Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 16 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
16
Dung lượng
1,41 MB
Nội dung
Gi¸o viªn d¹y : NguyÔn Th ị M«n : To¸n 7 NhiÖt liÖt chµo mõng C¸c ThÇy Gi¸o, C« Gi¸o VÒ dù héi thi gi¸o viªn giái N¨m häc: 2007 - 2008 C B A Hãy thử vẽ tamgiác với các cạnh có độ dài: 1cm; 2cm; 4cm. Em có vẽ được không? Nhận xét: Không vẽ được tamgiác có độ dài các cạnh như vậy ?1 Bài 3: quanhệgiữabacạnhcủa một tamgiác bất đẳng thức tamgiác 1. Bất đẳng thức tam giác: 1 cm 2 cm AB + BC > AC Có nhận xét gì về độ dài đoạn AB + AC và độ dài đoạn BC ? AB + AC > BC AC + BC > AB A CB Trong một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn độ dài cạnh còn lại. *Định lí Bài 3: quanhệgiữabacạnhcủa một tamgiác bất đẳng thức tamgiác 1. Bất đẳng thức tam giác: *Định lí : Trong một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn độ dài cạnh còn lại. GT KL ABC AB+AC >BC AC+BC >AB AB +BC >AC Dựa vào hình 17, hãy viết giả thiết, kết luận của định lí. ?2 A B (Hình 17) C AB+AC >BC AC+BC >AB AB +BC >AC ABC có: Bài 3: quanhệgiữabacạnhcủa một tamgiác bất đẳng thức tamgiác 1. Bất đẳng thức tam giác: B A C D Tương tự về nhà cm : AB + BC > AC AC + BC > AB B A C D Chứng minh : Trên tia đối của tia AB, lấy điểm D sao cho AD = AC (h.18). Trong tamgiác BCD , ta sẽ so sánh BD với BC. Do tia CA nằm giữa hai tia CB và CD nên: BCD > ACD (1) Mặt khác, theo cách dựng, tamgiác ACD cân tại A nên: ACD = ADC = BDC (2) Từ (1) và (2) suy ra : BCD > BDC (3) Trong tamgiác BDC , từ (3) suy ra : AB + AC = BD > BC (Theo định lí về quanhệgiữa góc và cạnh đối diện trong một tamgiác ) 1. Bất đẳng thức tam giác: Bài 3: quanhệgiữabacạnhcủa một tamgiác bất đẳng thức tamgiác Một cách chứng minh khác của định lí: Chứng minh: Giả sử BC là cạnh lớn nhất củatam giác. Từ A kẻ AH vuông góc với BC H nằm giữa B và C BH + HC = BC Mà AB > BH và AC > HC (đường xiên lớn hơn đường vuông góc) AB + AC > BH + HC AB + AC > BC Tương tự chứng minh AB + BC > AC AC + BC > AB A C B H Từ các bất đẳng thức tamgiác hãy điền vào chỗ trống: AB > ; AC > ; BC > . AB > ; AC > ; BC > . AB +AC >BC (1) AC +BC >AB (2) AB +BC >AC (3) Bài tập : AC BC BC AC AB BC BC AB AB AC AC AB Các bất đẳng thức trên là các bất đẳng thức tamgiác Bài 3: quanhệgiữabacạnhcủa một tamgiác bất đẳng thức tamgiác 1. Bất đẳng thức tam giác: ABC có: ABC có: AC BC < AB; BC AC < AB; AB BC < AC; BC AB < AC; AB AC < BC AC AB < BC Trong một tam giác, hiệu độ dài hai cạnh bất kì bao giờ cũng nhỏ hơn độ dài cạnh còn lại. Hệ quả: 2. Hệ quả của bất đẳng thức tamgiác : Bài tập.Dựa vào định lí và hệ quả trên hãy điền vào chỗ trống : < BC < ; < AB < .; < AC < .; AB AC AB + AC BC AC BC + AC BC AB BC + AB . < BC < . < AC < . AC -AB AC -BC .< AB < . AC + AB AC + BC AB +BC AC -BC A B (Hình 17) C AB +AC >BC (1) AC +BC >AB (2) AB +BC >AC (3) Các bất đẳng thức trên là các bất đẳng thức tamgiác Bài 3: quanhệgiữabacạnhcủa một tamgiác bất đẳng thức tamgiác 1. Bất đẳng thức tam giác: ABC có: A B (Hình 17) C ABC có: AC BC < AB; BC AC < AB; AB BC < AC; BC AB < AC; AB AC < BC AC AB < BC Trong một tam giác, hiệu độ dài hai cạnh bất kì bao giờ cũng nhỏ hơn độ dài cạnh còn lại. Hệ quả: 2. Hệ quả của bất đẳng thức tamgiác : Ví dụ: ABC với cạnh BC ta có: AB AC < BC < AB + AC . Nhận xét: Trong một tam giác, độ dài một cạnh bao giờ cũng lớn hơn hiệu và nhỏ hơn tổng các độ dài của hai cạnh còn lại. AB +AC >BC (1) AC +BC >AB (2) AB +BC >AC (3) Bài 3: quanhệgiữabacạnhcủa một tamgiác bất đẳng thức tamgiác 1. Bất đẳng thức tam giác: ABC có: A B (Hình 17) C ABC có: AC BC < AB; BC AC < AB; AB BC < AC; BC AB < AC; AB AC < BC AC AB < BC 2. Hệ quả của bất đẳng thức tamgiác : ABC với cạnh BC ta có: AB AC < BC < AB + AC . Nhận xét: ?3 Em hãy giải thích vì sao không có tamgiác với bacạnh có độ dài 1cm; 2cm; 4cm. Không có tamgiác có độ dài các cạnh như vậy vì: 1cm +2cm < 4cm Trả lời: Dựa vào bất đẳng thức tam giác, kiểm tra xem bộ ba nào trong các bộ ba đoạn thẳng có độ dài cho sau đây không thể là bacạnhcủa một tam giác.Trong những trường hợp còn lại, hãy thử dựng tamgiác có độ dài bacạnh như thế: a) 2cm; 3cm; 6cm. b) 2cm; 4cm; 6cm. c) 3cm; 4cm; 6cm. Hoạt động nhóm Bài tập: [...]... đẳng thức tam giác, kiểm tra xem bộ ba nào trong các bộ ba đoạn thẳng có độ dài cho sau đây không thể là ba cạnh của một tam giác. Trong những trường hợp còn lại, hãy thử dựng tamgiác có độ dài bacạnh như thế: a) 2cm; 3cm; 6cm b) 2cm; 4cm; 6cm c) 3cm; 4cm; 6cm Trả lời: a) Vì: 2cm + 3cm< 6 cm không thể là ba cạnh của một tamgiác b) Vì: 2cm + 4cm = 6cm không thể là ba cạnh của một tamgiác c) Vì... > 6cm ba độ dài này có thể là ba cạnh của một tamgiác 3 cm 4 cm 6 cm Lưu ý: Khi xét độ dài ba đoạn thẳng có thoả mãn bất đẳng thức tamgiác hay không , ta chỉ cần so sánh độ dài đoạn dài nhất với tổng hai độ dài còn lại, hoặc so sánh độ dài nhỏ nhất với hiệu hai độ dài còn lại Bài tập 16: SGK trang 63 Cho tamgiác ABC với hai cạnh BC = 1cm, AC = 7cm Hãy tìm độ dài cạnh AB, biết rằng độ dài cạnh này... (cm) Tamgiác ABC là tamgiác gì? Trả lời: ABC có: AC BC < AB < AC + BC 7 1 < AB < 7 + 1 6 < AB < 8 mà độ dài AB là một số nguyên AB = 7 cm ABC là tamgiác cân đỉnh A Hướng dẫn về nhà: - Nắm vững bất đẳng thức tam giác, học cách chứng minh định lý bất đẳng thức tamgiác - Bài tập về nhà: Bài 17; 18; 19; 20 SGK trang 63, 64 - Tiết sau luyện tập Nhận xét: Trong một tam giác, độ dài một cạnh bao giờ... 17; 18; 19; 20 SGK trang 63, 64 - Tiết sau luyện tập Nhận xét: Trong một tam giác, độ dài một cạnh bao giờ cũng lớn hơn hiệu và nhỏ hơn tổng các độ dài của hai cạnh còn lại Ví dụ:ABC với cạnh BC ta có: AB AC < BC < AB + AC Bài tập.Dựa vào định lí và hệ quả trên hãy điền vào chỗ trống : AB AC AB + AC AC -AB AC + AB < BC < BC AC BC + AC BC AB BC + AB < BC < ; AC -BC AC + BC .< AB < AB +BC . 3: quan hệ giữa ba cạnh của một tam giác bất đẳng thức tam giác Một cách chứng minh khác của định lí: Chứng minh: Giả sử BC là cạnh lớn nhất của tam giác. . một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn độ dài cạnh còn lại. *Định lí Bài 3: quan hệ giữa ba cạnh của một tam giác bất đẳng thức tam