD chung � KAD � cmt IAD AI AK R Suy ADI AKI c.g.c �� AKD � AID 90 (hai góc tương ứng) � AKD vng K +) Xét tam giác vuông AKD tam giác vng AHC có: AK AH R ; � HAC � KAD (đối đỉnh); AKD AHC (cạnh góc vng – góc nhọn kề) � DK HC Từ 1 2 (hai cạnh tương ứng) suy BC BH HC BI DK dpcm Bài 5: a) x x 3m Phương trình cho có hai nghiệm � ' �0 � 32 3m 1 �0 � 6m �0 � 6m �0 ۣ m Khi phương trình có hai nghiệm x1 ; x2 : b � x1 x2 � � a � �x x c 3m 1 a Theo đinh lí Vi-et ta có: � Ta có : x13 x23 � x1 x2 x1 x2 x1 x2 3m � 27 3m 1 2 27 27 � m � m 1 TM 2 � 33 Vậy m thỏa mãn toán b) Gọi giá tiền gian hàng tăng lên x (triệu đồng) (ĐK: x ) Khi giá gian hàng sau tăng lên 100 x (triệu đồng) Cứ lần tăng 5% tiền thuê gian hàng (tăng 5%.100 triệu đồng) có thêm gian 2x hàng trống nên tăng x triệu đồng có thêm gia hàng trống Khi số gian hàng thuê sau tăng giá Số tiền thu là: 100 100 x � � � 100 2x � � �(triệu đồng) 2x (gian) 2x � � P 100 x � 100 � �đạt giá trị lớn � Yêu cầu tốn trở thành tìm x để Ta có: 2x � 2x � P 100 x � 100 � 10000 40x 100x � � 2 x 150x 10000 x 2.75x 752 752 10000 5 2 x 75 12250 Ta có x 75 �0 � 2 2 x 75 �0 � x 75 12250 �12250 5 Dấu " " xảy x 75 Vậy người quản lí phải cho thuê gian hàng với giá 100 75 175 triệu đồng doanh thu trung tâm thương mại VC năm lớn